Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (4): 316-324.DOI: 10.16819/j.1001-7216.2020.9134
• Research Papers • Previous Articles Next Articles
Guangda WANG1, Peng GAO1,2, Wenyan YANG1, Ao CUI1, Jianhua ZHAO1, Zhiming FENG1,2, Wenlei CAO1,2, Zongxiang CHEN1,2, Shimin ZUO1,2,*()
Received:
2019-12-13
Revised:
2020-02-19
Online:
2020-07-10
Published:
2020-07-10
Contact:
Shimin ZUO
王广达1, 高鹏1,2, 杨文艳1, 崔傲1, 赵剑华1, 冯志明1,2, 曹文磊1,2, 陈宗祥1,2, 左示敏1,2,*()
通讯作者:
左示敏
基金资助:
CLC Number:
Guangda WANG, Peng GAO, Wenyan YANG, Ao CUI, Jianhua ZHAO, Zhiming FENG, Wenlei CAO, Zongxiang CHEN, Shimin ZUO. Development and Utilization of Functional Markers for Imidazolinone Herbicides Resistance Gene in japonica Rice Variety Jinjing 818[J]. Chinese Journal OF Rice Science, 2020, 34(4): 316-324.
王广达, 高鹏, 杨文艳, 崔傲, 赵剑华, 冯志明, 曹文磊, 陈宗祥, 左示敏. 金粳818抗咪唑啉酮类除草剂基因的功能标记开发与应用[J]. 中国水稻科学, 2020, 34(4): 316-324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9134
标记名称 Marker name | 引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|---|
dC-ALS-627 | ALS-F ALS-R dC-ALS-627-F | CTCGCCCAAACCCAGAAACC CACATACAAACATCATAGGCATACCACTC GAGCATGTGCTGCCTATGATCCTAA |
dC-ALS-627-R | TAGAGCACATACAAACATCAT | |
K-ALS-627 | K-ALS627N-HEX | GAAGGTCGGAGTCAACGGATT ATCATGTCCTTGAATGCGCCCCCAT |
K-ALS627S-FAM | GAAGGTGACCAAGTTCATGCT ATCATGTCCTTGAATGCGCCCCCAC | |
K-ALS627S-N | TGTTGGATATCATCGTCCCGCAC |
Table 1 Primer sequences involved in this study.
标记名称 Marker name | 引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|---|
dC-ALS-627 | ALS-F ALS-R dC-ALS-627-F | CTCGCCCAAACCCAGAAACC CACATACAAACATCATAGGCATACCACTC GAGCATGTGCTGCCTATGATCCTAA |
dC-ALS-627-R | TAGAGCACATACAAACATCAT | |
K-ALS-627 | K-ALS627N-HEX | GAAGGTCGGAGTCAACGGATT ATCATGTCCTTGAATGCGCCCCCAT |
K-ALS627S-FAM | GAAGGTGACCAAGTTCATGCT ATCATGTCCTTGAATGCGCCCCCAC | |
K-ALS627S-N | TGTTGGATATCATCGTCCCGCAC |
Fig. 2. Information of the two molecular markers. The gray background part is the non-coding region sequence. The three consecutive bases in the box are the codons of amino acids at position 627 of ALS, ‘AAT’ in Jinjing 818 and ‘AGT’ in 9311 and Nipponbare, encoding amino acid ‘N’ and ‘S’ respectively. The recognition sequence of restriction endonuclease DdeⅠ is ‘CTNAG’ (‘N’ for any base). The mutant base ‘T’ was introduced into primer dC-ALS-627-F of the marker dC-ALS-627 (The base in template sequenceis ‘C’, ‘T’ and ‘C’ are highlighted with an underline). When the base ‘C’ in the template sequence of 9311 or Nipponbare is replaced with ‘T’, there is a DdeⅠ recognition sequence ‘CTAAG’ in the amplification product, which doesn’t exist in Jinjing 818. In the marker K-ALS-627, primer K-ALS627N- HEX has a base ‘T’ at the 3'end, and a HEX fluorescent label sequence (in italics) at the 5'end, and primer K-ALS627S- FAM has a base ‘C’ at the 3'end, and a FAM fluorescent label sequence (in italics) at the 5' end. The arrow at the front of primers indicates the direction of amplification.
Fig. 3. Detection results of three molecular markers. A, Detection results of dC-ALS-627; B, Detection results of K-ALS-627; C, Detection results of RM7413. M1, 20 bp DNA Ladder, M2, DL500 DNA Marker; P1, Jinjing 818, P2, Nanjing 505, P3, Huajing 0029; 1-3, Hybrid of Nanjing 505 / Jinjing 818; 4-6, Hybrid of Huajing 0029 / Jinjing 818. The diamond represents a blank control without the DNA template; the square represents the homozygous genotype of Jinjing 818 (variation site base A); the circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G); and the triangle represents the heterozygous type of ALS gene (with a G/A mutation site base).
