Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (5): 489-499.DOI: 10.16819/j.1001-7216.2017.7043 489
• Orginal Article • Previous Articles Next Articles
Zhengjun TU1, Guoxing ZOU2, Lichao HUANG1, Long CHEN1, Liping DAI1, Yihong GAO1, Yujia LENG1, Li ZHU1, Guangheng ZHANG1, Jiang HU1, Deyong REN1, Zhenyu GAO1, Guojun DONG1, Guang CHEN1, Longbiao GUO1, Qian QIAN1,*(), Dali ZENG1,*(
)
Received:
2017-04-11
Revised:
2017-05-12
Online:
2017-10-10
Published:
2017-09-10
Contact:
Qian QIAN, Dali ZENG
涂政军1, 邹国兴2, 黄李超1, 陈龙1, 代丽萍1, 高易宏1, 冷语佳1, 朱丽1, 张光恒1, 胡江1, 任德勇1, 高振宇1, 董国军1, 陈光1, 郭龙彪1, 钱前1,*(), 曾大力1,*(
)
通讯作者:
钱前,曾大力
基金资助:
CLC Number:
Zhengjun TU, Guoxing ZOU, Lichao HUANG, Long CHEN, Liping DAI, Yihong GAO, Yujia LENG, Li ZHU, Guangheng ZHANG, Jiang HU, Deyong REN, Zhenyu GAO, Guojun DONG, Guang CHEN, Longbiao GUO, Qian QIAN, Dali ZENG. Identification and Fine Mapping of Pale Green Leaf PGL11 in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(5): 489-499.
涂政军, 邹国兴, 黄李超, 陈龙, 代丽萍, 高易宏, 冷语佳, 朱丽, 张光恒, 胡江, 任德勇, 高振宇, 董国军, 陈光, 郭龙彪, 钱前, 曾大力. 水稻淡绿叶基因PGL11的鉴定与精细定位[J]. 中国水稻科学, 2017, 31(5): 489-499.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.7043 489
标记 Marker | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) | |
---|---|---|---|
Ubq | ACCCTGGCTGACTACAACATC | AGTTGACAGCCCTAGGGTG | |
CAO1 | GATCCATACCCGATCGACAT | CGAGAGACATCCGGTAGAGC | |
CHLH | AACTGGATGAGCCAGAAGAGA | AAATGCAAAAGACTTGCGACT | |
LhcP2 | GAAGAAGATCAAGAACGGCC | TTGCCGGGGACGAAGTTGGT | |
HEMA | CGCTATTTCTGATGCTATGGGT | TCTTGGGTGATGATTGTTTGG | |
Lhcb1 | CCATGTTCTCCATGTTCGGCTTCT | TAGGCCCAGGCGTTGTTGTTGA | |
Lhcb4 | TACCTGCAGTTCGAGCTGGAC | AGGCCGAACACCTCGGTGTA | |
PORA | ATGGCTCTCCAAGTTCAG | TGGCTCACGCTAAGGAAC | |
PORB | CCGCAAGGAGGGAGCGGTG | CCCTCTTGGTGCTAAGGCCG | |
PsaA | CACGGTGTCTAAGGACACGA | GACAGCGCCCATAAAGGTCTC | |
PsbA | AGAGACGCGAAAGTACAAGC | AAGTTGCGGTCAATAAGGTA | |
Rps15 | AGATACGGAGACTTGCTTCA | GCTCCCTAATATCCAACTGACT | |
OsSig2A | AGTCTTATGGCATCTTGAGTG | GACCGCTTCTTCTTTGAGG |
Table 1 Primers used in real-time PCR.
