Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (2): 144-151.DOI: 10.16819/j.1001-7216.2019.8120
• Research Papers • Previous Articles Next Articles
Andong ZHU1, Zhichao SUN1, Yujun ZHU1, Hui ZHANG2,3, Xiaojun NIU1, Yeyang FAN1, Zhenhua ZHANG1, Jieyun ZHUANG1,*()
Received:
2018-11-06
Revised:
2018-12-14
Online:
2019-03-10
Published:
2019-03-10
Contact:
Jieyun ZHUANG
朱安东1, 孙志超1, 朱玉君1, 张荟2,3, 牛小军1, 樊叶杨1, 张振华1, 庄杰云1,*()
通讯作者:
庄杰云
基金资助:
CLC Number:
Andong ZHU, Zhichao SUN, Yujun ZHU, Hui ZHANG, Xiaojun NIU, Yeyang FAN, Zhenhua ZHANG, Jieyun ZHUANG. Identification of QTL for Grain Weight and Grain Shape Using Populations Derived from Residual Heterozygous Lines of indica Rice[J]. Chinese Journal OF Rice Science, 2019, 33(2): 144-151.
朱安东, 孙志超, 朱玉君, 张荟, 牛小军, 樊叶杨, 张振华, 庄杰云. 应用剩余杂合体衍生群体定位水稻粒重粒形QTL[J]. 中国水稻科学, 2019, 33(2): 144-151.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8120
性状 Trait | 群体 Population | 地点 Location | 株系数 No. of lines | 平均值 Mean | 标准差 SD | 变异系数 CV | 变异范围 Range | 偏度 Skewness | 峰度 Kurtosis | 亲本Parent | |
---|---|---|---|---|---|---|---|---|---|---|---|
特青Teqing | IRBB52 | ||||||||||
千粒重 | Ti52-2 | 陵水 Lingshui | 251 | 24.98 | 0.51 | 0.020 | 23.77-26.32 | -0.03 | -0.21 | 25.53 | 24.87 |
TGW / g | Ti52-2 | 杭州 Hangzhou | 251 | 21.83 | 0.42 | 0.019 | 20.78-23.00 | 0.25 | -0.46 | 23.55 | 23.14 |
ZC8 | 杭州 Hangzhou | 179 | 22.18 | 0.27 | 0.012 | 21.46-22.93 | 0.29 | 0.09 | 22.95 | 23.52 | |
粒长 | Ti52-2 | 陵水 Lingshui | 251 | 8.009 | 0.104 | 0.013 | 7.742-8.382 | 0.21 | 0.21 | 7.541 | 9.026 |
GL / mm | Ti52-2 | 杭州 Hangzhou | 251 | 7.821 | 0.094 | 0.012 | 7.567-8.053 | 0.14 | -0.29 | 7.417 | 8.911 |
ZC8 | 杭州 Hangzhou | 179 | 8.137 | 0.053 | 0.007 | 8.016-8.342 | 0.22 | 0.36 | 7.650 | 9.122 | |
粒宽 | Ti52-2 | 陵水 Lingshui | 251 | 2.890 | 0.039 | 0.013 | 2.777-2.997 | -0.11 | 0.00 | 3.216 | 2.720 |
GW / mm | Ti52-2 | 杭州 Hangzhou | 251 | 2.579 | 0.028 | 0.011 | 2.491-2.652 | 0.05 | -0.09 | 2.891 | 2.395 |
ZC8 | 杭州 Hangzhou | 179 | 2.688 | 0.016 | 0.006 | 2.646-2.728 | 0.20 | -0.34 | 2.917 | 2.510 |
Table 1 Phenotypic performance of 1000-grain weight(TGW), grain length(GL) and grain width(GW) in Ti52-2 population.
