Chinese Journal of Rice Science ›› 2014, Vol. 28 ›› Issue (1): 103-110.DOI: 10.3969/j.issn.1001-7216.2014.01.015
• Reviews and Special Topics • Previous Articles
CHEN Tingting, YANG Jianchang*
Received:
2013-04-09
Revised:
2013-05-27
Online:
2014-01-10
Published:
2014-01-10
Contact:
YANG Jianchang*
陈婷婷,杨建昌*
通讯作者:
杨建昌*
基金资助:
国家自然科学基金国际重大合作项目(31061140457);国家自然科学基金资助项目(31271641, 31071360)。
CLC Number:
CHEN Tingting, YANG Jianchang*. Research Advances in the Physiological and Biochemical Mechanism in Watersaving Irrigation Techniques for High Yield and High Efficiency of Transplanted Rice[J]. Chinese Journal of Rice Science, 2014, 28(1): 103-110.
陈婷婷,杨建昌*. 移栽水稻高产高效节水灌溉技术的生理生化机理研究进展[J]. 中国水稻科学, 2014, 28(1): 103-110.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2014.01.015
\[1\]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice. Commun Soil Sci Plan, 2003, 34: 259270.\[2\]Bouman B A M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric Syst, 2007, 93: 4360.\[3\]Bouman B A M, Tuong T P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag, 2001, 49: 1130.\[4\]Belder P, Spiertz J H J, Bouman B A M, et al. Nitrogen economy and water productivity of lowland rice under watersaving irrigation. Field Crops Res, 2005, 93: 169185.\[5\]Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semiarid tropical environment. Field Crops Res, 1997, 52: 231248\[6\]Singandhupe R B, Rajput R K. Response of rice to irrigationschedule and nitrogen in sodic soil. Indian J Agron, 1987, 32: 130133.\[7\]Ramasamy S, Berge H F M T, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application.Field Crops Res, 1997, 51: 6582.\[8\]Ockerby S E, Fuka S. The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Res, 2001, 69: 215226.\[9\]Bouman B A M, Peng S, Castaňeda A R, et al. Yield and water use of irrigated tropical aerobic rice systems. Agric Water Manag, 2005, 74: 87105.\[10\]Liu X J, Wang J C, Lu S H, et al. Effects of nonflooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in ricewheat cropping systems. Field Crops Res, 2003, 83: 297311.\[11\]Tao H, Brueck H, Dittert K, et al. Growth and yield formation for rice (Oryza sativa L.) in the watersaving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 112.\[12\]Zhang J, Sui X, Li B, et al. An improved wateruse efficiency for winter wheat grown under reduced irrigation. Field Crops Res, 1998, 59: 9198.\[13\]Kang S, Shi W, Zhang J. An improved wateruse efficiency for maize grown under regulated deficit irrigation. Field Crops Res, 2000, 67: 207214.\[14\]Li F S, Yu J M, Nong M L, et al. Partial rootzone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agric Water Manag, 2010, 97: 231239.\[15\]Graterol Y E, Eisenhauer D E, Elmore R W. Alternatefurrow irrigation for soybean production. Agric Water Manag, 1993, 24: 133145.\[16\]Zhang J, Yang J. Crop yield and water use efficiency// Bacon M A. Water Use Efficiency in Plant Biology. Oxford, UK: Blackwell Publishing, 2004: 189218.\[17\]程建平. 水稻节水栽培生理生态基础及节水灌溉技术研究. 武汉: 华中农业大学, 2007: 1418.\[18\]程大旺. 水稻节水高效栽培的生理生态效应及对产量和品质的影响. 杭州: 浙江大学, 2001: 1013.\[19\]Li Y H,Barker R. Increasing water productivity for paddy irrigation in China. Paddy Water Environ, 2004, 2: 187193.\[20\]Talpur M A, Ji C Y, Junejo S A, et al. A review on the enhancement of rice production in paddy field with minimum input of water. Afr J Agric Res, 2011, 6 (33): 67766779. \[21\]茆智. 水稻节水灌溉及其对环境的影响. 中国工程科学, 2002, 7: 816.\[22\]Singh S, Ladha J K, Gupta R K, et al. Weed management in aerobic rice systems under varying establishment methods. Crop Prot, 2008, 27: 660671.