标记 Marker | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) | |
---|---|---|---|
Ubq | ACCCTGGCTGACTACAACATC | AGTTGACAGCCCTAGGGTG | |
CAO1 | GATCCATACCCGATCGACAT | CGAGAGACATCCGGTAGAGC | |
CHLH | AACTGGATGAGCCAGAAGAGA | AAATGCAAAAGACTTGCGACT | |
LhcP2 | GAAGAAGATCAAGAACGGCC | TTGCCGGGGACGAAGTTGGT | |
HEMA | CGCTATTTCTGATGCTATGGGT | TCTTGGGTGATGATTGTTTGG | |
Lhcb1 | CCATGTTCTCCATGTTCGGCTTCT | TAGGCCCAGGCGTTGTTGTTGA | |
Lhcb4 | TACCTGCAGTTCGAGCTGGAC | AGGCCGAACACCTCGGTGTA | |
PORA | ATGGCTCTCCAAGTTCAG | TGGCTCACGCTAAGGAAC | |
PORB | CCGCAAGGAGGGAGCGGTG | CCCTCTTGGTGCTAAGGCCG | |
PsaA | CACGGTGTCTAAGGACACGA | GACAGCGCCCATAAAGGTCTC | |
PsbA | AGAGACGCGAAAGTACAAGC | AAGTTGCGGTCAATAAGGTA | |
Rps15 | AGATACGGAGACTTGCTTCA | GCTCCCTAATATCCAACTGACT | |
OsSig2A | AGTCTTATGGCATCTTGAGTG | GACCGCTTCTTCTTTGAGG |
农艺性状 Agronomic trait | 野生型 Wild type | 突变体 Mutant | ||
---|---|---|---|---|
株高 Plant height /cm | 84.2 | ±1.33 | 73.7 | ±2.65* * |
抽穗期Heading date/d | 106.3 | ±0.6 | 113.3 | ±1.2* * |
分蘖数Tillering number | 16.0 | ±1.0 | 15.0 | ±0.7 |
剑叶长Length of flag leaf /cm | 35.50 | ±2.12 | 33.30 | ±3.25 |
剑叶宽Width of flag leaf/cm | 1.54 | ±0.06 | 1.18 | ±0.03** |
穗长Panicle length /cm | 19.77 | ±1.26 | 19.29 | ±0.86 |
一次枝梗数No. of primary rachis branches | 8.7 | ±1.3 | 9.1 | ±0.7 |
二次枝梗数No. of secondary rachis branches | 16.4 | ±2.4 | 11.0 | ±1.5* * |
每穗粒数No. of grains per panicle | 97.3 | ±8.7 | 71.4 | ±2.4* * |
粒长Grain length/cm | 7.26 | ±0.01 | 7.47 | ±0.05* * |
粒宽Grain width/cm | 3.28 | ±0.01 | 2.95 | ±0.03* * |
千粒重1000-grain weight/g | 25.91 | ±0.25 | 21.11 | ±0.08* * |
结实率Seed-setting rate /% | 81.34 | ±6.40 | 63.91 | ±6.62* * |
Table 2 .Agronomic traits of the wild type(WT) and pgl11 mutant(Mean±SD, n=3).
农艺性状 Agronomic trait | 野生型 Wild type | 突变体 Mutant | ||
---|---|---|---|---|
株高 Plant height /cm | 84.2 | ±1.33 | 73.7 | ±2.65* * |
抽穗期Heading date/d | 106.3 | ±0.6 | 113.3 | ±1.2* * |
分蘖数Tillering number | 16.0 | ±1.0 | 15.0 | ±0.7 |
剑叶长Length of flag leaf /cm | 35.50 | ±2.12 | 33.30 | ±3.25 |
剑叶宽Width of flag leaf/cm | 1.54 | ±0.06 | 1.18 | ±0.03** |
穗长Panicle length /cm | 19.77 | ±1.26 | 19.29 | ±0.86 |
一次枝梗数No. of primary rachis branches | 8.7 | ±1.3 | 9.1 | ±0.7 |
二次枝梗数No. of secondary rachis branches | 16.4 | ±2.4 | 11.0 | ±1.5* * |
每穗粒数No. of grains per panicle | 97.3 | ±8.7 | 71.4 | ±2.4* * |
粒长Grain length/cm | 7.26 | ±0.01 | 7.47 | ±0.05* * |
粒宽Grain width/cm | 3.28 | ±0.01 | 2.95 | ±0.03* * |
千粒重1000-grain weight/g | 25.91 | ±0.25 | 21.11 | ±0.08* * |
结实率Seed-setting rate /% | 81.34 | ±6.40 | 63.91 | ±6.62* * |
材料 Material | 光合作用速率 Pn /(µmol·m-2 s-1) | 气孔导度 Gs /(mol·m-2 s-1) | 胞间CO2浓度 Ci /(µmol·mol-1) | 蒸腾速率 Tr /(mol·m-2 s-1) |
---|---|---|---|---|
野生型WT | 25.20±0.23 | 0.32±0.01 | 169.56±3.68 | 12.07±0.26 |
pgl11 | 17.06±1.82** | 0.25±0.01** | 203.90±15.22** | 7.93±0.29** |
Table 3 .Photosynthetic parameters of flag leaf of wild type(WT) and pgl111 mutant at the tillering stage(Mean±SD, n=5).