性状 Trait | 群体 Population | 地点 Location | 株系数 No. of lines | 平均值 Mean | 标准差 SD | 变异系数 CV | 变异范围 Range | 偏度 Skewness | 峰度 Kurtosis | 亲本Parent | |
---|---|---|---|---|---|---|---|---|---|---|---|
特青Teqing | IRBB52 | ||||||||||
千粒重 | Ti52-2 | 陵水 Lingshui | 251 | 24.98 | 0.51 | 0.020 | 23.77-26.32 | -0.03 | -0.21 | 25.53 | 24.87 |
TGW / g | Ti52-2 | 杭州 Hangzhou | 251 | 21.83 | 0.42 | 0.019 | 20.78-23.00 | 0.25 | -0.46 | 23.55 | 23.14 |
ZC8 | 杭州 Hangzhou | 179 | 22.18 | 0.27 | 0.012 | 21.46-22.93 | 0.29 | 0.09 | 22.95 | 23.52 | |
粒长 | Ti52-2 | 陵水 Lingshui | 251 | 8.009 | 0.104 | 0.013 | 7.742-8.382 | 0.21 | 0.21 | 7.541 | 9.026 |
GL / mm | Ti52-2 | 杭州 Hangzhou | 251 | 7.821 | 0.094 | 0.012 | 7.567-8.053 | 0.14 | -0.29 | 7.417 | 8.911 |
ZC8 | 杭州 Hangzhou | 179 | 8.137 | 0.053 | 0.007 | 8.016-8.342 | 0.22 | 0.36 | 7.650 | 9.122 | |
粒宽 | Ti52-2 | 陵水 Lingshui | 251 | 2.890 | 0.039 | 0.013 | 2.777-2.997 | -0.11 | 0.00 | 3.216 | 2.720 |
GW / mm | Ti52-2 | 杭州 Hangzhou | 251 | 2.579 | 0.028 | 0.011 | 2.491-2.652 | 0.05 | -0.09 | 2.891 | 2.395 |
ZC8 | 杭州 Hangzhou | 179 | 2.688 | 0.016 | 0.006 | 2.646-2.728 | 0.20 | -0.34 | 2.917 | 2.510 |
染色体 Chr | 区间 Interval | QTL | 杭州 Hangzhou | 陵水 Lingshui | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LOD | A | D | R2/% | LOD | A | D | R2/% | |||
1 | RM12210 | qGL1 | 5.69 | 0.029 | -0.004 | 4.51 | 4.55 | 0.033 | 0.004 | 4.76 |
3 | RM14302-RM14383 | qGL3.1 | 4.90 | 0.025 | 0.003 | 3.52 | 8.12 | 0.044 | 0.013 | 9.22 |
qGW3 | ns | 5.29 | -0.015 | 0.001 | 6.93 | |||||
3 | RM232 | qGL3.2 | 5.21 | 0.029 | -0.004 | 3.79 | ns | |||
4 | RM16252-RM335 | qTGW4 | 6.65 | -0.150 | 0.090 | 6.66 | 5.03 | -0.200 | -0.030 | 7.14 |
qGW4 | 9.78 | -0.014 | 0.003 | 11.50 | 6.79 | -0.017 | 0.001 | 9.02 | ||
5 | RM18927-RM3321 | qTGW5 | 22.38 | 0.340 | -0.040 | 27.44 | ns | |||
qGL5 | 38.86 | 0.092 | -0.022 | 40.16 | 6.84 | 0.044 | 0.004 | 7.72 | ||
6 | RM469-RM587 | qTGW6.1 | ns | 2.91 | 0.130 | 0.110 | 3.98 | |||
qGL6 | 13.27 | 0.047 | 0.001 | 11.20 | 10.50 | 0.055 | 0.001 | 11.93 | ||
qGW6.1 | 12.63 | -0.016 | 0.006 | 14.78 | ns | |||||
6 | RM20731 | qTGW6.2 | 4.64 | -0.140 | 0.040 | 4.62 | ns | |||
qGW6.2 | 5.65 | -0.011 | 0.002 | 6.31 | 5.78 | -0.015 | -0.006 | 7.31 | ||
8 | RM22755-RM210 | qTGW8 | 3.84 | 0.120 | 0.020 | 3.55 | 4.49 | 0.170 | -0.090 | 6.29 |
qGL8 | 5.45 | 0.028 | 0.005 | 4.09 | 5.15 | 0.027 | -0.030 | 5.70 | ||
9 | RM5688-RM219 | qTGW9 | 12.30 | 0.230 | 0.050 | 14.23 | ns | |||
qGW9 | 10.54 | 0.014 | 0.004 | 13.16 | ns | |||||
10 | RM6704-RM6100 | qTGW10 | 6.54 | 0.160 | -0.050 | 6.44 | ns | |||
qGL10 | 9.17 | 0.037 | -0.001 | 7.47 | 6.43 | 0.030 | 0.029 | 6.24 | ||
11 | RM1233-RM5926 | qTGW11 | ns | 4.08 | -0.170 | 0.090 | 6.13 | |||
qGW11 | 4.41 | -0.008 | -0.005 | 4.79 | 7.46 | -0.020 | 0.003 | 10.09 | ||
12 | RM3246-Pita | qGL12 | 3.33 | -0.021 | -0.002 | 2.31 | 10.36 | -0.051 | -0.010 | 11.67 |
Table 2 QTL for 1000-grain weight, grain length and grain width detected in the Ti52-2 population.
