Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (2): 216-222.DOI: 10.16819/j.1001-7216.2016.5118
• Orginal Article • Previous Articles
Received:
2015-07-20
Revised:
2015-11-25
Online:
2016-03-10
Published:
2016-03-10
Contact:
Lai-geng LI
通讯作者:
李来庚
基金资助:
CLC Number:
Chang LIU, Lai-geng LI. Advances in Molecular Understanding of Rice Lodging Resistance[J]. Chinese Journal OF Rice Science, 2016, 30(2): 216-222.
刘畅, 李来庚. 水稻抗倒伏性状的分子机理研究进展[J]. 中国水稻科学, 2016, 30(2): 216-222.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.5118
与抗倒伏相关表型性状 Phenotype related to lodging resistance | 基因名称 Gene name | TIGR基因编号 TIGR gene code | 基因功能注释 Gene function annotation | 参考文献 Reference |
---|---|---|---|---|
株型Plant architecture | SD1 | LOC_Os01g66100 | Gibberellin 20 oxidase 2 | [6-8] |
PROG1 | LOC_Os07g05900 | C2H2 zinc finger protein | [13-14] | |
TAC1 | LOC_Os09g35980 | Expressed protein | [15-16] | |
LA1 | LOC_Os11g29840 | Expressed protein | [17] | |
OsTB1/FC1/SCM3 | LOC_Os03g49880 | TCP family transcription factor | [18-21] | |
DEP1 | LOC_Os09g26999 | Keratin-associated protein 5-4 | [23-25] | |
LP/EP3 | LOC_Os02g15950 | OsFBK5-F-box domain and kelch repeat containing protein | [27-29] | |
OsAPO1/SCM2 | LOC_Os06g45460 | OsFBX202-F-box domain containing protein | [30-32] | |
IPA1/WFP/OsSPL14 | LOC_Os08g39890 | SBP-box gene family member | [35-37] | |
SDT | LOC_Os06g44034 | OsmiR156h microRNA precursor | [38] | |
茎秆Culm | SMOS1 | LOC_Os05g32270 | AP2 domain containing protein | [41-42] |
LSI1 | LOC_Os02g51110 | Silicon influx transporter | [45] | |
LSI2 | LOC_Os03g01700 | Silicon efflux transporter | [46] | |
LSI6 | LOC_Os06g12310 | Silicon influx transporter | [47] | |
PRL5 | Uncloned | Unknown | [51] | |
LRT5 | Uncloned | Unknown | [52] | |
次生细胞壁 | BC6 | LOC_Os09g25490 | OsCESA9-cellulose synthase | [55] |
Secondary cell wall | BC7/BC11 | LOC_Os01g54620 | OsCESA4-cellulose synthase | [56-57] |
BC3 | LOC_Os02g50550 | Dynamin | [58] | |
BC15/OsCTL1 | LOC_Os09g32080 | CHIT13-chitinase family protein precursor | [59] | |
BC14/OsNST1 | LOC_Os02g40030 | Golgi-localized nucleotide sugar transporters | [60] | |
BC10 | LOC_Os05g07790 | Glycosyltransferase family protein | [61] | |
OsMYB103L | LOC_Os08g05520 | MYB-like DNA-binding domain containing protein | [62] | |
OsNAC29/OsSWN2 | LOC_Os08g02300 | NAC transcription factor | [64] | |
BC1 | LOC_Os03g30250 | COBRA-like protein precursor | [66-67] | |
BC12 | LOC_Os09g02650 | Kinesin motor domain containing protein domain of unknown function 266 | [68] | |
CslF6 | LOC_Os08g06380 | CSLF6-cellulose synthase-like family F; beta1,3;1,4 glucan synthase | [69-70] | |
Os4CL3 | LOC_Os02g08100 | 4-coumarate-CoA ligase | [72-73] | |
OsCAD7/FC1 | LOC_Os04g52280 | Cinnamyl alcohol dehydrogenase | [74-75] | |
OsCAD2/gh2 | LOC_Os02g09490 | Cinnamyl alcohol dehydrogenase | [76-77] |
Table 1 Reported Lodging resistance genes in rice.