材料 Material | 光合作用速率 Pn /(µmol·m-2 s-1) | 气孔导度 Gs /(mol·m-2 s-1) | 胞间CO2浓度 Ci /(µmol·mol-1) | 蒸腾速率 Tr /(mol·m-2 s-1) |
---|---|---|---|---|
野生型WT | 25.20±0.23 | 0.32±0.01 | 169.56±3.68 | 12.07±0.26 |
pgl11 | 17.06±1.82** | 0.25±0.01** | 203.90±15.22** | 7.93±0.29** |
分离群体 Segregation population (F2) | 野生型 Wild type | 突变表型 Mutant | 总计 Total | χ2(3:1) | P值 P-value |
---|---|---|---|---|---|
pgl11/培矮64S pgl11/Peiai 64S | 413 | 141 | 554 | 0.0602 | 0.8062 |
pgl11/南京6号 pgl11/Nanjing 6 | 504 | 167 | 671 | 0.0045 | 0.9467 |
Table 4 .Genetic analysis of PGL11.
分离群体 Segregation population (F2) | 野生型 Wild type | 突变表型 Mutant | 总计 Total | χ2(3:1) | P值 P-value |
---|---|---|---|---|---|
pgl11/培矮64S pgl11/Peiai 64S | 413 | 141 | 554 | 0.0602 | 0.8062 |
pgl11/南京6号 pgl11/Nanjing 6 | 504 | 167 | 671 | 0.0045 | 0.9467 |
标记 Marker | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) |
---|---|---|
M1 | CTTGTCAACTTGGGCTGCAT | ATGAACCCTGAAGCTTTCGC |
M2 | CCCTTCCTCCGTTGCCTATT | TGACGTCAGCAAAAGGGAGA |
C1 | AGGCCTAGATGCACAAAGGT | AGTTCTTCCTCGGCCTTCAA |
C2 | TTGTTTCACTTCCATCGCCG | GAACGGAAGCTCAGGACCT |
C3 | GGGGTTATTACGGCAGCTCA | TTGTCCTCCCCTTAGCCAAG |
C4 | ATCATACCATCGCCATGCCT | ACTAACCTTGCCTCCGACAC |
C5 | GCTCATCAAGGTTGGGTAAGT | TGATCATGGAGCAGCTAGGG |
C6 | AGCGACACCTGAACAGTACA | GCAAACGATGGAAGAAGTGGT |
C7 | TCAGGTTCGTTCGAATAGGGT | CACAATCGCTAGAATACGAGGT |
C8 | GCTGACCTGCATGCTAGTTT | TTGGAAGCAGCACTCTAGGG |
Table 5 .Primers used for fine mapping in the study.
标记 Marker | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) |
---|---|---|
M1 | CTTGTCAACTTGGGCTGCAT | ATGAACCCTGAAGCTTTCGC |
M2 | CCCTTCCTCCGTTGCCTATT | TGACGTCAGCAAAAGGGAGA |
C1 | AGGCCTAGATGCACAAAGGT | AGTTCTTCCTCGGCCTTCAA |
C2 | TTGTTTCACTTCCATCGCCG | GAACGGAAGCTCAGGACCT |
C3 | GGGGTTATTACGGCAGCTCA | TTGTCCTCCCCTTAGCCAAG |
C4 | ATCATACCATCGCCATGCCT | ACTAACCTTGCCTCCGACAC |
C5 | GCTCATCAAGGTTGGGTAAGT | TGATCATGGAGCAGCTAGGG |
C6 | AGCGACACCTGAACAGTACA | GCAAACGATGGAAGAAGTGGT |
C7 | TCAGGTTCGTTCGAATAGGGT | CACAATCGCTAGAATACGAGGT |
C8 | GCTGACCTGCATGCTAGTTT | TTGGAAGCAGCACTCTAGGG |
Fig. 6. Expression analysis of genes associated with chlorophyll biosynthesis, photosynthesis and chloroplast development in the wild type(WT) and pgl11 mutant.
