Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (5): 546-558.DOI: 10.3969/j.issn.1001G7216.2015.05.012
• Orginal Article • Previous Articles
Yong-tao CUI, Li-wen WU, Long-biao GUO*(), Xing-ming HU*(
)
Received:
2015-01-08
Revised:
2015-04-12
Online:
2015-09-10
Published:
2015-09-10
Contact:
Long-biao GUO, Xing-ming HU
About author:
*Corresponding author:E-mailguolongb@mail.hz.zj.cnhuxingmingx@126.com
通讯作者:
郭龙彪,胡兴明
作者简介:
*通讯录作者:E-mail:guolongb@mail.hz.zj.cnhuxingmingx@126.com
基金资助:
CLC Number:
Yong-tao CUI, Li-wen WU, Long-biao GUO, Xing-ming HU. Research Progress in Physiologic Functions of Heterotrimeric G Protein in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(5): 546-558.
崔永涛, 吴立文, 郭龙彪, 胡兴明. 水稻异源三聚体G蛋白生理功能的研究进展[J]. 中国水稻科学, 2015, 29(5): 546-558.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001G7216.2015.05.012
种类/突变体 Type/Mutant | 数量 Number | 表型 Phenotype | 调控机制 Regulation mechanism | 生物学功能 Bio-function |
---|---|---|---|---|
Gα (rga1, d1) | 1 | 茎秆变短增粗;穗直立,着粒密,谷粒小而圆;第二节间不伸长 | 编码Gα 亚基 | 参与赤霉素信号途径与油菜素内酯(BR)的信号传导;介导抗稻瘟病反应;介导乙烯信号参与抗逆 |
Gβ (rgb1/RNAi) | 1 | 矮秆,穗和种子变小,叶角变小,节点处发生褐化 | 编码Gβ亚基,正调控细胞数量而不是细胞大小 | 控制细胞分化,当完全缺失时,植株死亡;参与抗逆性 |
Gγ (gs3) | 5 | 种子变大 | 编码Gγ,负调控籽粒和器官大小 | 控制纵向细胞数,决定谷粒大小 |
Gγ(dep1, qNGR9) | 稻穗变短、直立,着粒密集,每穗籽粒数增多 | 编码Gγ,促进细胞分裂,降低穗颈节长;稻穗变密,枝梗数增加,粒数增多 | 穗粒数增加,增加产量;介导N元素的吸收;可能介导抗逆反应 |
Table 1 Functions of three G protein subunits in rice.
种类/突变体 Type/Mutant | 数量 Number | 表型 Phenotype | 调控机制 Regulation mechanism | 生物学功能 Bio-function |
---|---|---|---|---|
Gα (rga1, d1) | 1 | 茎秆变短增粗;穗直立,着粒密,谷粒小而圆;第二节间不伸长 | 编码Gα 亚基 | 参与赤霉素信号途径与油菜素内酯(BR)的信号传导;介导抗稻瘟病反应;介导乙烯信号参与抗逆 |
Gβ (rgb1/RNAi) | 1 | 矮秆,穗和种子变小,叶角变小,节点处发生褐化 | 编码Gβ亚基,正调控细胞数量而不是细胞大小 | 控制细胞分化,当完全缺失时,植株死亡;参与抗逆性 |
Gγ (gs3) | 5 | 种子变大 | 编码Gγ,负调控籽粒和器官大小 | 控制纵向细胞数,决定谷粒大小 |
Gγ(dep1, qNGR9) | 稻穗变短、直立,着粒密集,每穗籽粒数增多 | 编码Gγ,促进细胞分裂,降低穗颈节长;稻穗变密,枝梗数增加,粒数增多 | 穗粒数增加,增加产量;介导N元素的吸收;可能介导抗逆反应 |
[1] | Gilman A G.G proteins: Transducers of receptor-generated signals.Annu Rev Biochem, 1987, 56: 615-649. |
[2] | Wettschureck N, Offermanns S.Mammalian G proteins and their cell type specific functions.Physiol Rev, 2005, 85: 1159-1204. |
[3] | Ma H, Yanofsky M F, Meyerowitz E M.Molecular cloning and characterization of GPA1, a G protein alpha subunit gene fromArabidopsis thaliana. Proc Natl Acad Sci USA, 1990, 87: 3821-3825. |
[4] | Ma H, Yanofsky M F, Hai H.Isolation and sequence analysis of TGA1 cDNAs encoding a tomato G protein α subunit.Gene, 1991, 107: 189-195. |
[5] | Misra S, Wu Y, Venkataraman G, et al.Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): Role in salinity and heat stress and cross-talk with phospholipase C.Plant J, 2007, 51: 656-669. |
[6] | Ishikawa A, Tsubouchi H, Iwasaki Y, et al.Molecular cloning and characterization of a cDNA for the α subunit of a G protein from rice.Plant Cell Physiol, 1995, 36: 353-359. |
[7] | Seo H S, Kim H Y, Jeong J Y, et al.Molecular cloning and characterization of RGA1 encoding a G protein α subunit from rice (Oryza sativa L. IR-36).Plant Mol Biol, 1995, 27: 1119-1131. |
[8] | Ashikari M, Wu J, Yano M, et al.Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein.Proc Natl Acad Sci USA, 1999, 96: 10284-10289. |
[9] | Mason M G, Botella J R.Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ.Biochim Biophys Acta (BBA):Gene Struct Exp, 2001, 1520: 147-153. |