与抗倒伏相关表型性状 Phenotype related to lodging resistance | 基因名称 Gene name | TIGR基因编号 TIGR gene code | 基因功能注释 Gene function annotation | 参考文献 Reference |
---|---|---|---|---|
株型Plant architecture | SD1 | LOC_Os01g66100 | Gibberellin 20 oxidase 2 | [6-8] |
PROG1 | LOC_Os07g05900 | C2H2 zinc finger protein | [13-14] | |
TAC1 | LOC_Os09g35980 | Expressed protein | [15-16] | |
LA1 | LOC_Os11g29840 | Expressed protein | [17] | |
OsTB1/FC1/SCM3 | LOC_Os03g49880 | TCP family transcription factor | [18-21] | |
DEP1 | LOC_Os09g26999 | Keratin-associated protein 5-4 | [23-25] | |
LP/EP3 | LOC_Os02g15950 | OsFBK5-F-box domain and kelch repeat containing protein | [27-29] | |
OsAPO1/SCM2 | LOC_Os06g45460 | OsFBX202-F-box domain containing protein | [30-32] | |
IPA1/WFP/OsSPL14 | LOC_Os08g39890 | SBP-box gene family member | [35-37] | |
SDT | LOC_Os06g44034 | OsmiR156h microRNA precursor | [38] | |
茎秆Culm | SMOS1 | LOC_Os05g32270 | AP2 domain containing protein | [41-42] |
LSI1 | LOC_Os02g51110 | Silicon influx transporter | [45] | |
LSI2 | LOC_Os03g01700 | Silicon efflux transporter | [46] | |
LSI6 | LOC_Os06g12310 | Silicon influx transporter | [47] | |
PRL5 | Uncloned | Unknown | [51] | |
LRT5 | Uncloned | Unknown | [52] | |
次生细胞壁 | BC6 | LOC_Os09g25490 | OsCESA9-cellulose synthase | [55] |
Secondary cell wall | BC7/BC11 | LOC_Os01g54620 | OsCESA4-cellulose synthase | [56-57] |
BC3 | LOC_Os02g50550 | Dynamin | [58] | |
BC15/OsCTL1 | LOC_Os09g32080 | CHIT13-chitinase family protein precursor | [59] | |
BC14/OsNST1 | LOC_Os02g40030 | Golgi-localized nucleotide sugar transporters | [60] | |
BC10 | LOC_Os05g07790 | Glycosyltransferase family protein | [61] | |
OsMYB103L | LOC_Os08g05520 | MYB-like DNA-binding domain containing protein | [62] | |
OsNAC29/OsSWN2 | LOC_Os08g02300 | NAC transcription factor | [64] | |
BC1 | LOC_Os03g30250 | COBRA-like protein precursor | [66-67] | |
BC12 | LOC_Os09g02650 | Kinesin motor domain containing protein domain of unknown function 266 | [68] | |
CslF6 | LOC_Os08g06380 | CSLF6-cellulose synthase-like family F; beta1,3;1,4 glucan synthase | [69-70] | |
Os4CL3 | LOC_Os02g08100 | 4-coumarate-CoA ligase | [72-73] | |
OsCAD7/FC1 | LOC_Os04g52280 | Cinnamyl alcohol dehydrogenase | [74-75] | |
OsCAD2/gh2 | LOC_Os02g09490 | Cinnamyl alcohol dehydrogenase | [76-77] |
[1] | Donald C M, Hamblin J.The biological yield and harvest index of cereals as agronomic and plant breeding criteria.Adv Agron, 1976:361-405. |
[2] | 杨波, 杨文钰. 水稻抗倒伏研究进展. 耕作与栽培, 2011,(2):1-5,9. |
Yang B, Yang W Y.Progress of research on lodging resistance in rice.Till Cult, 2011,(2):1-5,9.(in Chinese) | |
[3] | Khush G S.Green revolution:Preparing for the 21st century.Genome, 1999, 42(4):646-655. |
[4] | 杨惠杰, 杨仁崔, 李义珍, 等. 水稻茎秆性状与抗倒性的关系. 福建农业学报, 2000,(2): 1-7. |
Yang H J, Yang S R, Li Y Z, et al.Relationship between culm traits and lodging resistance of rice cultivars.Fujiang J Agric Sci, 2000,(2):1-7.(in Chinese with English abstract) | |
[5] | 孙旭初. 水稻茎秆抗倒性的研究. 中国农业科学, 1987, 20(4):32-37. |
