Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (5): 415-426.DOI: 10.16819/j.1001-7216.2021.201209
• Review and Special Topic • Next Articles
Xiaobo XU, Penghu AN, Tianjiao GUO, Dan HAN, Wei JIA, Wuxing HUANG*()
Received:
2020-12-11
Revised:
2021-03-22
Online:
2021-09-10
Published:
2021-09-10
Contact:
Wuxing HUANG
通讯作者:
黄五星
Xiaobo XU, Penghu AN, Tianjiao GUO, Dan HAN, Wei JIA, Wuxing HUANG. Research Progresses on Response Mechanisms and Control Measures of Cadmium Stress in Rice[J]. Chinese Journal OF Rice Science, 2021, 35(5): 415-426.
许肖博, 安鹏虎, 郭天骄, 韩丹, 贾玮, 黄五星. 水稻镉胁迫响应机制及防控措施研究进展[J]. 中国水稻科学, 2021, 35(5): 415-426.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.201209
基因符号 Gene symbol | 表达部位 Main expression organ | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsHMA2 | 根、茎节 Root, node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [71] |
OsHMA3 | 根 Root | 液泡膜 Tonoplast | 将镉从细胞质转运至液泡中 Transportation of cadmium from cytoplasm to vacuoles | [72] |
OsHMA9 | 花药、叶片 Anther, leaf | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [73] |
OsIRT1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [74] |
OsIRT2 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [67] |
OsAUX1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系的发育和镉胁迫反应 Root development and response to cadmium stress | [75] |
PEZ1 | 根 Root | 细胞质膜 Plasma membrane | 调控中柱对镉的沉积 Regulation of cadmium deposition in the central column | [76] |
OsNRAMP1 | 根 Root | 细胞质膜 Plasma membrane | 参与镉在中柱和木质部装载 Participation of cadmium loading in stele and xylem | [77] |
OsNRAMP5 | 根 Root | 细胞质膜 Plasma membrane | 调控镉转运进入维管束 Regulation of cadmium transport into vascular bundles | [70, 78] |
LCD | 根、叶片 Root, leaf | 细胞质、细胞核Cytoplasm, nucleus | 调控韧皮部镉转运 Regulation of cadmium transport in phloem | [79] |
OsMTP1 | 根、叶 Root, leaf | 细胞质膜 Plasma membrane | 将镉外排到细胞间隙 Excretion of cadmium to intercellular space | [80] |
OsPDR5 | 根 Root | 细胞质膜 Plasma membrane | 参与镉的转运 Participation of cadmium transport | [81] |
OsPCR1 | 根、节间、穗 Root, internode, panicle | 细胞质膜 Plasma membrane | 调控水稻金属离子稳态和粒重 Regulation of metal ion homeostasis and grain weight | [82] |
OsCCX2 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [83] |
CAL1 | 根、叶鞘、节间 Root, leaf sheath, internode | 细胞壁 Cell wall | 调控镉在叶片中的积累 Regulation of cadmium accumulation in leaves | [84] |
OsLCT1 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉向籽粒的运输 Regulation of cadmium transport to grains | [85] |
Ospdr9 | 根 Root | — | 调控水稻根对镉的吸收与转运 Regulate the absorption and translocation of cadmium by rice roots | [86] |
OsZIP1 | 根,穗 Root, panicle | — | 调控镉等重金属的转运 Regulate the transport of heavy metals such as cadmium | [87] |
RCS1 | 根 Root | 胞质溶胶 Cytoplasmic sol | 促进镉的络合 Promote the complexation of cadmium | [88] |
OsMAPK2 | 根 Root | — | 镉信号转导 Cadmium signal transduction | [89] |
OsNAAT1 | 根 Root | — | 调控根对镉的吸收 Regulation of cadmium uptake by roots | [90] |
Os03L2 (2B) | — | 染色质 Chromatin | 降低水稻中镉的积累 Reduce cadmium accumulation in rice | [91] |
Table 1 .Reported genes related to cadmium uptake and transport in rice.