染色体 Chr | 区间 Interval | QTL | 杭州 Hangzhou | 陵水 Lingshui | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LOD | A | D | R2/% | LOD | A | D | R2/% | |||
1 | RM12210 | qGL1 | 5.69 | 0.029 | -0.004 | 4.51 | 4.55 | 0.033 | 0.004 | 4.76 |
3 | RM14302-RM14383 | qGL3.1 | 4.90 | 0.025 | 0.003 | 3.52 | 8.12 | 0.044 | 0.013 | 9.22 |
qGW3 | ns | 5.29 | -0.015 | 0.001 | 6.93 | |||||
3 | RM232 | qGL3.2 | 5.21 | 0.029 | -0.004 | 3.79 | ns | |||
4 | RM16252-RM335 | qTGW4 | 6.65 | -0.150 | 0.090 | 6.66 | 5.03 | -0.200 | -0.030 | 7.14 |
qGW4 | 9.78 | -0.014 | 0.003 | 11.50 | 6.79 | -0.017 | 0.001 | 9.02 | ||
5 | RM18927-RM3321 | qTGW5 | 22.38 | 0.340 | -0.040 | 27.44 | ns | |||
qGL5 | 38.86 | 0.092 | -0.022 | 40.16 | 6.84 | 0.044 | 0.004 | 7.72 | ||
6 | RM469-RM587 | qTGW6.1 | ns | 2.91 | 0.130 | 0.110 | 3.98 | |||
qGL6 | 13.27 | 0.047 | 0.001 | 11.20 | 10.50 | 0.055 | 0.001 | 11.93 | ||
qGW6.1 | 12.63 | -0.016 | 0.006 | 14.78 | ns | |||||
6 | RM20731 | qTGW6.2 | 4.64 | -0.140 | 0.040 | 4.62 | ns | |||
qGW6.2 | 5.65 | -0.011 | 0.002 | 6.31 | 5.78 | -0.015 | -0.006 | 7.31 | ||
8 | RM22755-RM210 | qTGW8 | 3.84 | 0.120 | 0.020 | 3.55 | 4.49 | 0.170 | -0.090 | 6.29 |
qGL8 | 5.45 | 0.028 | 0.005 | 4.09 | 5.15 | 0.027 | -0.030 | 5.70 | ||
9 | RM5688-RM219 | qTGW9 | 12.30 | 0.230 | 0.050 | 14.23 | ns | |||
qGW9 | 10.54 | 0.014 | 0.004 | 13.16 | ns | |||||
10 | RM6704-RM6100 | qTGW10 | 6.54 | 0.160 | -0.050 | 6.44 | ns | |||
qGL10 | 9.17 | 0.037 | -0.001 | 7.47 | 6.43 | 0.030 | 0.029 | 6.24 | ||
11 | RM1233-RM5926 | qTGW11 | ns | 4.08 | -0.170 | 0.090 | 6.13 | |||
qGW11 | 4.41 | -0.008 | -0.005 | 4.79 | 7.46 | -0.020 | 0.003 | 10.09 | ||
12 | RM3246-Pita | qGL12 | 3.33 | -0.021 | -0.002 | 2.31 | 10.36 | -0.051 | -0.010 | 11.67 |
染色体Chr | 区间 Interval | QTL | LOD | A | D | R2/% |
---|---|---|---|---|---|---|
6 | RM20731 | qTGW6.2 | 2.52 | -0.080 | 0.010 | 5.08 |
qGW6.2 | 4.31 | -0.006 | -0.000 | 8.03 | ||
8 | RM22755-RM210 | qTGW8 | 6.52 | 0.160 | -0.010 | 16.32 |
qGL8 | 5.71 | 0.026 | -0.013 | 11.92 | ||
10 | RM1108-RM7300 | qGL10 | 4.70 | 0.024 | 0.000 | 9.27 |
12 | RM3246-Pita | qTGW12 | 2.75 | 0.080 | 0.050 | 5.49 |
qGL12 | 3.58 | -0.019 | 0.008 | 6.79 | ||
qGW12 | 3.70 | 0.006 | 0.001 | 6.85 |
Table 3 QTL for 1000-grain weight, grain length and grain width detected in the ZC8 population.
染色体Chr | 区间 Interval | QTL | LOD | A | D | R2/% |
---|---|---|---|---|---|---|
6 | RM20731 | qTGW6.2 | 2.52 | -0.080 | 0.010 | 5.08 |
qGW6.2 | 4.31 | -0.006 | -0.000 | 8.03 | ||
8 | RM22755-RM210 | qTGW8 | 6.52 | 0.160 | -0.010 | 16.32 |
qGL8 | 5.71 | 0.026 | -0.013 | 11.92 | ||
10 | RM1108-RM7300 | qGL10 | 4.70 | 0.024 | 0.000 | 9.27 |
12 | RM3246-Pita | qTGW12 | 2.75 | 0.080 | 0.050 | 5.49 |
qGL12 | 3.58 | -0.019 | 0.008 | 6.79 | ||
qGW12 | 3.70 | 0.006 | 0.001 | 6.85 |