Sun X C.Studies on the resistance of the culm of rice to lodging.Sci Agric Sin, 1987, 20(4): 32-37.(in Chinese with English abstract) | |
[6] | Spielmeyer W, Ellis M H, Chandler P M.Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci USA, 2002, 99(13):9043-9048. |
[7] | Monna L, Kitazawa N, Yoshino R, et al.Positional cloning of rice semidwarfing gene, sd-1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis.DNA Res, 2002, 9(1):11-17. |
[8] | Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al.Green revolution: A mutant gibberellin-synthesis gene in rice.Nature, 2002, 416(6882):701-702. |
[9] | Oikawa T, Koshioka M, Kojima K, et al.A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice.Plant Mol Biol, 2004, 55(5):687-700. |
[10] | Asano K, Yamasaki M, Takuno S, et al.Artificial selection for a green revolution gene during japonica rice domestication.Proc Natl Acad Sci USA, 2011, 108(27):11034-11039. |
[11] | Okuno A, Hirano K, Asano K, et al.New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.PLoS One, 2014, 9(2):e86870. |
[12] | 林泽川, 曹立勇. 水稻株型相关基因的定位与克隆研究进展. 中国稻米, 2014, (1):17-22,27. |
Lin Z C, Cao L Y.Progress on mapping and cloning of genes related to rice plant type.China Rice, 2014(1):17-22,27.(in Chinese with English abstract) | |
[13] | Jin J, Huang W, Gao J P, et al.Genetic control of rice plant architecture under domestication.Nat Genet, 2008, 40(11):1365-1369. |
[14] | Tan L, Li X, Liu F, et al.Control of a key transition from prostrate to erect growth in rice domestication.Nat Genet, 2008, 40(11):1360-1364. |
[15] | Yu B, Lin Z, Li H, et al.TAC1, a major quantitative trait locus controlling tiller angle in rice.Plant J, 2007, 52(5):891-898. |
[16] | Jiang J, Tan L, Zhu Z, et al.Molecular evolution of the TAC1 gene from rice (Oryza sativa L.).J Genet Genom, 2012, 39(10):551-560. |
[17] | Li P, Wang Y, Qian Q, et al.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.Cell Res, 2007, 17(5):402-410. |
[18] | Guo S, Xu Y, Liu H, et al.The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14.Nat Commun, 2013, 4:1566. |
[19] | Minakuchi K, Kameoka H, Yasuno N, et al.FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice.Plant Cell Physiol, 2010, 51(7):1127-1135. |
[20] | Takeda T, Suwa Y, Suzuki M, et al.The OsTB1 gene negatively regulates lateral branching in rice.Plant J, 2003, 33(3):513-520. |
[21] | Yano K, Ookawa T, Aya K, et al.Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism.Mol Plant, 2015, 8(2):303-314. |
[22] | 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳:辽宁科技出版社, 2003:220-223. |
Chen W F, Xu Z J, Zhang L B.The physidogical Basis of Rice Super High Yielding Breeding. Shenyang:Liaoning Science and Technology Publishing House, 2003: 220-223. | |
[23] | Huang X, Qian Q, Liu Z, et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41(4):494-497. |
[24] | Yan C J, Zhou J H, Yan S, et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Theor Appl Genet, 2007, 115(8):1093-1100. |
[25] | Zhou Y, Zhu J, Li Z, et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics, 2009, 183(1):315-324. |