基因符号 Gene symbol | 表达部位 Main expression organ | 亚细胞定位 Subcellular localization | 功能 Function | 参考文献 Reference |
---|---|---|---|---|
OsHMA2 | 根、茎节 Root, node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [71] |
OsHMA3 | 根 Root | 液泡膜 Tonoplast | 将镉从细胞质转运至液泡中 Transportation of cadmium from cytoplasm to vacuoles | [72] |
OsHMA9 | 花药、叶片 Anther, leaf | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [73] |
OsIRT1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [74] |
OsIRT2 | 根 Root | 细胞质膜 Plasma membrane | 参与根系对镉的吸收 Participation of cadmium absorption by roots | [67] |
OsAUX1 | 根 Root | 细胞质膜 Plasma membrane | 参与根系的发育和镉胁迫反应 Root development and response to cadmium stress | [75] |
PEZ1 | 根 Root | 细胞质膜 Plasma membrane | 调控中柱对镉的沉积 Regulation of cadmium deposition in the central column | [76] |
OsNRAMP1 | 根 Root | 细胞质膜 Plasma membrane | 参与镉在中柱和木质部装载 Participation of cadmium loading in stele and xylem | [77] |
OsNRAMP5 | 根 Root | 细胞质膜 Plasma membrane | 调控镉转运进入维管束 Regulation of cadmium transport into vascular bundles | [70, 78] |
LCD | 根、叶片 Root, leaf | 细胞质、细胞核Cytoplasm, nucleus | 调控韧皮部镉转运 Regulation of cadmium transport in phloem | [79] |
OsMTP1 | 根、叶 Root, leaf | 细胞质膜 Plasma membrane | 将镉外排到细胞间隙 Excretion of cadmium to intercellular space | [80] |
OsPDR5 | 根 Root | 细胞质膜 Plasma membrane | 参与镉的转运 Participation of cadmium transport | [81] |
OsPCR1 | 根、节间、穗 Root, internode, panicle | 细胞质膜 Plasma membrane | 调控水稻金属离子稳态和粒重 Regulation of metal ion homeostasis and grain weight | [82] |
OsCCX2 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉在木质部的装载 Regulation of cadmium loading in xylem | [83] |
CAL1 | 根、叶鞘、节间 Root, leaf sheath, internode | 细胞壁 Cell wall | 调控镉在叶片中的积累 Regulation of cadmium accumulation in leaves | [84] |
OsLCT1 | 茎节 Node | 细胞质膜 Plasma membrane | 调控镉向籽粒的运输 Regulation of cadmium transport to grains | [85] |
Ospdr9 | 根 Root | — | 调控水稻根对镉的吸收与转运 Regulate the absorption and translocation of cadmium by rice roots | [86] |
OsZIP1 | 根,穗 Root, panicle | — | 调控镉等重金属的转运 Regulate the transport of heavy metals such as cadmium | [87] |
RCS1 | 根 Root | 胞质溶胶 Cytoplasmic sol | 促进镉的络合 Promote the complexation of cadmium | [88] |
OsMAPK2 | 根 Root | — | 镉信号转导 Cadmium signal transduction | [89] |
OsNAAT1 | 根 Root | — | 调控根对镉的吸收 Regulation of cadmium uptake by roots | [90] |
Os03L2 (2B) | — | 染色质 Chromatin | 降低水稻中镉的积累 Reduce cadmium accumulation in rice | [91] |
[1] | 郑陶, 李廷轩, 张锡洲, 余海英, 王勇. 水稻镉高积累品种对镉的富集特性[J]. 中国农业科学, 2013, 46(7): 1492-1500. |
Zheng T, Li T X, Zhang X Z, Yu H Y, Wang Y. Accumulation characteristics of cadmium-accumulated rice cultivars with high cadmium accumulation[J]. Scientia Agricultura Sinica, 2013, 46(7): 1492-1500. (in Chinese with English abstract) | |
[2] | He S, He Z, Yang X, Stoffella P J, Baligar V C. Soil biogeochemistry, plant physiology, and phytoremediation of cadmium-contaminated soils[J]. Advances in Agronomy, 2015, 134: 135-225. |
[3] | Phuc H D, Kido T, Oanh N T P, Manh H D, Anh L T, Oyama Y, Okamoto R, Ichimori A, Nogawa K, Suwazono Y, Nakagawa H. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology, 2017, 37(9): 1046-1052. |
[4] | Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J. Cadmium exposure in the population: From health risks to strategies of prevention[J]. BioMetals, 2010, 23(5): 769-782. |
[5] | Grant C A, Clarke J M, Duguid S, Chaney R L. Selection and breeding of plant cultivars to minimize cadmium accumulation.[J]. The Science of the Total Environment, 2008, 390(2-3): 301-310. |
[6] | Clemens S, Aarts M G M, Thomine S, Verbruggen N. Plant science: The key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92-99. |
[7] | 环境保护部, 国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17)[2021-03-22]. |
Ministry of Environmental Protection, Ministry of Land and Resources, the People’s Republic of China. Bulletin of the National Soil Pollution Survey [EB/OL]. (2014-04- 17)[2021-03-22]. (in Chinese) | |
[8] | Chaney R L, Reeves P G, Ryan J A, Simmons R W, Welch R M, Scott Angle J. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks[J]. Biometals, 2004, 17(5): 549-553. |