\[23\]Lampayan R M, Bouman B A M, de Dios J L, et al. Yield of aerobic rice in rainfed lowlands of the Philippines as affected by nitrogen management and row spacing. Field Crops Res, 2010, 116: 165174.\[24\]Lafitte R H, Courtois B, Arraudeau M. Genetic improvement of rice in aerobic systems: Progress from yield to genes. Field Crops Res, 2002, 75: 171190.\[25\]Pinheiro B D S, Castro E D M D, Guimares C M. Sustainability and profitability of aerobic rice production in Brazil. Field Crops Res, 2006, 97: 3442. \[26\]Saito K, Linquist B, Atlin G N. Response of traditional and improved rice cultivars to N and P fertilizer in northern Laos. Field Crops Res, 2006, 96: 216223.\[27\]Atlin G N, Lafitte H R, Tao D, et al. Developing rice cultivars for highfertility upland systems in the Asian tropics. Field Crops Res, 2006, 97: 4352.\[28\]Nie L X, Peng S B, Chen M X, et al. Aerobic rice for watersaving agriculture. Agron Sustain Dev, 2012, 32: 411418.\[29\]Surridge C. The rice squad. Nature, 2002, 416: 576578.\[30\]Uphoff N, Kassam A. A critical assessment of a desk study comparing crop production systems: The example of the ‘system of rice intensification’ versus ‘best management practice’. Field Crops Res, 2008, 108: 109114.\[31\]Uphoff N, Kassam A. Case Study: System of rice intensification, final report agricultural technologies for developing countries STOA project ‘Agricultural technologies for developing countries’. Rome: FAO, 2009: 165. \[32\]Stoop W A, Uphoff N, Kassam A. A review of agricultural research raised by the system of rice intensification (SRI) from Madagascar: Opportunities for improving farming systems for resourcepoor farmers. Agric Syst, 2002, 71: 249274.\[33\]Uphoff N, Randriamiharisoa. Reducing water use in irrigated rice production with the Madagascar system of rice intensification (SRI)// Bouman B A M. Waterwise Rice Production. Los Banos, Philippines: International Rice Research Institute, 2002: 151166.\[34\]Rafaralahy S. An NGO perspective on SRI and its origins in Madagascar//Uphoff N. Assessment of the System for Rice Intensification (SRI). New York: Cornell International Institute of Food Agriculture and Development, 2002: 1722. \[35\]Sheehy J E, Peng S, Dobermann A, et al. Fantastic yields in the systems of rice intensification: Fact or fallacy? Field Crops Res, 2004, 88: 18. \[36\]Sinclair T R, Cassman K G. Agronomic UFOs. Field Crops Res, 2004, 88: 910.\[37\]Dobermann A. A critical assessment of the system of rice intensification (SRI). Agric Syst, 2004, 79: 261281.\[38\]Barrett C B , Moser C M, McHugh O V, et al. Better technology, better plots, or better farmers? Identifying changes in productivity and risk among Malagasy rice farmers. Am J Agric Econ, 2004, 86: 869888.\[39\]Latif M A, Islam M R, Ali M Y, et al. Validation of the system of rice intensification (SRI) in Bangladesh. Field Crops Res, 2005, 93: 281292.\[40\]Tsujimoto Y, Horie T, Randriamihary H, et al. Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agric Syst, 2009, 100: 6171.\[41\]Horie T, Shiraiwa T, Homma K, et al. Can yields of lowland rice resume the increases that showed in the 1980s? Plant Prod Sci, 2005, 8: 259274.\[42\]Belder P, Spiertz J H J, Bouman B A M, et al. Nitrogen economy and water productivity of lowland rice under watersaving irrigation. Field Crops Res, 2005, 93: 169185.\[43\]梁永超, 胡锋, 杨茂成, 等. 水稻覆膜旱作高产节水机理研究. 中国农业科学, 1999, 32(1): 2632.\[44\]Fan M S, Liu X J, Jiang R F, et al. Crop yields, internal nutrient efficiency, and changes in soil properties in ricewheat rotations under nonflooded mulching cultivation. Plant Soil, 2005, 277: 265276.