Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (6): 609-616.DOI: 10.16819/j.1001-7216.2023.221109
• Research Papers • Previous Articles Next Articles
XIE Kaizhen1,2, ZHANG Jianming2, CHENG Can2, ZHOU Jihua2, NIU Fuan2, SUN Bin2, ZHANG Anpeng2, WEN Weijun3, DAI Yuting2, HU Qiyan2, QIU Yue2, CAO Liming2,4,*(), CHU Huangwei2,4,*(
)
Received:
2022-11-19
Revised:
2023-02-23
Online:
2023-11-10
Published:
2023-11-14
Contact:
*email: chuhuangwei@saas.sh.cn;clm079@163.com
谢开珍1,2, 张建明2, 程灿2, 周继华2, 牛付安2, 孙滨2, 张安鹏2, 闻伟军3, 代雨婷2, 胡启琰2, 邱越2, 曹黎明2,4,*(), 储黄伟2,4,*(
)
通讯作者:
*email: chuhuangwei@saas.sh.cn;clm079@163.com
基金资助:
XIE Kaizhen, ZHANG Jianming, CHENG Can, ZHOU Jihua, NIU Fuan, SUN Bin, ZHANG Anpeng, WEN Weijun, DAI Yuting, HU Qiyan, QIU Yue, CAO Liming, CHU Huangwei. Identification and QTL Mapping of Rice Germplasm Resources with Low Amylose Content[J]. Chinese Journal OF Rice Science, 2023, 37(6): 609-616.
谢开珍, 张建明, 程灿, 周继华, 牛付安, 孙滨, 张安鹏, 闻伟军, 代雨婷, 胡启琰, 邱越, 曹黎明, 储黄伟. 低直链淀粉含量水稻种质资源的鉴定与QTL定位分析[J]. 中国水稻科学, 2023, 37(6): 609-616.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221109
名称 Name | 引物序列 Primer sequence | PCR产物 PCR product/bp |
---|---|---|
Wx-1F | CAATGCAACGTACGCCAAGCCGA | 1911 |
Wx-1R | GTACACGACGACGGAGGGGAACCT | |
Wx-2F | ACAACCACCATGTCGGCTCTCACCA | 1687 |
Wx-2R | GGTGAGCACCCTGTCGGCTTCCA | |
Wx-3F | GAGCTGACAACCCTGCACTACTGTCCA | 2005 |
Wx-3R | AACCACTGGTTCATTCGTCTCTCATCCA |
Table 1. The sequencing primer of Waxy gene.
名称 Name | 引物序列 Primer sequence | PCR产物 PCR product/bp |
---|---|---|
Wx-1F | CAATGCAACGTACGCCAAGCCGA | 1911 |
Wx-1R | GTACACGACGACGGAGGGGAACCT | |
Wx-2F | ACAACCACCATGTCGGCTCTCACCA | 1687 |
Wx-2R | GGTGAGCACCCTGTCGGCTTCCA | |
Wx-3F | GAGCTGACAACCCTGCACTACTGTCCA | 2005 |
Wx-3R | AACCACTGGTTCATTCGTCTCTCATCCA |
序号 Number | 名称 Name | 直链淀粉含量 Amylose content/% | 序号 Number | 名称 Name | 直链淀粉含量 Amylose content/% |
---|---|---|---|---|---|
1 | C45 | 15.43±0.30 | 12 | 繁35 Fan 35 | 13.86±0.00 |
2 | 繁1 Fan 1 | 14.50±0.04 | 13 | 繁38 Fan 38 | 10.58±0.13 |
3 | 繁3 Fan 3 | 18.12±0.34 | 14 | 繁42 Fan 42 | 16.54±0.13 |
4 | 繁6 Fan 6 | 17.82±0.21 | 15 | 繁43 Fan 43 | 16.80±0.21 |
5 | 繁15 Fan 15 | 17.61±0.34 | 16 | 申CR1 Shen CR1 | 15.69±0.21 |
6 | 繁16 Fan 16 | 18.46±0.17 | 17 | 申CR2 Shen CR2 | 9.64±0.04 |
7 | 繁17 Fan 17 | 17.95±0.09 | 18 | 申CR3 Shen CR3 | 18.50±0.04 |
8 | 繁24 Fan 24 | 15.82±0.17 | 19 | 申CR4 Shen CR4 | 10.20±0.09 |
9 | 申恢26 Shenhui 26 | 17.48±0.13 | 20 | 申CR5 Shen CR5 | 14.07±0.13 |
10 | 繁29 Fan 29 | 16.50±0.09 | 21 | 申CR6 Shen CR6 | 13.39±0.13 |
11 | 繁32 Fan32 | 11.39±0.00 | 22 | 申CR7 Shen CR7 | 14.33±0.13 |
Table 2. Amylose content in different restorer rice lines.