[9] | Sheng Z M, Lin J, Dan H, Xiang X T, Jun Y J, Yang J X, Chao P. Cadmium exposure via diet and its implication on the derivation of health-based soil screening values in China[J]. Journal of Exposure Science & Environmental Epidemiology, 2015, 25(4): 433-442. |
[10] | Song Y, Wang Y, Mao W F, Sui H X, Yong L, Yang D J, Jiang D G, Zhang L, Gong Y Y. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS ONE, 2017, 12(5): e0177978. |
[11] | Zhu H H, Chen C, Xu C, Zhu Q H, Huang D Y. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. |
[12] | Chen H P, Tang Z, Wang P, Zhao F J. Geographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese rice[J]. Environmental Pollution, 2018, 238: 482-490. |
[13] | Liu X J, Tian G J, Jiang D, Zhang C, Kong L Q. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale[J]. Environmental Science and Pollution Research, 2016, 23(18): 17941-17952. |
[14] | 孙亚莉. 水稻种子萌发与幼苗期对镉胁迫的响应差异研究[D]. 长沙: 湖南农业大学, 2018. |
Sun Y L. Studies on the difference of response to cadmium stress in rice seed germination and seedling stage[D]. Changsha: Hunan Agricultural University, 2018. (in Chinese with English abstract) | |
[15] | 何俊瑜, 任艳芳, 周国强, 杨良静, 王阳阳. 不同水稻品种种子萌发期耐镉性的研究[J]. 华北农学报, 2010, 25(3): 108-112. |
He J Y, Ren Y F, Zhou G Q, Yang L J, Wang Y Y. Study on cadmium tolerance of different varieties of Oryza sativa L. during seed germination stage[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(3): 108-112. (in Chinese with English abstract) | |
[16] | 何俊瑜, 任艳芳, 朱诚, 蒋德安. 镉胁迫对不同水稻品种种子萌发、幼苗生长和淀粉酶活性的影响[J]. 中国水稻科学, 2008(4): 399-404. |
He J Y, Ren Y F, Zhu C, Jiang D A. Effects of cadmium stress on seed germination, seedling growth, and amylase activities in rice[J]. Chinese Journal of Rice Science, 2008 (4): 399-404. (in Chinese with English abstract) | |
[17] | Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose[J]. Biochemistry, 1999, 38(22): 7050-7061. |
[18] | 宋玉芳, 许华夏, 任丽萍, 龚平, 周启星. 土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应[J]. 环境科学, 2002(1): 103-107. |
Song Y F, Xu H X, Ren L P, Gong P, Zhou Q X. Eco-toxicological effects of heavy metals on the inhibition of seed germination and root elongation of Chinese cabbages in soils[J]. Environmental Science, 2002(1): 103-107. (in Chinese with English abstract) | |
[19] | 李伟强, 毛任钊, 刘小京. 胁迫时间与非毒性离子对重金属抑制拟南芥种子发芽及幼苗生长的影响[J]. 应用生态学报, 2005(10): 1943-1947. |
Li W Q, Mao R Z, Liu X J. Effects of stress duration and non-toxic ions on heavy metals toxicity to Arabidopsis seed germination and seeding groth[J]. Chinese Journal of Applied Ecology, 2005(10): 1943-1947. (in Chinese with English abstract) | |
[20] | 檀建新, 尹君, 王文忠, 贾荣革, 史吉平. 镉对小麦、玉米幼苗生长和生理生化反应的影响[J]. 河北农业大学学报, 1994(S1): 83-87. |
Tan J X, Yin J, Wang W Z, Jia R G, Shi J P. Effects of cadmium on growth and physiological and biochemical responses of wheat and maize seedlings[J]. Journal of Hebei Agricultural University, 1994 (S1): 83-87. (in Chinese with English abstract) | |
[21] | 王春春, 沈振国. 镉在植物体内的积累及其对绿豆幼苗生长的影响[J]. 南京农业大学学报, 2001(4): 9-13. |
Wang C C, Shen Z G. Uptake of Cd by three species of plants and responses of mung bean to Cd toxicity[J]. Journal of Nanjing Agricultural University, 2001(4): 9-13. (in Chinese with English abstract) | |
[22] | 何俊瑜, 任艳芳. 镉胁迫对水稻种子萌发、幼苗生长和淀粉酶活性的影响[J]. 华北农学报, 2008(S1): 131-134. |
He J Y, Ren Y F. Effect of Cadmium on seed germination, seedling growth and amylolytic activity of rice[J]. Acta Agriculturae Boreali-Sinica, 2008(S1): 131-134. (in Chinese with English abstract) | |
[23] | 王泽正, 杨亮, 李婕, 付东东, 胡维薇, 范正权, 彭丽成. 微塑料和镉及其复合对水稻种子萌发的影响[J]. 农业环境科学学报, 2021, 40(1): 44-53. |
Wang Z Z, Yang L, Li J, Fu D D, Hu W W, Fan Z Q, Peng L C. Single and combined effects of microplastics and cadmium on the germination characteristics of rice seeds[J]. Journal of Agro-Environment Science, 2021, 40(1): 44-53. (in Chinese with English abstract) | |
[24] | 程旺大, 姚海根, 张国平, 汤美玲, Dominy P. 镉胁迫对水稻生长和营养代谢的影响[J]. 中国农业科学, 2005(3): 528-537. |