[1] | 李一博, 赵雷. 水稻品质性状的遗传改良及其关键科学问题. 生命科学, 2016, 28(10): 1168-1179. |
Li Y B, Zhao L.Genetic improvement and key scientific questions of grain quality traits in rice.Chin Sci Bull, 2016, 28(10): 1168-1179. (in Chinese with English abstract) | |
[2] | Li N, Xu R, Li Y.Control of grain size in rice.Plant Reprod, 2018, 31(3): 237-251. |
[3] | Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao G, Zhang Q, Pan Y, Wang X, Rashid M A R, Li J, Gao Y, Li Z, Yang W, Fu X, Li Z,. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap. BMC Biol, 2017, 15(1): 28. |
[4] | Hu Z, Lu S J, Wang M J, He H, Sun L, Wang H, Liu X H, Jiang L, Sun J L, Xin X, Kong W, Chu C, Xue H W, Yang J, Luo X, Liu J X.A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018, 11(5): 736-749. |
[5] | Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Rashid M A R, Li J, Zhang H, Li Z. Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnol J, 2018, 16(9): 1667-1678. |
[6] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, & Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018, 9(1): 1240. |
[7] | Li Y, Fan C, Xing Y, Jiang Y, Lou L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q.Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011, 43: 1266-1269. |
[8] | Noriko K, Masayuki K, Kei K, Takuya K, Tsutomu N, Yuji H, Itsuro T, Takashi S, Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza sativa L. subsp. japonica cultivars grown near the northernmost limit for rice paddy cultivation. Breed Sci, 2017, 67: 191-206. |
[9] | Dong Q, Zhang Z H, Wang L L, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice.Rice, 2018, 11: 44. |
[10] | Yamamoto T, Yonemaru J, Yano M.Towards the understanding of complex traits in rice: Substantially or superficially?DNA Res, 2009, 16(3): 141-154. |
[11] | Takai T, Ikka T, Kondo K, Nonoue Y, Ono N, Arai-Sanoh Y, Yoshinaga S, Nakano H, Yano M, Kondo M, Yamamoto T.Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines.BMC Plant Biol, 2014, 14(1): 295. |
[12] | Nagata K, Ando T, Nonoue Y, Mizubayashi T, Kitazawa N, Shomura A, Matsubara K, Ono N, Mizobuchi R, Shabaya T, Ogisotanaka E, Hori K, Yano M, Fukuoka S.Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica × indica cross. Breed Sci, 2015, 65(4): 308-318. |
[13] | Ye H, Foley M E, Gu X Y.New seed dormancy loci detected from weedy rice-derived advanced populations with major QTL alleles removed from the background.Plant Sci, 2010, 179(6): 612-619. |
[14] | Xu F F, Sun C X, Huang Y, Chen Y L, Tong C, Bao J S.QTL mapping for rice grain quality: A strategy to detect more QTLs within sub-populations.Mol Breed, 2015, 35(4): 105. |
[15] | Wang Z, Chen J Y, Zhu Y J, Fan Y Y, Zhuang J Y.Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice(Oryza sativa L.). J Integr Agric, 2017, 16(1): 16-26. |