[26] | 张喜娟, 李红娇, 李伟娟, 等. 北方直立穗型粳稻抗倒性的研究. 中国农业科学, 2009, 42(7):2305-2313. |
Zhang X J, Li H J, Li W J, et al.The lodging resistance of erect panicle japonica rice in Northern China.Sci Agric Sin, 2009, 42(7):2305-2313.(in Chinese with English abstract) | |
[27] | Piao R, Jiang W, Ham T H, et al.Map-based cloning of the ERECT PANICLE 3 gene in rice.Theor Appl Genet, 2009, 119(8):1497-1506. |
[28] | Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.Plant Biotechnol J, 2011, 9(9):1002-1013. |
[29] | Yu H, Murchie EH, González-Carranza Z H, et al. Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development.J Exp Bot, 2015, 66(5):1543-1552. |
[30] | Ikeda-Kawakatsu K, Maekawa M, Izawa T, et al.ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1.Plant J, 2012, 69(1):168-180. |
[31] | Ikeda K, Ito M, Nagasawa N, et al.Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate.Plant J, 2007, 51(6):1030-1040. |
[32] | Ookawa T, Hobo T, Yano M, et al.New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield.Nat Commun, 2010, 1:132. |
[33] | 程式华. 我国超级稻育种的理论与实践. 中国农技推广, 2005, (4):27-29. |
Cheng S H.Theory and practice of suger rice breeding in China.Chin Agric Technol Ext, 2005, (4):27-29.(in Chinese) | |
[34] | 胡江, 藤本宽, 郭龙彪, 等. 水稻抗倒力及相关抗倒伏性状的QTL分析. 中国水稻科学, 2008, 29(2):211-214. |
Hu J, Kan F, Guo L B, et al.QTL analysis of lodging resistance force and lodging resistance-related traits in rice.Chin J Rice Sci. 2008, 29(2):211-214.(in Chinese with English abstract) | |
[35] | Jiao Y, Wang Y, Xue D, et al.Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice.Nat Genet, 2010, 42(6):541-544. |
[36] | Miura K, Ikeda M, Matsubara A, et al.OsSPL14 promotes panicle branching and higher grain productivity in rice.Nat Genet, 2010, 42(6):545-549. |
[37] | Lu Z, Yu H, Xiong G, et al.Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture.Plant Cell, 2013, 25(10):3743-3759. |
[38] | Zhao M, Liu B, Wu K, et al.Regulation of OsmiR156h through alternative polyadenylation improves grain yield in rice.PLoS One, 2015, 10(5):e0126154. |
[39] | Kashiwagi T, Ishimaru K.Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiol, 2004, 134(2):676-683. |
[40] | Kashiwagi T, Togawa E, Hirotsu N, et al.Improvement of lodging resistance with QTLs for stem diameter in rice (Oryza sativa L.).Theor Appl Genet, 2008, 117(5):749-757. |
[41] | Hirano K, Okuno A, Hobo T, et al.Utilization of stiff culm trait of rice smos1 mutant for increased lodging resistance.PLoS One, 2014, 9(7):e96009. |
[42] | Aya K, Hobo T, Sato-Izawa K, et al.A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway.Plant Cell Physiol, 2014, 55(5):897-912. |
[43] | 刘慧娟, 饶玉春, 杨窑龙, 等. 水稻叶鞘相关性状的遗传分析. 分子植物育种, 2011(3): 278-287. |
Liu H J, Rao Y C, Yang Y L, et al.QTL analysis of leaf sheath traits in rice (Oryza sativa L.).Mol Plant Breed, 2011(3): 278-287.(in Chinese with English abstract) | |
[44] | 陈平平. 硅在水稻生活中的作用. 生物学通报, 1998, 33(8):6-8. |
Chen P P.The role of silicon in rice life.Bull Biol,1998, 33(8):6-8(in Chinese). | |