Cheng W D, Yao H G, Zhang G P, Dominy P. Effects of cadmium stress on growth and nutrient metabolism of rice[J]. Scientia Agricultura Sinica, 2005 (3): 528-537. (in Chinese with English abstract) | |
[25] | 陈志德, 仲维功, 王军, 杨杰, 张红生. 镉胁迫对水稻种子萌发和幼苗生长的影响[J]. 江苏农业学报, 2009, 25(1): 19-23. |
Chen Z D, Zhong W G, Wang J, Yang J, Zhang H S. Effects of cadmium stress on seed germination and seedling growth of various rice varieties[J]. Jiangsu Journal of Agricultural Sciences, 2009, 25(1): 19-23. (in Chinese with English abstract) | |
[26] | Yang D Q, Liu S X, Xia S P, Peng G X, Huang F L. Effects of cadmium stress on the growth of rice seedlings[J]. Agricultural Science & Technology, 2019, 20(3): 11-16. |
[27] | 何俊瑜, 任艳芳, 严玉萍, 朱诚, 蒋德安. 镉胁迫对水稻幼苗生长和根尖细胞分裂的影响[J]. 土壤学报, 2010, 47(1): 138-144. |
He J Y, Ren Y F, Yan Y P, Zhu C, Jiang D A. Impacts of cadmium stress on the growth of rice seedlings and division of their root tip cells[J]. Acta Pedologica Sinica, 2010, 47(1): 138-144. (in Chinese with English abstract) | |
[28] | 陈京都. 水稻镉胁迫响应差异机理和调控效应的研究[D]. 扬州: 扬州大学, 2013. |
Chen J D. Research on difference and mechanism of rice response under cadmium stress and regulation[D]. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract) | |
[29] | 王昌全, 郭燕梅, 李冰, 袁大刚, 张济龙, 林正雨, 唐敦义. Cd胁迫对杂交水稻及其亲本叶片丙二醛含量的影响[J]. 生态学报, 2008(11): 5377-5384. |
Wang C Q, Guo Y M, Li B, Yuan D G, Zhang J L, Lin Z Y, Tang D Y. Effects of Cd stress on the content of MDA in leaves of the hybrid rice and their parents[J]. Acta Ecologica Sinica, 2008(11): 5377-5384. (in Chinese with English abstract) | |
[30] | 邵国胜, Hassan M J, 章秀福, 张国平. 镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J]. 中国水稻科学, 2004(3): 57-62. |
Shao G S, Hassan M J, Zhang X F, Zhang G P. Effects of cadmium stress on plant growth and antioxidant enzyme system in different rice genotypes[J]. Chinese Journal of Rice Science, 2004(3): 57-62. (in Chinese with English abstract) | |
[31] | 徐红霞, 翁晓燕, 毛伟华, 杨勇. 镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J]. 中国水稻科学, 2005(4): 338-342. |
Xu H X, Weng X Y, Mao W H, Yang Y. Effects of cadmium stress on photosynthesis, chlorophyll fluo- rescence characteristics and excitation energy distribution in leaves of rice[J]. Chinese Journal of Rice Science, 2005(4): 338-342. (in Chinese with English abstract) | |
[32] | 葛才林, 骆剑峰, 刘冲, 殷朝珍, 王泽港, 马飞, 罗时石. 重金属对水稻光合作用和同化物输配的影响[J]. 核农学报, 2005(3): 214-218. |
Ge C L, Luo J F, Liu C, Yin C Z, Wang Z G, Ma F, Luo S S. Effect of heavy metals on the photosynthesis and photosynthates transformation in rice[J]. Journal of Nuclear Agricultural Sciences, 2005(3): 214-218. (in Chinese with English abstract) | |
[33] | 王锦文, 边才苗, 陈珍. 铅、镉胁迫对水稻种子萌发、幼苗生长及生理指标的影响[J]. 江苏农业科学, 2009(4): 77-79. |
Wang J W, Bian C M, Chen Z. Effects of lead and cadmium stress on seed germination, seedling growth and physiological indexes of rice[J]. Jiangsu Agricultural Sciences, 2009(4): 77-79. (in Chinese with English abstract) | |
[34] | 郭文燕, 田雄, 李尚锟, 李伟, 黄永相, 胡燕, 赵夏夏, 郭建夫. 镉胁迫对抽穗期水稻生理生化特性的影响[J]. 安徽农业科学, 2018, 46(14): 37-43. |
Guo W Y, Tian X, Li S K, Li W, Huang Y X, Hu Y, Zhao X X, Guo G F. Effects of cadmium stress on the physiological and biochemical characteristics of rice at heading stage[J]. Journal of Anhui Agricultural Sciences, 2018, 46(14): 37-43. (in Chinese with English abstract) | |
[35] | 胡雨丹, 周航, 辜娇峰, 霍洋, 邓鹏辉, 魏宾纭, 刘俊, 廖柏寒. 水培试验下水稻Pb吸收累积关键生育期[J]. 环境科学, 2020, 41(9): 4218-4225. |
Hu Y D, Zhou H, Gu J F, Huo Y, Deng P H, Wei B Y, Liu J, Liao B H. Key growth stage of Pb accumulation in rice through a hydroponic experiment with Pb stress[J]. Environmental Science, 2020, 41(9): 4218-4225. (in Chinese with English abstract) | |
[36] | 黄冬芬, 奚岭林, 杨立年, 王志琴, 杨建昌. 不同耐镉基因型水稻农艺和生理性状的比较研究[J]. 作物学报, 2008(5): 809-817. |
Huang D F, Xi L L, Yang L N, Wang Z Q, Yang J C. Comparisons in agronomic and physiological traits of rice genotypes differing in cadmium-tolerance[J]. Acta Agronomica Sinica, 2008(5): 809-817. (in Chinese with English abstract) | |
[37] | 贾沛菡. 水稻对镉的吸收受不同介质条件与生育期的影响及其与籽粒积累镉的关系[D]. 杭州: 浙江大学, 2019. |