[1] | Zhen X H, Xu J G, Shen W J, Zhang X J, Zhang Q J, Lu C G, Chen G X, Gao Z P.Photosynthetic characteristics of flag leaves in rice white stripe mutant 6001 during senescence process.Rice Sci, 2014, 21(6): 335-342. |
[2] | Tanaka A, Tanaka R.Chlorophyll metabolism.Curr Opin Plant Biol, 2006, 9(3): 248-255. |
[3] | Fromme P, Melkozernov A, Jordan P, Krauss N.Structure and function of photosystem: Ⅰ. Interaction with its soluble electron carriers and external antenna systems.FEBS Lett, 2003, 555: 40-44. |
[4] | Huang J L, Qin F, Zang G C, Kang Z H, Zou H Y, Hu F, Yue C L, Li X Y, Wang G X.Mutation of OsDET1 increases chlorophyll content in rice.Plant Sci, 2013, 210: 241-249. |
[5] | Bansal U, Saini R, Kaur A.Genetic variability in leaf area and chlorophyll content of aromatic rice.Int Rice Res Notes, 1999, 24: 21. |
[6] | Mitchell P L, Sheehy J E.Supercharging rice photosynthesis to increase yield.New Phytol, 2006, 171: 688-693. |
[7] | Gustafsson Å.The plastid development in various types of chlorophyll mutations.Hereditas, 2010, 28(3-4): 483-492. |
[8] | Kusumi K, Mizutani A, Nishimura M, Iba K.A virescent gene V1 determines the expression timing of plastid genes for transcription/translation apparatus during early leaf development in rice.Plant J, 1997, 12(6): 1241-1250. |
[9] | Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K.The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation.Plant Cell Physiol, 2004, 45(8): 985-996. |
[10] | Nakanishi H, Nozue H, Suzuki K, Kaneko Y, Taguchi G, Hayashida N.Characterization of the Arabidopsis thaliana mutant pcb2 which accumulates divinyl chlorophylls.Plant Cell Physiol, 2005, 46(3): 467-473. |
[11] | Roussell D L, Thompson D L, Pallardy S G, Miles D, Newton K J.Chloroplast structure and function is altered in the NCS2 maize mitochondrial mutant. Plant Physiol, 1991, 96: 232-238. |
[12] | Alberte R S, Hesketh J D, Hofstea G, Thornber J P, Naylor A W, Bernard R L, Brim C, Endrizzi J, Kohel R J.Composition and activity ot the photosynthetic apparatus in temperature-sensitive mutants of higher plants.Proc Natl Acad Sci USA, 1974, 71(6): 2414-2418. |
[13] | Guardi M T, Kucera T, Briantais J M, Hodges M.Decreased photosystemⅡ core phosphorylation in a yellow-green mutant of wheat showing monophasic fluorescence induction curve.Plant Physiol, 1995, 109: 1059-1068. |
[14] | 肖华贵, 杨焕文, 饶勇, 杨斌, 朱英, 张文龙. 甘蓝型油菜黄化突变体的叶绿体超微结构、气孔特征参数及光合特性. 中国农业科学, 2013, 46(4): 715-727. |
Xiao H G, Yang H W, Rao Y, Yang B, Zhu Y, Zhang W L.Analysis of chloroplast ultrastructure, stomatal characteristic parameters and photosynthetic characteristics of chlorophyll-reduced mutant in Brassica napus L.Sci Agric Sin, 2013, 4: 715-727. (in Chinese with English abstract) | |
[15] | Pérezruiz J M, Spínola M C, Kirchsteiger K, Moreno J, Sahrawy M, Cejudo F J.Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage.Plant Cell, 2006, 18(9): 2356-2368. |
[16] | Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C H, Iida S.An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice.Plant J, 2006, 45(1): 46-57. |
[17] | Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J.Molecular cloning and function analysis of the stay green gene in rice.Plant J, 2007, 52(2): 197-209. |