[45] | Ma J F, Tamai K, Yamaji N, et al.A silicon transporter in rice.Nature, 2006, 440(7084):688-691. |
[46] | Ma J F, Yamaji N, Mitani N, et al.An efflux transporter of silicon in rice.Nature, 2007, 448(7150):209-212. |
[47] | Yamaji N, Ma J F.A transporter at the node responsible for intervascular transfer of silicon in rice.Plant Cell, 2009, 21(9):2878-2883. |
[48] | 杨长明, 杨林章, 颜廷梅, 等. 不同养分和水分管理模式对水稻抗倒伏能力的影响. 应用生态学报, 2004,(4):646-650. |
Yang C M, Yang L Z, Yan T M, et al.Effects of nutrient and water regimes on lodging resistance of rice.Chin J Appl Ecol, 2004,(4):646-650(in Chinese with English abstract). | |
[49] | 邢雪荣, 张蕾. 植物的硅素营养研究综述. 植物学通报, 1998, 15(2):34-41. |
Xing X R, Zhang L.Review of the studies on silicon nutrition of plants.Chin Bull Bot, 1998, 15(2):34-41.(in Chinese with English abstract) | |
[50] | 张丰转, 金正勋, 马国辉, 等. 灌浆成熟期粳稻抗倒伏性和茎鞘化学成分含量的动态变化. 中国水稻科学, 2010, 24(3):264-270. |
Zhang F Z, Jin Z X, Ma G H, et al.Dynamic changes of lodging resistance and chemical component contents in culm and sheaths of japonica rice during grain filling.Chin J Rice Sci, 2010, 24(3):264-270.(in Chinese with English abstract) | |
[51] | Kashiwagi T, Madoka Y, Hirotsu N, et al.Locus prl5 improves lodging resistance of rice by delaying senescence and increasing carbohydrate reaccumulation.Plant Physiol Biochem, 2006, 44(2/3):152-157. |
[52] | Ishimaru K, Togawa E, Ookawa T, et al.New target for rice lodging resistance and its effect in a typhoon.Planta, 2008, 227(3):601-609. |
[53] | Sherratt M J, Baldock C, Haston J L, et al.Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues.J Mol Biol, 2003, 332(1):183-193. |
[54] | 罗茂春, 田翠婷, 李晓娟, 等. 水稻茎秆形态结构特征和化学成分与抗倒伏关系综述. 西北植物学报, 2007, 27(11):2346-2353. |
Luo M C, Tian C T, Li X J, et al.Relationship between morpho-anatomical traits together with chemical components and lodging resistance of stem in rice(Oryza sativa L .).Acta Bot Bor-Occid Sin, 2007, 27(11):2346-2353.(in Chinese with English abstract). | |
[55] | Kotake T, Aohara T, Hirano K, et al.Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls.J Exp Bot, 2011, 62(6):2053-2062. |
[56] | Yan C, Yan S, et al, Gu M. Fine mapping and isolation of Bc7(t) , allelic toOsCesA4. J Genet Genom, 2007, 34(11):1019-1027. |
[57] | Zhang B, Deng L, Qian Q, et al.A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice.Plant Mol Biol, 2009, 71(4/5):509-524. |
[58] | Hirano K, Kotake T, Kamihara K, et al.Rice BRITTLE CULM 3 (BC3) encodes a classical dynamin OsDRP2B essential for proper secondary cell wall synthesis.Planta, 2010, 232(1):95-108. |
[59] | Wu B, Zhang B, Dai Y, et al.Brittle culm15 encodes a membrane-associated chitinase-like protein required for cellulose biosynthesis in rice.Plant Physiol, 2012, 159(4):1440-1452. |
[60] | Zhang B, Liu X, Qian Q, et al.Golgi nucleotide sugar transporter modulates cell wall biosynthesis and plant growth in rice.Proc Natl Acad Sci USA, 2011, 108(12):5110-5115. |
[61] | Zhou Y, Li S, Qian Q, et al.BC10, a DUF266-containing and Golgi-located type II membrane protein, is required for cell-wall biosynthesis in rice (Oryza sativa L.).Plant J, 2009, 57(3):446-462. |
