Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (5): 487-492.DOI: 10.16819/j.1001-7216.2016.6038
• Orginal Article • Previous Articles Next Articles
Chuan-deng YI*(), De-rong WANG, Wei JIANG, Wei LI, Xiao-jun CHENG, Ying WANG, Yong ZHOU, Guo-hua LIANG, Ming-hong GU
Received:
2016-03-07
Revised:
2016-04-12
Online:
2016-09-10
Published:
2016-09-10
Contact:
Chuan-deng YI
裔传灯*(), 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪
通讯作者:
裔传灯
基金资助:
CLC Number:
Chuan-deng YI, De-rong WANG, Wei JIANG, Wei LI, Xiao-jun CHENG, Ying WANG, Yong ZHOU, Guo-hua LIANG, Ming-hong GU. Development of Functional Markers and Identification of Haplotypes for Rice Grain Width Gene GS5[J]. Chinese Journal OF Rice Science, 2016, 30(5): 487-492.
裔传灯, 王德荣, 蒋伟, 李玮, 成晓俊, 王颖, 周勇, 梁国华, 顾铭洪. 水稻粒宽基因GS5的功能标记开发和单倍型鉴定[J]. 中国水稻科学, 2016, 30(5): 487-492.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.6038
标记名称 Marker | 变异位点所在区域a Region of sequence variationa | 基因型 Genotype | 引物序列 Primer sequence | 标记类型 Marker type |
---|---|---|---|---|
GS5-1 | Exon 2(817 bp) | ACC/CTA | F:GCAAGACAAGGAGCAGCACTA | CAPS-DdeⅠ |
R:AGAAGCCGACCCCAACAG | ||||
GS5-2 | Exon 9(3796 bp) | A/C | F:CAGTTCTCGGTACTGCGTCGA | dCAPS-SalⅠ |
R:CACAAACCTCCCAGCAACC |
Table 1 PCR primers based on the GS5 DNA sequence variations of exon 2 and exon 9.
标记名称 Marker | 变异位点所在区域a Region of sequence variationa | 基因型 Genotype | 引物序列 Primer sequence | 标记类型 Marker type |
---|---|---|---|---|
GS5-1 | Exon 2(817 bp) | ACC/CTA | F:GCAAGACAAGGAGCAGCACTA | CAPS-DdeⅠ |
R:AGAAGCCGACCCCAACAG | ||||
GS5-2 | Exon 9(3796 bp) | A/C | F:CAGTTCTCGGTACTGCGTCGA | dCAPS-SalⅠ |
R:CACAAACCTCCCAGCAACC |
Fig. 1. PCR identification and enzyme-digested characterization of specific primers GS5-1(A) and GS5-2(B) for gene GS5 in rice. A, PCR amplification products and their corresponding DdeⅠ-digested ones of primer GS5-1; B, PCR amplification products and their corresponding SalⅠ-digested ones of primer GS5-2. M, DL2000 DNA Marker(TaKaRa). Lanes 1 and 3, Nipponbare; Lanes 2 and 4, Zhenshan 97.
性状 Trait | GS5-1 | GS5-2 | ||||||
---|---|---|---|---|---|---|---|---|
基因型 Genotype | 样本数 Sample number | 平均数± 标准误 Mean±SE | t值 t value | 基因型 Genotype | 样本数 Sample number | 平均数± 标准误 Mean±SE | t值 t value | |
粒长 Grain length/mm | ACC | 170 | 8.03±0.08 | 2.98** | A | 210 | 8.09±0.07 | 2.33* |
CTA | 124 | 8.34±0.07 | C | 83 | 8.33±0.08 | |||
粒宽 Grain width/mm | ACC | 170 | 3.05±0.03 | 2.21* | A | 210 | 3.04±0.03 | 2.01* |
CTA | 124 | 2.97±0.02 | C | 83 | 2.96±0.03 | |||
粒厚 Grain thickness/mm | ACC | 170 | 2.13±0.01 | 1.03 | A | 210 | 2.13±0.01 | 1.68 |
CTA | 124 | 2.11±0.01 | C | 83 | 2.10±0.01 | |||
长宽比 Ratio of length to width | ACC | 170 | 2.70±0.05 | 2.29* | A | 210 | 2.72±0.04 | 2.04* |
CTA | 124 | 2.84±0.04 | C | 83 | 2.85±0.05 | |||
千粒重 1000-grain weight/g | ACC | 170 | 24.71±0.31 | 0.26 | A | 210 | 24.74±0.28 | 0.04 |
CTA | 124 | 24.82±0.30 | C | 83 | 24.75±0.33 |
Table 2 Grain-related traits and their t-tests of different alleles in gene GS5.