\[45\]Lu X, Wu L, Pang L, et al. Effects of plastic film mulching cultivation under nonflooded condition on rice quality. J Sci Food Agric, 2007, 87: 334339.\[46\]黄义德, 张自立, 魏凤珍, 等. 水稻覆膜旱作的生态生理效应. 应用生态学报, 1999, 10(3): 305308.\[47\]刘天学, 纪秀娥. 焚烧秸秆对土壤有机质和微生物的影响研究. 土壤, 2003, 35(4): 347348.\[48\]Miura Y, Kanna T. Emissions of trace gases (CO2, CO, CH4, and N2O) resulting from rice straw burning. Soil Sci Plant Nutr, 1997, 43: 849854.\[49\]Fan M S, Lu S H, Jiang R F, et al. Longterm nonflooded mulching cultivation influences rice productivity and soil organic carbon. Soil Use Manag, 2012, 28(4): 544550.\[50\]Liu X J, Ai Y W, Zhang F S, et al. Crop production, nitrogen recovery and water use efficiency in ricewheat rotations as affected by nonflooded mulching cultivation (NFMC). Nutr Cycl Agroecosys, 2005, 71: 289299.\[51\]Tao H, Brueck H, Dittert K, et al. Growth and yield formation for rice (Oryza sativa L.) in the watersaving ground cover rice production system (GCRPS). Field Crops Res, 2006, 95: 112.\[52\]Xu G W, Zhang Z C, Zhang J H, et al. Much improved water use efficiency of rice under nonflooded mulching cultivation. J Integ Plant Biol, 2007, 49: 15271534.\[53\]Zhang Z, Xue Y, Wang Z, et al. The relationship of grain filling with abscisic acid and ethylene under nonflooded mulching cultivation. J Agric Sci, 2009, 147: 423436.\[54\]Zhang Z C, Zhang S F, Yang J C, et al. Yield, grain quality and water use efficiency of rice under nonflooded mulching cultivation. Field Crops Res, 2008, 108: 7181.\[55\]Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. J Exp Bot, 2010, 61(12): 31773189.\[56\]Hunter M N, Jabrun P L M, Byth D E. Response of nine soybean line to soil moisture conditions close to saturation. Aust J Exp Agric Anim Husb, 1980, 20: 339345.\[57\]Troedson R J, Lawn R J, Byth D E, et al. Saturated soil culture in innovated water management option for soybean in the tropics and subtropics//Shanmugasundaran S. Soybean in Tropical and Subtropical System. Taiwan, Shanhua: AVRDC, 1985: 171180.\[58\]Weligamage P, Godaliyadda G G A, Jinapala K, et al. Proceedings of the national conference on water, food security and climate change in Sri Lanka, BMICH: Ⅰ. Irrigation for food securiy. Colombo, Sri Lanka: International Water Management Institute, 2009: 172182.\[59\]Ghulamahdi M, Melati M, Sagala D. Production of soybean varieties under saturated soil culture on tidal swamps. J Agron Indon, 2009, 37(3): 226232.\[60\]Tuong T P, Bouman B A M, Mortimer M. More rice, less waterintegrated approaches for increasing water productivity in irrigated ricebased systems in Asia. Plant Prod Sci, 2005, 8: 231241.\[61\]Yang J, Liu K, Wang Z, et al. Watersaving and highyielding irrigation for lowland rice by controlling limiting values of soil water potential. J Integ Plant Biol, 2007, 49: 14451454.\[62\]Zhang H, Zhang S, Zhang J, et al. Postanthesis moderate wetting drying improves both quality and quantity of rice yield. Agron J, 2008, 100: 726734.\[63\]Bouman B, Humphreys E, Tuong T, et al. Rice and water. Adv Agron, 2007, 92: 187237.\[64\]Tan X Z, Shao D G, Liu H H, et al. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ, 2013, 11: 381395.\[65\]Garg K K, Das B S, Safeeq M, et al. Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport. Agric Water Manag, 2009, 96(12): 17051714.\[66\]Gun Won J, Soo Choi J, Phil Lee S, et al. Water saving by shallow intermittent irrigation and growth of rice. Plant Prod Sci, 2005, 8(4): 487492.\[67\]Cabangon R J, Castillo E G, Lu G, et al. Impact of alternate wetting and drying irrigation on rice growth and resourceuse efficiency// Barker R, Loeve R, Li Y H. Watersaving Irrigation for Rice: Proceedings of an International Workshop on Water Saving Irrigation in Paddy RiceHeld in Colombo Sri Lanka: International water management institute, 2001: 5579. \[68\]张明炷, 李远华, 崔远来, 等. 