Jia P H. The factors that affecting Cd uptake and its relationship with Cd accumulation in grains of rice[D]. Hangzhou: Zhejiang University, 2019. (in Chinese with English abstract) | |
[38] | Maria G, Martina L. Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat[J]. Crop Science, 2004, 44(2): 501-507. |
[39] | 喻华, 上官宇先, 涂仕华, 秦鱼生, 陈琨, 陈道全, 刘前聪. 水稻籽粒中镉的来源[J]. 中国农业科学, 2018, 51(10): 1940-1947. |
Yu H, Shang G Y X, Tu S H, Qin Y S, Chen K, Chen D Q, Liu Q C. Sources of cadmium accumulated in rice grain[J]. Scientia Agricultura Sinica, 2018, 51(10): 1940-1947. (in Chinese with English abstract) | |
[40] | 程旺大, 张国平, 姚海根, DOMINY P, 王润屹. 晚粳稻籽粒中砷、镉、铬、镍、铅等重金属含量的品种和粒位效应[J]. 中国水稻科学, 2005, 18(3): 273-279. |
Cheng W D, Zhang G P, Yao H G, Dominy P, Wang R Q. Effect of grain position in a panicle and varieties on As, Cd, Cr, Ni, Pb contents in grains of late japonica rice[J]. Chinese Journal of Rice Science, 2005, 18(3): 273-279. (in Chinese with English abstract) | |
[41] | 陈京都, 何理, 林忠成, 戴其根, 张军, 郭保卫, 许露生, 张洪程. 不同生育期类型水稻对镉积累的研究[J]. 生态与农村环境学报, 2013, 29(3): 390-393. |
Chen J D, He L, Lin Z C, Dai Q G, Zhang J, Guo B W, Xu L S, Zhang H C. Cd accumulation in japonica rice relative to growth type[J]. Journal of Ecology and Rural Environment, 2013, 29(3): 390-393. (in Chinese with English abstract) | |
[42] | 吴启堂, 陈卢, 王广寿. 水稻不同品种对Cd吸收累积的差异和机理研究[J]. 生态学报, 1999(1): 106-109. |
Wu Q T, Chen L, Wang G S. Difference and mechanism of Cd uptake and accumulation in different rice varieties[J]. Acta Ecologica Sinica, 1999(1): 106-109. (in Chinese with English abstract) | |
[43] | 黄冬芬, 王志琴, 刘立军, 杨建昌. 镉对水稻产量和品质的影响[J]. 热带作物学报, 2010, 31(1): 19-24. |
Huang D F, Wang Z Q, Liu L J, Yang J C. Effects of cadmium on the rice yield and grain quality[J]. Chinese Journal of Tropical Crops, 2010, 31(1): 19-24. (in Chinese with English abstract) | |
[44] | 王凯荣, 龚惠群. 不同生育期镉胁迫对两种水稻的生长、镉吸收及糙米镉含量的影响[J]. 生态环境, 2006(6): 1197-1203. |
Wang K R, Gong H Q. Effects of cadmium exposures in different stages on plant growth, cd uptake and cd concentrations in brown rice of a hybrid and conventional rice variety[J]. Ecology and Environmental Sciences, 2006(6): 1197-1203. (in Chinese with English abstract) | |
[45] | 丁园, 宗良纲, 徐晓炎, 刘光荣. 镉污染对水稻不同生育期生长和品质的影响[J]. 生态环境学报, 2009, 18(1): 183-186. |
Ding Y, Zong L G, Xu X Y, Liu G R. Effect of cadmium on the growth and quality of rice (Oryza sativa L.) In different growth period[J]. Ecology and Environmental Sciences, 2009, 18(1): 183-186. (in Chinese with English abstract) | |
[46] | Uraguchi S, Fujiwara T. Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation[J]. Rice, 2012, 5(1): 5. |
[47] | 赵步洪, 张洪熙, 奚岭林, 朱庆森, 杨建昌. 杂交水稻不同器官镉浓度与累积量[J]. 中国水稻科学, 2006(3): 306-312. |
Zhao B H, Zhang H X, Xi L L, Zhu Q S, Yang J C. Cadmium concentration and accumulation in different organs of hybrid rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 306-312. (in Chinese with English abstract) | |
[48] | 刘侯俊, 梁吉哲, 韩晓日, 李军, 芦俊俊, 张素静, 冯璐, 马晓明. 东北地区不同水稻品种对Cd的累积特性研究[J]. 农业环境科学学报, 2011, 30(2): 220-227. |
Liu H J, Liang J Z, Han X R, Li j, Lu J J, Zhang S J, Feng L, Ma X M. Accumulation and distribution of cadmium in different rice cultivars of Northeastern China[J]. Journal of Agro-Environment Science, 2011, 30(2): 220-227. (in Chinese with English abstract) | |
[49] | Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in heavy metal tolerance of Athyrium yokosense[J]. Plant and Soil, 1987, 101(1): 15-20. |
[50] | 朱智伟, 陈铭学, 牟仁祥, 曹赵云, 张卫星, 林晓燕. 水稻镉代谢与控制研究进展[J]. 中国农业科学, 2014, 47(18): 3633-3640. |
Zhu Z W, Chen M X, Mou R X, Cao Z Y, Zhang W X, Lin X Y. Advances in research of cadmium metabolism and control in rice plants[J]. Scientia Agricultura Sinica, 2014, 47(18): 3633-3640. (in Chinese with English abstract) | |
[51] | Li H, Luo N, Li Y W, Cai Q Y, Li H Y, Mo C H, Wong M H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. |
[52] | 刘利, 郝小花, 田连福, 戴小军, 梁满中, 李东屏, 陈良碧. 植物吸收、转运和积累镉的机理研究进展[J]. 生命科学研究, 2015, 19(2): 176-184. |
Liu L, Hao X H, Tian L F, Dai X J, Liang M Z, Li D P, Chen B L. Research progresses on the mechanism of Cd absorption, transport and accumulation in plant[J]. Life Science Research, 2015, 19(2): 176-184. (in Chinese with English abstract) | |