[62] | Yang C, Li D, Liu X, et al.OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.).BMC Plant Biol, 2014, 14:158. |
[63] | Huang D, Wang S, Zhang B, et al.A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice.Plant Cell, 2015, 27(6):1681-1696. |
[64] | Zhong R, Lee C, McCarthy R L, et al. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors.Plant Cell Physiol, 2011, 52(10):1856-1871. |
[65] | Zhang B, Zhou Y.Rice brittleness mutants: A way to open the ‘black box’ of monocot cell wall biosynthesis.J Integr Plant Biol, 2011, 53(2):136-142. |
[66] | Li Y, Qian Q, Zhou Y, et al.BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants.Plant Cell, 2003, 15(9):2020-2031. |
[67] | Liu L, Shang-Guan K, Zhang B, et al.Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.PLoS Genet, 2013, 9(8):e1003704. |
[68] | Zhang M, Zhang B, Qian Q, et al.Brittle Culm 12, a dual-targeting kinesin-4 protein, controls cell-cycle progression and wall properties in rice.Plant J, 2010, 63(2):312-328. |
[69] | Vega-Sánchez M E, Verhertbruggen Y, Christensen U, et al. Loss of cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties and defense responses in vegetative tissues of rice.Plant Physiol, 2012, 159(1):56-69. |
[70] | Burton R A, Wilson S M, Hrmova M, et al.Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3;1, 4)-beta-D-glucans.Science, 2006, 311(5769):1940-1942. |
[71] | Li F, Zhang M, Guo K, et al.High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.Plant Biotechnol J, 2015, 13(4):514-525. |
[72] | Hu W J, Kawaoka A, Tsai C J, et al.Compartmentalized expression of two structurally and functionally distinct 4-coumarate:CoA ligase genes in aspen (Populus tremuloides).Proc Natl Acad Sci USA, 1998, 95(9):5407-5412. |
[73] | Gui J, Shen J, Li L.Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice.Plant Physiol, 2011, 157(2):574-586. |
[74] | Grima-Pettenati J, Campargue C, Boudet A, et al.Purification and characterization of cinnamyl alcohol dehydrogenase isoforms from Phaseolus vulgaris.Phytochemistry, 1994, 37(4):941-947. |
[75] | Li X, Yang Y, Yao J, et al.FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice.Plant Mol Biol, 2009, 69(6):685-697. |
[76] | Ookawa T, Inoue K, Matsuoka M, et al.Increased lodging resistance in long-Culm, low-lignin gh2 rice for improved feed and bioenergy production.Sci Rep, 2014, 4:65-67. |
[77] | Hirano K, Aya K, Kondo M, et al.OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm.Plant Cell Rep, 2012, 31(1):91-101. |
[78] | 王勇, 向波, 冼季夏, 等. 水稻抗倒伏研究现状及存在的问题. 广西农业科学, 2007, 39(2):141-144. |
Wang Y, Xiang B, Xian L X, et al.Research status and existing problems of rice resistance to lodging.J Guangxi Agric Sci, 2007, 39(2):141-144.(in Chinese with English abstract) | |
[79] | 吴伟明, 程式华. 水稻根系育种的意义与前景. 中国水稻科学, 2005,19(2):174-180. |
Wu W M, Cheng S H.Significance and prospects of breeding for root system in rice(Oryza sativa).Chin J Rice Sci, 2005,19(2):174-180.(in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||