非充分灌溉条件下水稻生长发育及生理机制研究. 灌溉排水, 1994, 13(4): 610.\[69\]贾宏伟, 王晓红, 陈来华. 水稻节水灌溉研究综述. 浙江水利科技, 2007, 151(3): 1925.\[70\]张荣萍, 马均, 王贺正, 等. 不同灌水方式对水稻生育特征及水分利用率的影响. 中国农学通报, 2005, 21(9): 144150.\[71\]王霞, 侯平, 尹林克. 植物对干旱胁迫的适应机理. 干旱区研究, 2001, 18(2): 4246.\[72\]陈晓远, 凌木生, 高志红. 水分胁迫对水稻叶片可溶性糖和游离脯氨酸含量的影响. 河南农业科学, 2006(12): 2630.\[73\]张自常, 李鸿伟, 陈婷婷, 等. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响. 杂交水稻, 2009, 24(3): 49884998.\[74\]徐芬芬, 曾晓春, 石庆华. 干湿交替灌溉方式下水稻节水增产机理研究. 中国农学通报, 2009, 24(3): 7275.\[75\]Argueso C T, Ferreira F J, Kieber J J. Enviromental perception avenues: The interaction of cytokinin and environmental response pathways. Plant Cell Environ, 2009, 32: 11471160.\[76\]Zhang H, Tan G, Yang L, et al. Hormones in the grains and roots in relation to postanthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol Biochem, 2009, 47: 195204.\[77\]Yang J, Zhang J, Huang Z,et al. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann BotLondon, 2002, 90: 369377.\[78\]Yang J, Zhang J, Wang Z, et al. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol, 2001, 127: 315323.\[79\]Yang J, Zhang J, Wang Z, et al. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ, 2003, 26: 16211631.\[80\]Yoshida S. Physiological aspects of grain yield. Ann Rev Plant Physiol, 1972, 23: 437464.\[81\]Murata Y, Matsushima S. Rice// Evans L T. Crop Physiology. Cambridge: Cambridge University Press, 1975: 7599.\[82\]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Sci, 1992, 82: 1520.\[83\]Yang J C, Zhang J H, Wang Z,et al. Activities of enzymes involved in sourcetostarch metabolism in rice grains subjected to water stress during filling. Field Crops Res,2003, 81: 6981.\[84\]Jiang D, Cao W X, Dai T B, et al. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike. Plant Growth Regul, 2003, 41: 247257.\[85\]Kato T, Shinmura D, Taniguchi A. Activities of enzymes for sucrosestarch conversion in developing endosperm of rice and their association with grain filling in extraheavy panicle types. Plant Prod Sci, 2007, 10: 442450.\[86\]杨建昌, 袁莉民, 唐成, 等. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响. 作物学报, 2005, 31(8): 10521057.\[87\]Zhang H, Li H W, Yuan L M, et al. Postanthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrosetostarch conversion in inferior spikelets of rice. J Exp Bot, 2012, 63(1): 215227.\[88\]喻娟娟, 戴绍军. 植物蛋白质组学研究若干重要进展. 植物学报, 2009, 44(4): 410425.\[89\]Raharjo T J, Widjaja I, Roytrakul S, et al. Comparative proteomics of Cannabis sativa plant tissues. J Biol Technol, 2004, 15(2): 97106.\[90\]Agrawal G K, Hajduch M, Graham K, et al. Indepth investigation of the soybean seedfilling proteome and comparison with a parallel study of rapeseed. Plant Physiol, 2008, 148: 504518.\[91\]Lee D G, Ahsan N, Lee S H, et al. An approach to identify coldinduced lowabundant proteins in rice leaf. C R Biol, 2007, 330(3): 215225.\[92\]Liu S W, Zhang L, Jiang J Y, et al. Methane and nitrous oxide emissions from rice seedling nurseries under flooding and moist irrigation regimes in Southeast China. Sci Total Environ, 2012, 426: 166171.\[93\]Yang S H, Peng S Z, Xu J Z, et al. Methane and nitrous oxide emissions from paddy field as affected by watersaving irrigation. Physics Chem Earth, 2012,(53/54): 3037.\[94\]Katayanagi N, Furukawa Y, Fumoto T, et al. Validation of the DNDCRice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management. Soil Sci Plant Nutr, 2012, 58: 360372. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||