[18] | Wang P R, Gao J X, Wan C M, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J.Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.Plant Physiol, 2010, 153(3): 994-1003. |
[19] | Goh C H, Satoh K, Kikuchi S, Kim S C,Ko S M, Kang H G, Jeon J S, Kim C S, Park Y.Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings.Plant Biotechnol Rep, 2010, 4(4): 281-291. |
[20] | Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C.Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development.Plant Mol Biol, 2006, 62(3): 325-337. |
[21] | Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M.A Chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis.Plant Physiol, 2007, 145(1): 29-40. |
[22] | Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G.Differential regulation of chlorophyll a oxygenase genes in rice.Plant Mol Biol, 2005, 57(6): 805-818. |
[23] | Yang Y L, Xu J, Huang L C, Leng Y J, Dai L P, Rao Y C, Chen L, Wang Y Q, Tu Z J, Hu J, Ren D Y, Zhang G H, Zhu L, Guo L B, Qian Q, Zeng D L.PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice.J Exp Bot, 2016, 67(5): 1297-1310. |
[24] | Su N, Hu M L, Wu D X, Wu F Q, Fei G L, Lan Y, Chen X L, Shu X L, Zhang X, Guo X P, Cheng Z J, Lei C L, Qi C K, Jiang L, Wang H Y, Wan J M.Disruption of a rice pentatricopeptide repeat protein causes a seedling- specific albino phenotype and its utilization to enhance seed purity in hybrid rice production.Plant Physiol, 2012, 159(1): 227-238. |
[25] | Kusumi K, Yara A, Mitsui N, Tozawa Y, Iba K.Characterization of a rice nuclear-encoded plastid RNA polymerase gene OsRpoTp.Plant Cell Physiol, 2004, 45: 1194-1201. |
[26] | Zhao C F, Xu J M, Chen Y, Mao C Z, Zhang S L, Bai Y H, Jiang D A, Wu P.Molecular cloning and characterization of OsCHR4, a rice chromatin- remodeling factor required for early chloroplast development in adaxial mesophyll.Planta, 2012, 236(4): 1165-1176. |
[27] | Kodiveri M G, Kim E S, Cho H, Chung Y Y, Kodiveri M G.OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis.Plant Mol Biol, 2005, 58(3): 421-433. |
[28] | Fang J, Chai C L, Qian Q, Li C L, Tang J Y, Sun L, Huang Z J, Guo X L, Sun C H, Liu M, Zhang Y, Lu Q T, Wang Y Q, Lu C M, Han B, Chen F, Cheng Z K, Chu C C.Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice.Plant J, 2008, 54(2): 177-189. |
[29] | 钱前, 朱旭东, 曾大力, 张小惠, 严学强, 熊振民. 细胞质基因控制的新特异材料白绿苗的研究. 作物品种资源, 1996(4): 11-12. |
Qian Q, Zhu X D, Zeng D L, Zhang X H, Yan X Q, Xiong Z M.Study on the new special material white-green seedlings controlled by cytoplasmic gene.China Seeds, 1996(4): 11-12. (in Chinese with English abstract) | |
[30] | Wang F H, Wang G X, Li X Y, Huang J, Zheng J.Geredity, physiology and mapping of a chlorophyll content gene of rice(Oryza sativa L.).Plant Physiol, 2008, 165: 324-330. |
[31] | 谢戎, 朱发云, 何光华, 邓锡洪, 左永树, 杨正林, 吴丽君. 水稻两用系温敏叶绿素自然突变体的初步研究. 西南农业学报, 1995, 8: 124-128. |
Xie R, Zhu F Y, Deng X H, Zuo Y S, Yang Z L, Wu L J.A preliminary study on the temperature sensitive chlorophyll natural mutant in dual-purpose genic male sterile rice.Southwest China J Agric Sci, 1995, 8: 124-128. | |
[32] | Huq E, Al-Sady B, Hudson M, Kim C, Apel K, Quail P H.Phytochrome-interacting factor 1 is a critical bHLH regulator of chlorophyll biosynthesis.Science, 2004, 305: 1937-1941. |