性状 Trait | GS5-1 | GS5-2 | ||||||
---|---|---|---|---|---|---|---|---|
基因型 Genotype | 样本数 Sample number | 平均数± 标准误 Mean±SE | t值 t value | 基因型 Genotype | 样本数 Sample number | 平均数± 标准误 Mean±SE | t值 t value | |
粒长 Grain length/mm | ACC | 170 | 8.03±0.08 | 2.98** | A | 210 | 8.09±0.07 | 2.33* |
CTA | 124 | 8.34±0.07 | C | 83 | 8.33±0.08 | |||
粒宽 Grain width/mm | ACC | 170 | 3.05±0.03 | 2.21* | A | 210 | 3.04±0.03 | 2.01* |
CTA | 124 | 2.97±0.02 | C | 83 | 2.96±0.03 | |||
粒厚 Grain thickness/mm | ACC | 170 | 2.13±0.01 | 1.03 | A | 210 | 2.13±0.01 | 1.68 |
CTA | 124 | 2.11±0.01 | C | 83 | 2.10±0.01 | |||
长宽比 Ratio of length to width | ACC | 170 | 2.70±0.05 | 2.29* | A | 210 | 2.72±0.04 | 2.04* |
CTA | 124 | 2.84±0.04 | C | 83 | 2.85±0.05 | |||
千粒重 1000-grain weight/g | ACC | 170 | 24.71±0.31 | 0.26 | A | 210 | 24.74±0.28 | 0.04 |
CTA | 124 | 24.82±0.30 | C | 83 | 24.75±0.33 |
籽粒性状与变异来源 Grain trait and source of variation | 籼亚种 indica | 粳亚种 japonica | ||||
---|---|---|---|---|---|---|
自由度 df | 平方和 Mean square | F值 F value | 自由度 df | 平方和 Mean square | F值 F value | |
粒长Grain length | ||||||
单倍型间Among haplotypes | 3 | 0.929 | 1.272 | 3 | 2.482 | 3.493* |
单倍型内Within haplotypes | 154 | 0.730 | 132 | 0.711 | ||
粒宽 Grain width | ||||||
单倍型间Among haplotypes | 3 | 0.568 | 6.131** | 3 | 0.377 | 3.940** |
单倍型内Within haplotypes | 154 | 0.093 | 132 | 0.096 | ||
粒厚 Grain thickness | ||||||
单倍型间Among haplotypes | 3 | 0.129 | 7.354** | 3 | 0.038 | 1.305 |
单倍型内Within haplotypes | 154 | 0.018 | 132 | 0.029 | ||
长宽比 Ratio of length to width | ||||||
单倍型间 Among haplotypes | 3 | 1.424 | 5.145** | 3 | 0.973 | 5.141** |
单倍型内 Within haplotypes | 154 | 0.277 | 132 | 0.189 | ||
千粒重 1000-grain weight | ||||||
单倍型间Among haplotypes | 3 | 31.593 | 2.470 | 3 | 4.165 | 0.279 |
单倍型内Within haplotypes | 154 | 12.788 | 132 | 14.953 |
Table 3 Analysis of variances (ANOVA) of different haplotypes in gene GS5.