[53] | 周志波, 易亚科, 陈光辉. 水稻Cd吸收、转运机理研究进展[J]. 作物杂志, 2017(1): 14-19. |
Zhou Z B, Yi Y K, Chen G H. Advances in Cd uptake and transport in rice[J]. Crops, 2017(1): 14-19. (in Chinese with English abstract) | |
[54] | Tian S K, Lu L L, Zhang J, Wang K, Brown P, He Z L, Liang J, Yang X E. Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress[J]. Chemosphere, 2011, 84(1): 63-69. |
[55] | Pence N S, Larsen P B, Ebbs S D, Letham D L, Lasat M M, Garvin D F, Eide D, Kochian L V. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(9): 4956-4960. |
[56] | 孙敏. 水稻植株中镉区室化关键螯合物的鉴定与分析[D]. 北京: 中国农业科学院, 2010. |
Sun M. Characterization and analysis of chelates involved in compartmentation of cadmium in rice plants[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract) | |
[57] | Guo J B, Xu W Z, Ma M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana[J]. Journal of Hazardous Materials, 2012, 199: 309-313. |
[58] | Uraguchi S, Fujiwara T. Rice breaks ground for cadmium-free cereals[J]. Current Opinion in Plant Biology, 2013, 16(3): 328-334. |
[59] | Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice[J]. Journal of Experimental Botany, 2009, 60(9): 2677-2688. |
[60] | Kobayashi N I, Tanoi K, Hirose A, Nakanishi T M. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging[J]. Journal of Experimental Botany, 2013, 64(2): 507-517. |
[61] | Ueno D, Koyama E, Yamaji N, Ma J F. Physiological, genetic, and molecular characterization of a high-Cd- accumulating rice cultivar, Jarjan[J]. Journal of Experimental Botany, 2011, 62(7): 2265-2272. |
[62] | 杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002(1): 8-15. |
Yang X E, Long X X, Ni W Z. Physiological and molecular mechanisms of heavy metal uptake by hyper- accumulating plants[J]. Journal of Plant Nutrition and Fertilizers, 2002(1): 8-15. (in Chinese with English abstract) | |
[63] | Fujimaki S, Suzui N, Ishioka N S, Kawachi N, Ito S, Chino M, Nakamura S. Tracing cadmium from culture to spikelet: Noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant[J]. Plant Physiology, 2010, 152(4): 1796-1806. |
[64] | Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.)[J]. Soil Science and Plant Nutrition, 2007, 53(1): 72-77. |
[65] | Rodda M S, Li G, Reid R J. The timing of grain Cd accumulation in rice plants: The relative importance of remobilisation within the plant and root Cd uptake post-flowering[J]. Plant & Soil, 2011, 347(1-2): 105-114. |
[66] | Kato M, Ishikawa S, Inagaki K, Chiba K, Hayashi H, Yanagisawa S, Yoneyama T. Possible chemical forms of cadmium and varietal differences in cadmium concen- trations in the phloem sap of rice plants(Oryza sativa L.)[J]. Soil Science & Plant Nutrition, 2010, 56(6): 839-847. |
[67] | Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Science and Plant Nutrition, 2006, 52(4): 464-469. |
[68] | Sasaki A, Yamaji N, Yokosho K, Ma J F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J]. The Plant Cell, 2012, 24(5): 2155-2167. |
[69] | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. Ion-beam irradiation, gene identification, and marker- assisted breeding in the development of low-cadmium rice[J]. Proceedings of the National Academy of Sciences of the United States, 2012, 109(47): 19166-19171. |
[70] | Yang M, Zhang Y Y, Zhang L J, Hu J T, Zhang X, Lu K, Dong H X, Wang D J, Zhao F J, Huang C F, Lian X M. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 2014, 65(17): 4849-4861. |
[71] | Namiko S N, Mikako M, Nobushige N, Tomohiko K, Yasuo N, Kenji S, Hidekazu T, Akio W, Hiromori A. Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium[J]. Plant & Cell Physiology, 2012, 53(1): 213-224. |
[72] | Sasaki A, Yamaji N, Ma J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20): 6013-6021. |
[73] | Zhao F Y, Han M M, Zhang S Y, Wang K, Zhang C R, Liu T, Liu W. Hydrogen peroxide-mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell-cycle genes in rice seedlings exposed to cadmium stress[J]. Journal of Integrative Plant Biology, 2012, 54(12): 991-1006. |