[16] | Sun Z C, Zhu Y J, Chen J Y, Zhang H, Zhang Z H, Niu X J, Fan Y Y, Zhuang J Y.Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24.Crop J, 2018, 6(3): 291-298. |
[17] | Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. BMC Genet, 2016, 17(1): 98. |
[18] | Zheng K L, Huang N, Bennett J, Khush G S.PCR-based marker-assisted selection in rice breeding// IRRI Discussion Paper Series No.12. Manila, Los Banos, Philippines: International Rice Research Institute, 1995. |
[19] | Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet, 1997, 95(4): 553-567. |
[20] | Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A.MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics, 1987, 1(2): 174-181. |
[21] | Wang S, Basten C J, Zeng Z B.Windows QTL Cartographer 2.5. Raleigh, NC, USA: Department of Statistics, North Carolina State University, 2012. |
[22] | McCouch S R, CGSNL. Gene nomenclature system for rice.Rice, 2008, 1(1): 72-84. |
[23] | Huang N, Parco A, Mew T, Magpantay G, McCouch S, Guiderdoni E, Xu J, Subudhi P, Angeles E R, Khush G S. RFLP mapping of isozymes, RAPD and QTLs for grain shape, brown planthopper resistance in a double haploid rice population.Mol Breed, 1997, 3(2): 105-113. |
[24] | 邢永忠, 谈移芳, 徐才国, 华金平, 孙新立. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因. 植物学报, 2001, 43(8): 840-845. |
Xing Y Z, Tan Y F, Xu C G, Hua J P, Sun X L.Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population.Acta Bot Sin, 2001, 43(8): 840-845. (in Chinese with English abstract) | |
[25] | Li J X, Yu S B, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q.Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid.Theor Appl Genet, 2000, 101: 248-254. |
[26] | 姜恭好, 徐才国, 李香花, 何予卿. 利用双单倍体群体剖析水稻产量及其相关性状的遗传基础. 遗传学报, 2004, 31(1): 63-72. |
Jiang G H, Xu C G, Li X H, He Y Q.Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population.Acta Genet Sin, 2004, 31(1): 63-72. (in Chinese with English abstract) | |
[27] | 王军, 朱金燕, 周勇, 杨杰, 范方军, 李文奇, 梁国华, 仲维功. 基于染色体单片段代换系的水稻粒形QTL定位. 作物学报, 2013, 39(4): 617-625. |
Wang J, Zhu J Y, Zhou Y, Yang J, Fan F J, Li W Q, Liang G H, Zhong W G.Mapping of QTLs for grain shape using chromosome single segment substitution lines in rice (Oryza sativa L.). Acta Agron Sin, 2013, 39(4): 617-625. (in Chinese with English abstract) | |
[28] | 林荔辉, 吴为人. 水稻粒型和粒重的QTL定位分析. 分子植物育种, 2003, 1(3): 337-342. |
Lin L H, Wu W R.Mapping of QTLs underlying grain shape and grain weight in rice.Mol Plant Breed, 2003, 1(3): 337-342. (in Chinese with English abstract) | |
[29] | Liang Y S, Zhan X D, Gao Z Q, Lin Z C, Yang Z L, Zhang Y X, Shen X H, Cao L Y, Cheng S H.Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308.Euphytica, 2012, 184(1): 1-13. |
[30] | Marathi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara V K, Atwal S S, Prabhu K V, Singh N K, Singh A K.QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol, 2012, 12: 137. |