籽粒性状与变异来源 Grain trait and source of variation | 籼亚种 indica | 粳亚种 japonica | ||||
---|---|---|---|---|---|---|
自由度 df | 平方和 Mean square | F值 F value | 自由度 df | 平方和 Mean square | F值 F value | |
粒长Grain length | ||||||
单倍型间Among haplotypes | 3 | 0.929 | 1.272 | 3 | 2.482 | 3.493* |
单倍型内Within haplotypes | 154 | 0.730 | 132 | 0.711 | ||
粒宽 Grain width | ||||||
单倍型间Among haplotypes | 3 | 0.568 | 6.131** | 3 | 0.377 | 3.940** |
单倍型内Within haplotypes | 154 | 0.093 | 132 | 0.096 | ||
粒厚 Grain thickness | ||||||
单倍型间Among haplotypes | 3 | 0.129 | 7.354** | 3 | 0.038 | 1.305 |
单倍型内Within haplotypes | 154 | 0.018 | 132 | 0.029 | ||
长宽比 Ratio of length to width | ||||||
单倍型间 Among haplotypes | 3 | 1.424 | 5.145** | 3 | 0.973 | 5.141** |
单倍型内 Within haplotypes | 154 | 0.277 | 132 | 0.189 | ||
千粒重 1000-grain weight | ||||||
单倍型间Among haplotypes | 3 | 31.593 | 2.470 | 3 | 4.165 | 0.279 |
单倍型内Within haplotypes | 154 | 12.788 | 132 | 14.953 |
单倍型 Haplotype | GS5-1 | GS5-2 | 样品数 Number | 粒长 Grain length /mm | 粒宽 Grain width /mm | 粒厚 Grain thickness/mm | 长宽比 Ratio of length to width | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|---|---|
籼亚种 indica | ||||||||
Hap1 | ACC | A | 57 | 8.61±0.14 | 2.74±0.04 b | 2.00±0.02 b | 3.20±0.08 a | 23.07±0.52 |
Hap2 | ACC | C | 8 | 8.13±0.23 | 3.01±0.11 a | 2.10±0.03 ab | 2.75±0.18 b | 23.60±0.41 |
Hap3 | CTA | A | 34 | 8.36±0.13 | 2.99±0.05 a | 2.13±0.02 a | 2.84±0.08 b | 24.76±0.67 |
Hap4 | CTA | C | 59 | 8.38±0.10 | 2.93±0.04 a | 2.09±0.01 a | 2.89±0.06 b | 24.65±0.41 |
粳亚种 japonica | ||||||||
Hap1 | ACC | A | 102 | 7.70±0.08 b | 3.23±0.03 a | 2.20±0.02 | 2.41±0.04 b | 25.68±0.40 |
Hap2 | ACC | C | 3 | 8.28±0.51 a | 3.03±0.27 b | 2.15±0.08 | 2.77±0.28 a | 25.51±2.22 |
Hap3 | CTA | A | 18 | 8.19±0.22 a | 3.01±0.04 b | 2.12±0.03 | 2.73±0.09 a | 24.80±0.85 |
Hap4 | CTA | C | 13 | 8.28±0.18 a | 3.03±0.09 b | 2.14±0.03 | 2.77±0.14 a | 25.76±0.76 |
Table 4 Analysis of the difference of grain-related traits based on different haplotypes in gene GS5.