[74] | Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell & Environment, 2009, 32(4): 408-416. |
[75] | Yu C L, Sun C D, Shen C J, Wang S K, Liu F, Liu Y, Chen Y L, Li C Y, Qian Q, Bibek A, Markus G, Jiang D A, Qi Y H. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.)[J]. The Plant Journal, 2015, 83(5): 818-830. |
[76] | Ishimaru Y, Bashir K, Nakanishi H, Nishizawa N K. The role of rice phenolics efflux transporter in solubilizing apoplasmic iron[J]. Plant Signaling & Behavior, 2011, 6(10): 1624-1626. |
[77] | Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4843-4850. |
[78] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Scientific Reports, 2012, 2(1): 286. |
[79] | Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice[J]. Journal of Experimental Botany, 2011, 62(15): 5727-5734. |
[80] | Lan H X, Wang Z F, Wang Q H, Wang M M, Bao Y M, Huang J, Zhang H S. Characterization of a vacuolar zinc transporter OZT1 in rice (Oryza sativa L.)[J]. Molecular Biology Reports, 2013, 40(2): 1201-1210. |
[81] | ODA K, OTANI M, Uraguchi S, Akihiro T, Fujiwara T. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Bioscience Biotechnology Biochemistry, 2011, 75(6): 1211-1213. |
[82] | Song W Y, Lee H S, Jin S R, Ko D, Martinoia E, Lee Y, An G, Ahn S N. Rice PCR1 influences grain weight and Zn accumulation in grains[J]. Plant, Cell & Environment, 2015, 38(11): 2327-2339. |
[83] | Hao X H, Zeng M, Wang J, Zeng Z W, Dai J L, Xie Z J, Yang Y Z, Tian L F, Chen L B, Li D P. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science, 2018, 9: 476. |
[84] | Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications, 2018, 9(1): 645. |
[85] | Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains[J]. Proceedings of the National Academy of Sciences of the USA, 2011, 108(52): 20959-20964. |
[86] | Moons A. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots[J]. Febs Letters, 2003, 553(3): 370-376. |
[87] | Chen W R, Feng Y, Chao Y E. Genomic analysis and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency[J]. Russian Journal of Plant Physiology, 2008, 55(3): 400-409. |
[88] | Nakamura T, Yamaguchi Y, Sano H. Four rice genes encoding cysteine synthase: isolation and differential responses to sulfur, nitrogen and light[J]. Gene, 1999, 229(1-2): 155. |
[89] | Yeh C M, Hsiao L J, Huang H J. Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice.[J]. Plant & Cell Physiology, 2004, 45(9): 1306-1312. |
[90] | Cheng L J, Wang F, Shou H X, Huang F L, Zheng L Q, He F, Li J H, Zhao F J, Ueno D, Ma J F, Wu P. Mutation in nicotianamine aminotransferase stimulated the Fe(II) acquisition system and led to iron accumulation in rice[J]. Plant Physiology, 2007, 145(4): 1647-1657. |
[91] | Wang C H, Guo W L, Ye S, Wei P C, Ow D W. Reduction of Cd in rice through expression of OXS3-like gene fragments[J]. Molecular Plant, 2016, 9(2): 301-304. |
[92] | Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Namiko S N, Watanabe A, Fujimura T, Akagi H. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles[J]. New Phytologist, 2011, 189(1): 190-199. |
[93] | Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F. Gene limiting cadmium accumulation in rice[J]. Proceedings of the National Academy of Sciences of the United States, 2010, 107(38): 16500-16505. |
[94] | Yan J L, Wang P T, Wang P, Yang M, Lian X M, Tang Z, Huang C F, Salt D E, Zhao F J. A loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of Japonica rice cultivars[J]. Plant, Cell & Environment, 2016, 39(9): 1941-1954. |
[95] | Ye X X, Ma Y B, Sun B. Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety.[J]. Journal of Environmental Sciences (China), 2012, 24(9): 1647-1654. |
[96] | 鄂志国, 张玉屏, 王磊. 水稻镉胁迫应答分子机制研究进展[J]. 中国水稻科学, 2013, 27(5): 539-544. |
E Z G, Zhang Y P, Wang L. Molecular mechanism of rice responses to cadmium stress. Chinese Journal of Rice Science, 2013, 27(5): 539-544. (in Chinese with English abstract) | |
[97] | 黄新元, 赵方杰. 植物防御素调控水稻镉积累的新机制[J]. 植物学报, 2018, 53(4): 451-455. |