[31] | Gao F Y, Zeng L H, Qiu L, Lu X J, Ren J S, Wu X T, Su X W, Gao Y M, Ren G J.QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice (Oryza sativa L.). J Integr Agric, 2016, 15(8): 1693-1702. |
[32] | Gao Y, Zhu J, Song Y, He C, Shi C, Xing Y.Analysis of digenic epistatic effects and QE interaction effects QTL controlling grain weight in rice. J Zhejiang Univ Sci, 2004, 5(4): 371-377. |
[33] | Kang Y J, Shim K C, Lee H S, Jeon Y A, Kim S H, Kang J W, Yun Y T, Park I K, Ahn S N.Fine mapping and candidate gene analysis of the quantitative trait locus gw8.1 associated with grain length in rice. Genes & Genom, 2018, 40(4): 389-397. |
[34] | Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q.Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice(Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112(3): 570-580. |
[35] | 张亚东, 张颖慧, 董少玲, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 于新, 王才林. 特大粒水稻材料粒型性状QTL检测. 中国水稻科学, 2013, 27(2): 122-128. |
Zhang Y D, Zhang H Y, Dong S L, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L, Yu X, Wang C L.Identification of QTL for rice grain traits based on extra-large grain material.Chin J Rice Sci, 2013, 27(2): 122-128. (in Chinese with English abstract) | |
[36] | Hittalmani S, Shashidhar H E, Bagali P G, Huang N, Sidhu J S, Singh V P, Khush G S.Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002, 125(2): 207-214. |
[37] | Li S, Cui G, Guan C, Wang J, Lian G.QTL detection for rice grain shape using chromosome single segment substitution lines.Rice Sci, 2011, 18(4): 273-278. |
[38] | 杨占烈, 戴高兴, 翟荣荣, 林泽川, 王会民, 曹立勇, 程式华. 多环境条件下超级杂交稻协优9308重组自交系群体粒形性状QTL定位. 中国水稻科学, 2013, 27(5): 482-490. |
Yang Z L, Dai G X, Zhai R R, Lin Z C, Wang H M, Cao L Y, Cheng S H.QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice Xieyou 9308 in multi-environments.Chin J Rice Sci, 2013, 27(5): 482-490. (in Chinese with English abstract) | |
[39] | Oh J M, Balkunde S, Yang P, Yoon D B, Ahn S N.Fine mapping of grain weight QTL, tgw11 using near isogenic lines from a cross between Oryza sativa and O. grandiglumis. Genes & Genom, 2011, 33(3): 259-265. |
[40] | 周梦玉, 宋昕蔚, 徐静, 付雪, 李婷, 朱雨晨, 肖幸运, 毛一剑, 曾大力, 胡江, 朱丽, 任德勇, 高振宇, 郭龙彪, 钱前, 吴明国, 林建荣, 张光恒. 籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证. 中国水稻科学, 2018, 32(3): 207-218. |
Zhou M Y, Song X W, Xu J, Fu X, Li T, Zhu Y C, Xiao X Y, Mao Y J, Zeng D L, Hu J, Zhu L, Ren D Y, Gao Z Y, Guo L B, Qian Q, Wu M G, Lin J R, Zhang G H.Construction of genetic map and mapping and verification of grain traits QTLs using recombinant inbred lines derived from a cross between indica C84 and japonica CJ16B. Chin J Rice Sci, 2018, 32(3): 207-218. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||