序号 Number | 名称 Name | 直链淀粉含量 Amylose content/% | 序号 Number | 名称 Name | 直链淀粉含量 Amylose content/% |
---|---|---|---|---|---|
1 | C45 | 15.43±0.30 | 12 | 繁35 Fan 35 | 13.86±0.00 |
2 | 繁1 Fan 1 | 14.50±0.04 | 13 | 繁38 Fan 38 | 10.58±0.13 |
3 | 繁3 Fan 3 | 18.12±0.34 | 14 | 繁42 Fan 42 | 16.54±0.13 |
4 | 繁6 Fan 6 | 17.82±0.21 | 15 | 繁43 Fan 43 | 16.80±0.21 |
5 | 繁15 Fan 15 | 17.61±0.34 | 16 | 申CR1 Shen CR1 | 15.69±0.21 |
6 | 繁16 Fan 16 | 18.46±0.17 | 17 | 申CR2 Shen CR2 | 9.64±0.04 |
7 | 繁17 Fan 17 | 17.95±0.09 | 18 | 申CR3 Shen CR3 | 18.50±0.04 |
8 | 繁24 Fan 24 | 15.82±0.17 | 19 | 申CR4 Shen CR4 | 10.20±0.09 |
9 | 申恢26 Shenhui 26 | 17.48±0.13 | 20 | 申CR5 Shen CR5 | 14.07±0.13 |
10 | 繁29 Fan 29 | 16.50±0.09 | 21 | 申CR6 Shen CR6 | 13.39±0.13 |
11 | 繁32 Fan32 | 11.39±0.00 | 22 | 申CR7 Shen CR7 | 14.33±0.13 |
Fig. 2. Genotyping of Wx genes in rice with different amylose contents. A, Gene structure and PCR primers for Wx gene, black and grey boxes indicate coding region and untranslated region, respectively. B, Genotype of Wx gene in 22 cultivars.
Fig. 4. Determination of gel consistency and its relationship with amylose content. A, The gel consistency(GC) of low amylose varieties Fan 32, Fan 38, Shen CR2 and Shen CR4 was significantly increased compared to Shenhui 26(**P < 0.01). B, The GC exhibited a significant negative correlation with the amylose content(r=−0.75).
年份 Year | 位点 Locus | 染色体 Chromosome | 遗传区间 Genetic range | 物理区间 Physical range/bp | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Additive effect/% |
---|---|---|---|---|---|---|---|
2020 | qAC1.1 | 1 | ch1-336—ch1-344 | 27 294 708—27 633 625 | 4.03 | 10.76 | ―0.64 |
qAC6.1 | 6 | ch6-42—ch6-44 | 4 722 458—5 120 945 | 5.00 | 13.81 | 0.73 | |
qAC6.2 | 6 | ch6-143—ch6-200 | 7 984 061—9 393 696 | 11.04 | 33.80 | 1.14 | |
2021 | qAC1.2 | 1 | ch1-357—ch1-359 | 27 973 902—28 090 735 | 4.75 | 9.24 | ―0.64 |
qAC5 | 5 | ch5-56—ch5-59 | 7 001 034—7 208 572 | 4.35 | 8.41 | 0.61 | |
qAC6.1 | 6 | ch6-42—ch6-44 | 4 722 458—5 120 945 | 6.10 | 12.44 | 0.75 | |
qAC6.2 | 6 | ch6-143—ch6-200 | 7 984 061—9 393 696 | 13.87 | 32.14 | 1.20 |
Table 3. Preliminary mapping of QTL for genes controlling amylose content in rice.