Huang X Y, Zhao F J. A defensin-like protein regulates cadmium accumulation in rice[J]. Chinese Bulletin of Botany, 2018, 53(4): 451-455. (in Chinese with English abstract) | |
[98] | 宗良纲, 徐晓炎. 水稻对土壤中镉的吸收及其调控措施[J]. 生态学杂志, 2004(3): 120-123. |
Zong L G, Xu X Y. Cadmium absorption of rice from soils and remediations[J]. Chinese Journal of Ecology, 2004(3): 120-123. (in Chinese with English abstract) | |
[99] | Rehman M Z, Rizwan M, Ghafoor A, Naeem A, Ali S, Sabir M, Qayyum M F. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research, 2015, 22(21): 16897-16906. |
[100] | 徐爱春, 陈益泰. 镉污染土壤根际环境的调节与植物修复研究进展[J]. 中国土壤与肥料, 2007(2): 1-6. |
Xu A C, Chen Y T. Regulation of rhizosphere and phytoremediation of Cd contaminated soil and its research advances[J]. Soil and Fertilizer Sciences in China, 2007(2): 1-6. (in Chinese with English abstract) | |
[101] | 黄凯, 张杏锋, 李丹. 改良剂修复重金属污染土壤的研究进展[J]. 江苏农业科学, 2014, 42(1): 292-296. |
Huang K, Zhang X F, Li D. Research progress on remediation of heavy metal contaminated soil by amendments[J]. Jiangsu Agricultural Science, 2014, 42(1): 292-296. (in Chinese with English abstract) | |
[102] | Lin X Y, Mou R X, Cao Z Y, Xu P, Wu X L, Zhu Z W, Chen M X. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains[J]. Science of the Total Environment, 2016, 569: 97-104. |
[103] | Lin H M, Fang C X, Li Y Z, Lin W W, He J Y, Lin R Y, Lin W X. Cadmium-stress mitigation through gene expression of rice and silicon addition[J]. Plant Growth Regulation, 2017, 81(1): 91-101. |
[104] | Yang Y J, Chen R J, Fu G F, Xiong J, Tao L X. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa)[J]. Acta Physiologiae Plantarum, 2016, 38(1): 28. |
[105] | Kanu A S, Ashraf U, Mo Z W, Sabir S U R, Baggie I, Charley C S, Tang X R. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity[J]. Environmental Science and Pollution Research International, 2019, 26(24): 24748-24757. |
[106] | Cai Y, Lin L, Cheng W, Zhang G, Wu F. Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seedlings (Oryza sativa)[J]. Plant, Soil and Environment, 2010, 56(11): 516-525. |
[107] | Feng R W, Wei C Y, Tu S X, Ding Y Z, Song Z G. A dual role of Se on Cd toxicity: Evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice[J]. Biological Trace Element Research, 2013, 151(1): 113-121. |
[108] | Tang L, Mao B G, Li Y K, Lv Q M, Zhang L P, Chen C Y, He H J, Wang W P, Zeng X F, Shao Y, Pan Y L, Hu Y Y, Peng Y, Fu X Q, Li H Q, Xia S T, Zhao B R. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Scientific Reports, 2017, 7(1): 14438. |
[109] | 马卉, 焦小雨, 许学, 李娟, 倪大虎, 许蓉芳, 王钰, 汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020(1): 1-8. |
Ma H, Jiao X Y, Xu X, Li J, Ni D H, Xu R F, Wang Y, Wang X F. Advances in physiological and molecular mechanisms of cadmium metabolism in rice[J]. Crops, 2020(1): 1-8. (in Chinese with English abstract) | |
[110] | Kulaeva O, Kliukova M, Afonin A, Sulima A, Zhukov V, Tikhonovich I. The role of plant antimicrobial peptides (AMPs) in response to biotic and abiotic environmental factors[J]. Biological Communications, 2020, 65(2): 187-199. |
[111] | Odintsova T I, Slezina M P, Istomina E A. Defensins of grasses: A systematic review[J]. Biomolecules, 2020, 10(7): 1029. |
[112] | Brunetti P, Zanella L, De P A, Di L D, Cecchetti V, Falasca G, Barbieri M, Altamura M M, Costantino P, Cardarelli M. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin- mediated cadmium tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(13): 3815-3829. |
[113] | Fu S, Lu Y S, Zhang X, Yang G Z, Chao D, Wang Z G, Shi M M, Chen J G, Chao D Y, Li R B, Ma J F, Xia J X. The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. Journal of Experimental Botany, 2019, 70(20): 5909-5918. |
[114] | Suksabye P, Pimthong A, Dhurakit P, Mekvichitsaeng P, Thiravetyan P. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research, 2016, 23(2): 962-973. |
[115] | Sun L J, Wang J, Song K, Sun Y F, Qin Q, Xue Y. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress[J]. Scientific Reports, 2019, 9(1-2): 10177. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||