[33] | Terry M J, Kendrick R E.Feedback inhibition of chlorophyll synthesis in the phytochrome chromophore- deficient aurea and yellow-green-2 mutants of tomato.Plant Physiol, 1999, 119: 143-152. |
[34] | Beale S I.Green genes gleaned.Trends Plant Sci, 2005, 10: 309-312. |
[35] | Nagata N, Tanaka R, Satoh S, Tanaka A.Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.Plant Cell, 2005, 17(1): 233-240. |
[36] | Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74(1): 122-133. |
[37] | Yang Q S, He H, Li H Y, Tian H, Zhang J J, Zhai L G, Chen J D, Wu H, Yi G J, He Z H, Peng X X.NOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis and rubisco formation in rice.PLoS ONE, 2011, 6(5): e20015. |
[38] | Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K.The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria.Plant J, 2007, 52(3): 512-527. |
[39] | Yoo S C, Cho S H, Sugimoto H, Li J J, Kusumi K, Koh H J, Iba K, Paek N C.Rice virescent 3 and stripe 1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development.Plant Physiol, 2009, 150(1): 388-401. |
[40] | 苏正淑, 张宪政. 几种测定植物叶绿素含量的方法比较. 植物生理学通讯, 1989(5): 77-78. |
Su Z S, Zhang X Z.Comparison of several methods for determining chlorophyll content of plants.Plant Physiol Commun, 1989(5): 77-78. (in Chinese with English abstract) | |
[41] | Lichtenthaler H K.Chlorophylls and caroteniods: Pigments of photosynthetic biomembranes.Method Enzymol, 1987, 148: 350-382. |
[42] | 李超, 林冬枝, 董彦君, 叶胜海, 张小明. 一个水稻苗期温敏感白色条斑叶突变体的遗传分析及基因定位. 中国水稻科学, 2010, 24(3): 223-227. |
Li C, Lin D Z, Dong Y J, Ye S H, Zhang X M.Genetic analysis and mapping of a thermo-sensitive white stripe leaf mutant at the seedling stage in rice(Oryza sativa).Chin J Rice Sci, 2010, 24(3): 223-227. (in Chinese with English abstract) | |
[43] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.Methods, 2001, 25: 402-408. |
[44] | Gong X D, Su Q Q, Lin D Z, Jiang Q, Xu J L, Zhang J H, Teng S, Dong Y J.The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress.J Integr Plant Biol, 2014, 56(4): 400-410. |
[45] | Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A.Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence.Plant Cell, 2007, 19(4): 1362-1375. |
[46] | Song J, Wei X J, Shao G N, Sheng Z H, Chen D B, Liu C L, Jiao G A, Xie L H, Tang S Q, Hu P S.The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions.Plant Mol Biol, 2014, 84(3): 301-314. |
[47] | Kong W Y, Yu X W, Chen H Y, Liu L L, Xiao Y J, Wang Y L, Wang C L, Lin Y, Yu Y, Wang C M, Jiang L, Zhai H Q, Zhao Z G, Wan J M.The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice.Plant Mol Biol, 2016, 92(1): 177-191. |
[48] | Miyoshi K, Ito Y, Serizawa A, Kurata N.OsHAP3 genes regulate chloroplast biogenesis in rice.Plant J, 2003, 36(4): 532-540. |
[49] | Zhu X L, Liang W Q, Cui X, Chen M J, Yin C S, Luo Z J, Zhu J Y, Lucas W J, Wang Z Y, Zhang D B.Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein.Plant J, 2015, 82(4): 570-581 |
[50] | 武立权, 尤翠翠, 柯建, 何清华. 叶色白化水稻突变体转绿中若干生理与叶绿体发育特型的研究. 热带作物学报, 2013, 34(6): 1115-1120. |
Wu L Q, You C C, Ke J, He Q H.Chloroplast development and physiological characteristics of green-revertible albino leaf color mutants in rice.Chin J Trop Crops, 2013, 34(6): 1115-1120. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||