年份 Year | 位点 Locus | 染色体 Chromosome | 遗传区间 Genetic range | 物理区间 Physical range/bp | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Additive effect/% |
---|---|---|---|---|---|---|---|
2020 | qAC1.1 | 1 | ch1-336—ch1-344 | 27 294 708—27 633 625 | 4.03 | 10.76 | ―0.64 |
qAC6.1 | 6 | ch6-42—ch6-44 | 4 722 458—5 120 945 | 5.00 | 13.81 | 0.73 | |
qAC6.2 | 6 | ch6-143—ch6-200 | 7 984 061—9 393 696 | 11.04 | 33.80 | 1.14 | |
2021 | qAC1.2 | 1 | ch1-357—ch1-359 | 27 973 902—28 090 735 | 4.75 | 9.24 | ―0.64 |
qAC5 | 5 | ch5-56—ch5-59 | 7 001 034—7 208 572 | 4.35 | 8.41 | 0.61 | |
qAC6.1 | 6 | ch6-42—ch6-44 | 4 722 458—5 120 945 | 6.10 | 12.44 | 0.75 | |
qAC6.2 | 6 | ch6-143—ch6-200 | 7 984 061—9 393 696 | 13.87 | 32.14 | 1.20 |
[1] | 吴云飞, 张勇, 王磊磊, 余徐润, 熊飞. 水稻籽粒淀粉品质的影响因素及其机制研究进展[J]. 中国农学通报, 2021, 37(6): 1-8. |
Wu Y F, Zhang Y, Wang L L, Yu X R, Xiong F. Starch quality of rice grain: Research progress on influencing factors and mechanism[J]. Chinese Agricultural Science Bulletin, 2021, 37(6): 1-8. (in Chinese with English abstract) | |
[2] | 夏朵, 周浩, 何予卿. 稻米品质的遗传研究及分子育种进展[J]. 华中农业大学学报, 2022, 41(1): 48-61. |
Xia D, Zhou H, He Y Q. Progress on genetic study and molecular breeding of rice quality[J]. Journal of Huazhong Agricultural University, 2022, 41(1): 48-61. (in Chinese with English abstract) | |
[3] | Asaoka M, Okuno K, Fuwa H. Effect of environmental temperature at the milky stage on amylose content and fine structure of amylopectin of waxy and nonwaxy endosperm starches of rice (Oryza sativa L.)[J]. Agricultural and Biological Chemistry, 1985, 49(2): 373-379. |
[4] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences, 2009, 106(51): 21760-21765. |
[5] | Qiao W H, Chen Y T, Wang R S, Wei X, Cao L R, Zhang W X, Yang Q W. Nucleotide diversity in waxy gene and validation of single nucleotide polymorphism in relation to amylose content in chinese microcore rice germplasm[J]. Crop Science, 2012, 52(4): 1689-1697. |
[6] | Wang Z Y, Wu Z L, Xing Y Y, Zheng F G, Guo X L, Zhang W G, Hong M M. Nucleotide sequence of rice waxy gene[J]. Nucleic Acids Research, 1990, 18(19): 5898. |
[7] | Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. Wxlv, the ancestral allele of rice waxy gene[J]. Molecular Plant, 2019, 12(8): 1157-1166. |
[8] | Teng B, Zeng R, Wang Y, Liu Z, Zhang Z, Zhu H, Ding X, Li W, Zhang G. Detection of allelic variation at the Wx locus with single-segment substitution lines in rice (Oryza sativa L.)[J]. Molecular Breeding, 2012, 30(1): 583-595. |
[9] | Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, Lu Y, Li Q, Fan X, Tang S, Gu M, Liu Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901. |
[10] | Zhou H, Xia D, Zhao D, Li Y, Li P, Wu B, Gao G, Zhang Q, Wang G, Xiao J, Li X, Yu S, Lian X, He Y. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2021, 63(5): 878-880. |
[11] | Liu X, Ding Q, Wang W, Pan Y, Tan C, Qiu Y, Chen Y, Li H, Li Y, Ye N, Xu N, Wu X, Ye R, Liu J, Ma C. Targeted deletion of the first intron of the wxb allele via CRISPR/CAS9 significantly increases grain amylose content in rice[J]. Rice (New York, NY), 2022, 15(1): 1. |
[12] | Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M. Aberrant splicing of intron 1 leads to the heterogeneous 5' UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content[J]. The Plant Journal, 1998, 14(4): 459-465. |
[13] | Sato H, Suzuki Y, Sakai M, Imbe T. Molecular characterization of wx-mq, a novel mutant gene for low-amylose content in endosperm of rice (Oryza sativa L.)[J]. Breeding Science, 2002, 52: 131-135. |
[14] | 陈智慧, 王芳权, 许扬, 王军, 李文奇, 范方军, 仲维功, 杨杰. 软米基因Wx-mp在部分粳稻品种资源中的分布[J]. 植物遗传资源学报, 2019, 20(4): 975-981. |
Chen Z H, Wang F Q, Xu Y, Wang J, Li W Q, Fan F J, Zhong W G, Yang J. The distribution of low amylose content allele Wx-mp in japonica rice[J]. Journal of Plant Genetic Resources, 2019, 20(4): 975-981. (in Chinese with English abstract) | |