[10] | Weiss C A, Garnaat C W, Mukai K, et al.Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1).Proc Natl Acad Sci USA, 1994, 91: 9554-9558. |
[11] | Ishikawa A, Iwasaki Y, Asahi T.Molecular cloning and characterization of a cDNA for the rβ subunit of a G protein from rice.Plant Cell Physiol, 1996, 37: 223-228. |
[12] | Kato C, Mizutani T, Tamaki H, et al.Characterization of heterotrimeric G protein complexes in rice plasma membrane.Plant J, 2004, 38: 320-331. |
[13] | Mason M G, Botella J R.Completing the heterotrimer: Isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA.Proc Natl Acad Sci USA, 2000, 97: 14784-14788. |
[14] | Urano D, Chen J G, Botella J R, et al.Heterotrimeric G protein signalling in the plant kingdom.Open Biol, 2013, 3: 120186. |
[15] | Yan S, Zou G, Li S, et al.Seed size is determined by the combinations of the genes controlling different seed characteristics in rice.Theor Appl Genet, 2011, 123: 1173-1181. |
[16] | Fan C, Yu S, Wang C, et al.A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker.Theor Appl Genet, 2009, 118: 465-472. |
[17] | Takano-Kai N, Jiang H, Kubo T, et al.Evolutionary history of GS3, a gene conferring grain length in rice.Genetics, 2009, 182: 1323-1334. |
[18] | Wang C, Chen S, Yu S.Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice.Theor Appl Genet, 2011, 122: 905-913. |
[19] | Takano-Kai N, Doi K, Yoshimura A.GS3 participates in stigma exsertion as well as seed length in rice.Breeding Sci, 2011, 61: 244-250. |
[20] | Mao H, Sun S, Yao J, et al.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.Proc Natl Acad Sci USA, 2010, 107: 19579-19584. |
[21] | Fan C, Xing Y, Mao H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Thero Appl Genet, 2006, 112: 1164-1171. |
[22] | Sun H, Qian Q, Wu K, et al.Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.Nat Genet, 2014, 46: 652-656. |
[23] | Yi X, Zhang Z, Zeng S, et al.Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.).J Genet Genom, 2011, 38: 217-223. |
[24] | Huang X, Qian Q, Liu Z, et al.Natural variation at the DEP1 locus enhances grain yield in rice.Nat Genet, 2009, 41: 494-497. |
[25] | Taguchi-Shiobara F, Kawagoe Y, Kato H, et al.A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets.Breeding Sci, 2011, 61: 17-25. |
[26] | Yan C-J, Zhou J-H, Yan S, et al.Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.).Thero Appl Genet, 2007, 115: 1093-1100. |
[27] | Zhou Y, Zhu J, Li Z, et al.Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication.Genetics, 2009, 183: 315-324. |
[28] | Izawa Y, Takayanagi Y, Inaba N, et al.Function and expression pattern of the α subunit of the heterotrimeric G protein in rice.Plant Cell Physiol, 2010, 51: 271-281. |
[29] | Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, et al.Rice dwarf mutant d1, which is defective in the α subunit of the heterotrimeric G protein, affects gibberellin signal transduction.Proc Natl Acad Sci USA, 2000, 97: 11638-11643. |
[30] | Fujisawa Y, Kato T, Ohki S, et al.Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice.Proc Natl Acad Sci USA, 1999, 96: 7575-7580. |
[31] | Assmann S M.G protein signaling in the regulation of rice seed germination.Sci STKE, 2015(310):12. |
[32] | Wang L, Xu Y Y, Ma Q B, et al.Heterotrimeric G protein α subunit is involved in rice brassinosteroid response.Cell Res, 2006, 16: 916-922. |