Fig. 4. Genotyping of BC2F2 generation rice plants using dC-ALS-627 and K-ALS-627 markers. A, Detection results of dC-ALS-627. M, DL1000 DNA marker; P1, Jinjing 818; P2, Nanjing 505; 1-10, Partial of BC2F2 individuals of Nanjing 505 / Jinjing 818.B, Detection results of K-ALS-627. The black box represents a blank control without the DNA template; the blue box represents the homozygous genotype of Jinjing 818 (variation site base A); the yellow circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G); and the green triangle represents the heterozygous type of ALS gene (with a G/A mutation site base).
Fig. 5. Phenotypes of BC2F2 populations after treatment with imazethapyr. P1, Jinjing 818, P2, Nanjing 505. 1-10, Partial BC2F2 plants of Nanjing 505/ Jinjing 818.
Fig. 6. Screening herbicide resistant rice resources using dC-ALS-627 and K-ALS-627 markers. A, Detection results of dC-ALS-627. M, BM2000 DNA marker; J refers to Jinjing 818 and 1-40 refer to rice varieties sensitive to imidazolinone herbicides: Hejing 1819, Shujing 1901, Huajing 1803, Nanjing 46, Nanjing 52, Wuyunjing 23, Zhendao 11, Zhendao 14, Zhendao 14, Zhendao 18, Huaidao 5, Yangjing 103, Yangyujing 2, Yangyujing 3, Huajing 8, Huai 119, Wuyunjing 27, Wuyunjing 32, Wuyunjing 80, Yangnongdao 1, Yanjing 11, Yanjing 13, Yanjing 15, Yanjing 16, Yanjing 6, Zhendao 99, Daliang 202, Sidao 12, Sidao 15, Xinkedao 21, Xudao 5, Yuanhandao 3, Jinjing 18, Jinjing 787, Lianjing 10, Lianjing 4, Suken 118, Suxiu 867, Yangjing 818, Wujing 66, Ning 5718. B, Detection results of K-ALS-627. The black box represents a blank control without the DNA template; the blue box represents the homozygous genotype of Jinjing 818 (variation site base A); the yellow circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G).
[1] | 张云月, 卢宗志, 李洪鑫, 崔海兰. 杂草对乙酰乳酸合成酶抑制剂类除草剂抗药性的研究进展[J]. 杂草科学, 2013, 31(2): 1-5. |
Zhang Y Y, Lu Z Z, Li H X, Cui H N.Research progress on weed resistance to acetolactate synthase inhibitors[J]. Weed Science, 2013, 31(2): 1-5. (in Chinese with English abstract) | |
[2] | 李香菊, 梁帝允, 袁会珠. 除草剂科学使用指南[M]. 北京: 中国农业科学技术出版社, 2014. |
Li X J, Liang D Y, Yuan H Z.Guidelines for the Scientific Use of Herbicides[M]. Beijing: China Agricultural Science and Technology Press, 2014. (in Chinese) | |
[3] | Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S.Molecular breeding of a novel herbicide-tolerant rice by gene targeting[J]. Plant Journal, 2007, 52(1): 157-166. |
[4] | Sudianto E, Beng-Kah S, Ting-Xiang N, Saldain N E, Scott R C, Burgos N R.Clearfield rice: Its development, success, and key challenges on a global perspective[J]. Crop Protection, 2013, 49: 40-51. |
[5] | Burgos N R, Norsworthy J K, Scott R C, Smith K L.Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas[J]. Weed Technology, 2008, 22: 200-208. |
[6] | Busconi M, Rossi D, Lorenzoni C, Baldi G, Fogher C.Spread of herbicide-resistant weedy rice(red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy[J]. Plant Biology, 2012, 14: 751-759. |
[7] | Délye C.Unravelling the genetic bases of non-target-site- based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade[J]. Pest Management Science, 2013, 69: 176-187. |
[8] | Délye C, Jasieniuk M, Le Corre V.Deciphering the evolution of herbicide resistance in weeds[J]. Trends in Genetics, 2013, 29: 649-658. |
[9] | Rey-Caballero J, Menéndez J, Osuna M D, Salas M, Torra J.Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas[J]. Pesticide Biochemistry and Physiology, 2017, 138: 57-65. |
[10] | Boutsalis P, Karotam J, Powles S B.Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii[J]. Pesticide Science, 1999, 55: 507-516. |