[15] | Zhu Y, Cai X L, Wang Z Y, Hong M M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene[J]. The Journal of Biological Chemistry, 2003, 278(48): 47803-47811. |
[16] | Wang J C, Xu H, Zhu Y, Liu Q Q, Cai X L. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(11): 3453-3466. |
[17] | Bello B K, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, Wang Y, Tong X, Wang W, Yuan W, Wei X, Zhang J. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.)[J]. Plant Biotechnology Journal, 2019, 17(7): 1222-1235. |
[18] | Zeng D, Yan M, Wang Y, Liu X, Qian Q, Li J. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.)[J]. Plant Molecular Biology, 2007, 65(4): 501-509. |
[19] | Igarashi H, Ito H, Shimada T, Kang D J, Hamada S. A novel rice dull gene, LowAC1, encodes an RNA recognition motif protein affecting Waxyb pre-mRNA splicing[J]. Plant Physiology and Biochemistry, 2021, 162: 100-109. |
[20] | Isshiki M, Matsuda Y, Takasaki A, Wong H L, Satoh H, Shimamoto K. Du3, a mRNA cap-binding protein gene, regulates amylose content in japonica rice seeds[J]. Plant Biotechnology, 2008, 25: 483-487. |
[21] | Cai Y, Zhang W, Fu Y, Shan Z, Xu J, Wang P, Kong F, Jin J, Yan H, Ge X, Wang Y, You X, Chen J, Li X, Chen W, Chen X, Ma J, Tang X, Zhang J, Bao Y, Jiang L, Wang H, Wan J. Du13 encodes a C2H2 zinc-finger protein that regulates Wxb pre-mRNA splicing and microRNA biogenesis in rice endosperm[J]. Plant Biotechnology Journal, 2022, 20(7): 1387-1401. |
[22] | 黄祎雯, 孙滨, 程灿, 牛付安, 周继华, 张安鹏, 涂荣剑, 李瑶, 姚瑶, 代雨婷, 谢开珍, 陈小荣, 曹黎明, 储黄伟. 对水稻种子耐储性QTL的研究[J]. 作物学报, 2022, 48(9): 2255-2264. |
Huang Y Wen, Sun B, Cheng C, Niu F A, Zhou J H, Zhang A P, Tu R J, Li Y, Yao Y, Dai Y T, Xie K Z, Chen X R, Cao L M, Chu H W. QTL mapping of seed storage tolerance in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2022, 48(9): 2255-2264. (in Chinese with English abstract) | |
[23] | Su Y, Rao Y, Hu S, Yang Y, Gao Z, Zhang G, Liu J, Hu J, Yan M, Dong G, Zhu L, Guo L, Qian Q, Zeng D. Map-based cloning proves qGC-6, a major QTL for gel consistency of japonica/indica cross, responds by Waxy in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 123(5): 859-867. |
[24] | 储黄伟, 程灿, 牛付安, 周继华, 涂荣剑, 罗忠永, 王新其, 曹黎明. 8个稻瘟病抗性基因在三系杂交粳稻亲本中的分布[J]. 上海农业学报, 2018, 34(1): 8-13. |
Chu H W, Cheng C, Niu F A, Zhou J H, Tu R J, Luo Z Y, Wang X Q, Cao L M. Distribution of 8 rice blast-resistant genes in parents of three-line hybrid rice[J]. Acta Agricultural Shanghai, 2018, 34(1): 8-13. (in Chinese with English abstract) | |
[25] | Meng L, Li H, Zhang L, Wang J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations[J]. The Crop Journal, 2015, 3(3): 269-283. |
[26] | Wang H, Zhu S, Dang X, Liu E, Hu X, Eltahawy M S, Zaid I U, Hong D. Favorable alleles mining for gelatinization temperature, gel consistency and amylose content in Oryza sativa by association mapping[J]. BMC Genetics, 2019, 20(1): 34. |
[27] | Zhang A, Gao Y, Li Y, Ruan B, Yang S, Liu C, Zhang B, Jiang H, Fang G, Ding S, Jahan N, Xie L, Dong G, Xu Z, Gao Z, Guo L, Qian Q. Genetic analysis for cooking and eating quality of super rice and fine mapping of a novel locus qGC10 for gel consistency[J]. Frontiers in Plant Science, 2020, 11: 342. |
[28] | Huang L, Gu Z, Chen Z, Yu J, Chu R, Tan H, Zhao D, Fan X, Zhang C, Li Q, Liu Q. Improving rice eating and cooking quality by coordinated expression of the major starch synthesis-related genes, SSⅡ and Wx, in endosperm[J]. Plant Molecular Biology, 2021, 106(4-5): 419-432. |
[29] | Gao Z, Zeng D, Cui X, Zhou Y, Yan M, Huang D, Li J, Qian Q. Map-based cloning of the ALK gene, which controls the gelatinization temperature of rice[J]. Science in China Series C: Life Sciences, 2003, 46(6): 661-668. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||