[33] | Oki K, Fujisawa Y, Kato H, et al.Study of the constitutively active form of the α subunit of rice heterotrimeric G proteins.Plant Cell Physiol, 2005, 46: 381-386. |
[34] | Yang G, Matsuoka M, Iwasaki Y, et al.A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice.Plant Mol Biol, 2003, 52: 843-854. |
[35] | Hu X, Qian Q, Xu T, et al.The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate brassinosteroid-mediated growth in rice.PLoS Genet, 2013, 9: e1003391. |
[36] | Lieberherr D, Thao N P, Nakashima A, et al.A sphingolipid elicitor-inducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice.Plant Physiol, 2005, 138: 1644-1652. |
[37] | Suharsono U, Fujisawa Y, Kawasaki T, et al.The heterotrimeric G protein α subunit acts upstream of the small GTPase Rac in disease resistance of rice.Proc Natl Acad Sci USA, 2002, 99: 13307-13312. |
[38] | Assmann S M.G protein regulation of disease resistance during infection of rice with rice blast fungus.Sci STKE, 2005: cm13. |
[39] | Trusov Y, Rookes J E, Chakravorty D, et al.Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling.Plant Physiol, 2006, 140: 210-220. |
[40] | Lorbiecke R, Sauter M.Adventitious root growth and cell-cycle induction in deepwater rice.Plant Physiol, 1999, 119: 21-30. |
[41] | Steffens B, Sauter M.Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway.Plant Cell, 2009, 21: 184-196. |
[42] | Mergemann H, Sauter M.Ethylene induces epidermal cell death at the site of adventitious root emergence in rice.Plant Physiol, 2000, 124: 609-614. |
[43] | Joo J H, Wang S, Chen J, et al.Different signaling and cell death roles of heterotrimeric G protein α and β subunits in the Arabidopsis oxidative stress response to ozone.Plant Cell, 2005, 17: 957-970. |
[44] | Steffens B, Sauter M.G proteins as regulators in ethylene-mediated hypoxia signaling.Plant signal Behav, 2010, 5: 375-378. |
[45] | Steffens B, Sauter M.Heterotrimeric G protein signaling is required for epidermal cell death in rice.Plant Physiol, 2009, 151: 732-740. |
[46] | Utsunomiya Y, Samejima C, Takayanagi Y, et al.Suppression of the rice heterotrimeric G protein beta-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions.Plant J, 2011, 67: 907-916. |
[47] | Utsunomiya Y, Samejima C, Fujisawa Y, et al.Rice transgenic plants with suppressed expression of the β subunit of the heterotrimeric G protein.Plant Signal Behav, 2012, 7: 443-446. |
[48] | Yadav D K, Shukla D, Tuteja N.Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1).Plant Signal Behav, 2014, 9(5):e28890. |
[49] | Trusov Y, Chakravorty D, Botella J R.Diversity of heterotrimeric G-protein γ subunits in plants.BMC Res Notes, 2012, 5: 608. |
[50] | Chen J G, Gao Y, Jones A M.Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots.Plant Physiol, 2006, 141: 887-897. |
[51] | Choudhury S R, Bisht N C, Thompson R, et al.Conventional and novel Gγ protein families constitute the heterotrimeric G-protein signaling network in soybean.PLoS One, 2011, 6: e23361. |
[52] | Chakravorty D, Trusov Y, Zhang W, et al.An atypical heterotrimeric G-protein gamma-subunit is involved in guard cell K(+)-channel regulation and morphological development in Arabidopsis thaliana.Plant J, 2011, 67: 840-851. |
[53] | Yadav D K, Islam S M, Tuteja N.Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress.Plant Signal Behav, 2012, 7: 733-740. |