[11] | Tan S, Evans R, Singh B.Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops[J]. Amino Acids, 2006, 30: 195-204. |
[12] | Zhou Q Y, Liu W P, Zhang Y S, Liu K K.Action mechanisms of acetolactate synthase-inhibiting herbicides[J]. Physical Chemistry Chemical Physics, 2007, 89: 89-96. |
[13] | Massa D, Krenz B, Gerhards R.Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and unknown mutations[J]. Weed Research, 2011, 51: 294-303. |
[14] | 张保龙, 王金彦, 陈天子, 凌溪铁. 粳稻的ALS突变型基因及其蛋白和应用: CN201710120061.5[P].2017-03-02. |
Zhang B L, Wang J Y, Chen T Z, Ling X T. Mutant ALS gene and its applications in japonica rice: CN201710120061.5[P].2017-03-02. (in Chinese) | |
[15] | 陈竹锋, 王承旭, 唐晓艳, 邓兴旺. 水稻抗除草剂蛋白及其在植物育种中的应用: CN201210037789. 9[P].2013-04-17. |
Chen Z F, Wang C X, Tang X Y, Deng X W. Rice herbicide resistant protein and application in breeding: CN201210037789.9[P].2013-04-17. (in Chinese) | |
[16] | 陈涛, 张善磊, 赵凌, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 赵春芳, 梁文化, 王才林. ALS抑制剂类除草剂抗性水稻功能标记的开发与验证[J]. 中国水稻科学, 2018, 32(1): 137-145 |
Chen T, Zhang S L, Zhao L, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Yao S, Zhao C F, Liang W H, Wang C L.Development and verification of a functional marker associated with resistance to ALS inhibitor herbicide[J]. Chinese Journal of Rice Science, 2018, 32(1): 137-145. (in Chinese with English abstract) | |
[17] | 王芳权, 杨杰, 范方军, 李文奇, 王军, 许扬, 朱金燕, 费云燕, 仲维功. 水稻抗咪唑啉酮类除草剂基因 ALS功能标记的开发与应用[J]. 作物学报, 2018, 44(3): 324-331. |
Wang F Q, Yang J, Fan F J, Li W Q, Wang J, Xu Y, Zhu J Y, Fei Y Y, Zhong W G.Development and application of the functional marker for imidazolinone herbicides resistant ALS gene in rice[J]. Acta Agronomica Sinica, 2018, 44(3): 324-331. (in Chinese with English abstract) | |
[18] | Li L, Liu J J, Xue X, Li C C, Yang Z F, Li T.CAPS/dCAPS Designer: A web-based high-throughput dCAPS marker design tool[J]. Science in China: Life Science, 2018, 61(8): 992-995. |
[19] | Kassa S, Raman B, Sarah H, Michael O.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement[J]. Molecular Breeding, 2014, 33: 1-14. |
[20] | 费云燕, 杨杰, 范方军, 王芳权, 李文奇, 王军, 朱金燕, 仲维功. 水稻咪草烟抗性的遗传分析及其紧密连锁分子标记的筛选与应用[J]. 作物学报, 2018, 44(5): 716-722. |
Fei Y Y, Yang J, Fan F J, Wang F Q, Li W Q, Wang J, Zhu J Y, Zhong W G.Genetic analysis of imazethapyr resistance in rice and the closely linked marker selection and application[J]. Acta Agronomica Sinica, 2018, 44(5): 716-722. (in Chinese with English abstract) | |
[21] | Rajguru S N, Burgos N R, Shivrain V K, Stewart J M.Mutations in the red rice ALS associated with resistance to imazethapyr[J]. Weed Science, 2005, 53: 567-577. |
[22] | 任洪雷. 乙酰乳酸合成酶及ALS基因研究概述[J]. 中国农学通报, 2016, 32(26): 37-42. |
Ren H L.Acetolactatesynthase and ALS gene research[J]. Chinese Agricultural Science Bulletin, 2016, 32(26): 37-42. (in Chinese with English abstract) | |
[23] | 苏少泉. 抗咪唑啉酮类除草剂作物的发展与未来[J]. 现代农药, 2006, 5(1): 1-4. |
Su S Q.The development and future of imidazolinone herbicide-resistant crops[J]. Modern Agrochemicals, 2006, 5(1): 1-4. (in Chinese) | |
[24] | Yu Q, Powles S B.Resistance to AHAS inhibitor herbicides: Current understanding[J]. Pest Management Science, 2014, 70: 1340-1350. (in Chinese with English abstract) |
[25] | Guttieri M J, Eberlein C V, Thill D C.Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes[J]. Weed Science, 1995, 43: 175-178. |
[26] | Sibony M, Michel A, Haas H U, Rubin B, Hurle K.Sulfometuron-resistant Amaranthus retroflexus: Cross- resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides[J]. Weed Research, 2001, 41: 509-522. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||