单倍型 Haplotype | GS5-1 | GS5-2 | 样品数 Number | 粒长 Grain length /mm | 粒宽 Grain width /mm | 粒厚 Grain thickness/mm | 长宽比 Ratio of length to width | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|---|---|
籼亚种 indica | ||||||||
Hap1 | ACC | A | 57 | 8.61±0.14 | 2.74±0.04 b | 2.00±0.02 b | 3.20±0.08 a | 23.07±0.52 |
Hap2 | ACC | C | 8 | 8.13±0.23 | 3.01±0.11 a | 2.10±0.03 ab | 2.75±0.18 b | 23.60±0.41 |
Hap3 | CTA | A | 34 | 8.36±0.13 | 2.99±0.05 a | 2.13±0.02 a | 2.84±0.08 b | 24.76±0.67 |
Hap4 | CTA | C | 59 | 8.38±0.10 | 2.93±0.04 a | 2.09±0.01 a | 2.89±0.06 b | 24.65±0.41 |
粳亚种 japonica | ||||||||
Hap1 | ACC | A | 102 | 7.70±0.08 b | 3.23±0.03 a | 2.20±0.02 | 2.41±0.04 b | 25.68±0.40 |
Hap2 | ACC | C | 3 | 8.28±0.51 a | 3.03±0.27 b | 2.15±0.08 | 2.77±0.28 a | 25.51±2.22 |
Hap3 | CTA | A | 18 | 8.19±0.22 a | 3.01±0.04 b | 2.12±0.03 | 2.73±0.09 a | 24.80±0.85 |
Hap4 | CTA | C | 13 | 8.28±0.18 a | 3.03±0.09 b | 2.14±0.03 | 2.77±0.14 a | 25.76±0.76 |
[1] | Qiu X, Pang Y, Yuan Z, et al.Genome-wide association study of grain appearance and milling quality in a worldwide collection of indica rice germplasm.PLoS One, 2015, 10(12): e0145577. |
[2] | 徐正进, 陈温福, 马殿荣, 等. 稻谷粒形与稻米主要品质性状的关系. 作物学报, 2004, 30(9): 894-900. |
Xu Z J, Chen W F, Ma D R, et al.Correlations between rice grain shapes and main qualitative characteristics.Acta Agron Sin, 2004, 30(9): 894-900. | |
[3] | Wang S, Wu K, Yuan Q, et al.Control of grain size, shape and quality by OsSPL16 in rice.Nat Genet, 2012, 44(8): 950-954. |
[4] | Wang S, Li S, Liu Q, et al.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.Nat Genet, 2015, 47(8): 949-954. |
[5] | Zuo J, Li J.Molecular genetic dissection of quantitative trait loci regulating rice grain size.Annu Rev Genet, 2014, 48: 99-118. |
[6] | Fan C, Xing Y, Mao H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Theor Appl Genet, 2006, 112(6): 1164-1171. |
[7] | Zhang X, Wang J, Huang J, et al.Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice.Proc Natl Acad Sci USA, 2012, 109(52): 21534-21539. |
[8] | Shomura A, Izawa T, Ebana K, et al.Deletion in a gene associated with grain size increased yields during rice domestication.Nat Genet, 2008, 40(8): 1023-1028. |
[9] | Weng J, Gu S, Wan X, et al.Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.Cell Res, 2008, 18(12): 1199-1209. |
[10] | Li Y, Fan C, Xing Y, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 43(12): 1266-1269. |
[11] | Ishimaru K, Hirotsu N, Madoka Y, et al.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield.Nat Genet, 2013, 45(6): 707-711. |
[12] | Xu C, Liu Y, Li Y, et al.Differential expression of GS5 regulates grain size in rice.J Exp Bot, 2015, 66(9): 2611-2623. |
[13] | Zhang H, Zhang D, Wang M, et al.A core collection and mini core collection of Oryza sativa L. in China.Theor Appl Genet, 2011, 122(1): 49-61. |
[14] | 王军, 杨杰, 徐祥, 等. 水稻千粒重基因TGW6功能标记的开发与利用. 中国水稻科学, 2014, 28(5): 473-478. |
Wang J, Yang J, Xu X, et al.Development and application of a functional marker for grain weight gene TGW6 in rice.Chin J Rice Sci, 2014, 28(5): 473-478. | |
[15] | Song X, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase.Nat Genet, 2007, 39(5): 623-630. |
[16] | Sun L, Li X, Fu Y, et al.GS6, a member of the GRAS gene family, negatively regulates grain size in rice.J Integr Plant Biol, 2013, 55(10): 938-949. |
[17] | Qi P, Lin Y S, Song X J, et al.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3.Cell Res, 2012, 22(12): 1666-1680. |
[18] | Hu Z, He H, Zhang S, et al.A Kelch motif-containing serine/threonine protein phosphatase determines the large grain QTL trait in rice.J Integr Plant Biol, 2012, 54(12): 979-990. |
[19] | Wang E, Wang J, Zhu X, et al.Control of rice grain-filling and yield by a gene with a potential signature of domestication.Nat Genet, 2008, 40(11): 1370-1374. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||