[54] | Fan C, Xing Y, Mao H, et al.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein.Thero Appl Genet, 2006, 112: 1164-1171. |
[55] | Li S, Liu Y, Zheng L, et al.The plant-specific G protein gamma subunit AGG3 influences organ size and shape in Arabidopsis thaliana.New Phytol, 2012, 194: 690-703. |
[56] | Jones A M, Assmann S M.Plants: The latest model system for G-protein research.EMBO Rep, 2004, 5: 572-578. |
[57] | Li S, Liu W, Zhang X, et al.Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control.Plant Signal Behav, 2012, 7: 1357-1359. |
[58] | Botella J R.Can heterotrimeric G proteins help to feed the world?Trends Plant Sci, 2012, 17: 563-568. |
[59] | Trusov Y, Zhang W, Assmann S M, et al.Ggamma1 + Ggamma2 not equal to Gbeta: Heterotrimeric G protein Ggamma-deficient mutants do not recapitulate all phenotypes of Gbeta-deficient mutants.Plant Physiol, 2008, 147: 636-649. |
[60] | Li S J, Liu W X, Zhang X Q, et al.Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control .Plant Signal Behav, 2012, 7(10): 1357-1359. |
[61] | Kunihiro S, Saito T, Matsuda T, et al.Rice DEP1, encoding a highly cysteine-rich G protein gamma subunit, confers cadmium tolerance on yeast cells and plants.J Exp Bot, 2013, 64: 4517-4527. |
[62] | Chen Y L, Huang R, Xiao Y M, et al.Extracellular calmodulin-induced stomatal closure is mediated by heterotrimeric G protein and H2O2.Plant Physiol, 2004, 136: 4096-4103. |
[63] | Coursol S, Fan L M, Le Stunff H, et al.Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins.Nature, 2003, 423: 651-654. |
[64] | Li J H, Liu Y Q, Lü P, et al.A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis.Plant Physiol, 2009, 150: 114-124. |
[65] | Melotto M, Underwood W, He S Y.Role of stomata in plant innate immunity and foliar bacterial diseases.Annu Rev Phytopathol, 2008, 46: 101. |
[66] | Schroeder J I, Allen G J, Hugouvieux V, et al.Guard cell signal transduction.Annu Rev Phytopathol, 2001, 52: 627-658. |
[67] | Shimazaki K I, Doi M, Assmann S M, et al.Light regulation of stomatal movement.Annu Rev Plant Biol, 2007, 58: 219-247. |
[68] | Wang X Q, Ullah H, Jones A M, et al.G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells.Science, 2001, 292: 2070-2072. |
[69] | Zhang W, He S Y, Assmann S M.The plant innate immunity response in stomatal guard cells invokes G-protein-dependention channel regulation.Plant J, 2008, 56: 984-996. |
[70] | Sánchez-Rodríguez C, Estévez J M, Llorente F, et al.The ERECTA receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana.Mole Plant-microbe Interac, 2009, 22: 953-963. |
[71] | Gookin T E, Kim J, Assmann S M.Whole proteome identification of plant candidate G-protein coupled receptors in Arabidopsis, rice, and poplar: Computational prediction and in-vivo protein coupling.Genome Biol, 2008, 9: R120. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | HU Li, YANG Fanmin, CHEN Weilan, YUAN Hua. Research Progress in Biological Functions of SPL Family Transcription Factors in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 223-232. |
[12] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[13] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[14] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[15] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||