Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (4): 337-346.DOI: 10.16819/j.1001-7216.2023.221004
• Research Papers • Next Articles
REN Zhiqi1,2, XUE Kexin2,3, DONG Zheng2,3, LI Xiaoxiang2,3, LI Yongzhao2,3, GUO Yujing1,2, LIU Wenqiang2,3, GUO Liang2,3, SHENG Xinnian2,3, LIU Zhixi2,3, PAN Xiaowu1,2,3()
Received:
2022-10-20
Revised:
2022-11-22
Online:
2023-07-10
Published:
2023-07-17
Contact:
*email: pxw137@163.com
任志奇1,2, 薛可欣2,3, 董铮2,3, 李小湘2,3, 黎用朝2,3, 郭玉静1,2, 刘文强2,3, 郭梁2,3, 盛新年2,3, 刘之熙2,3, 潘孝武1,2,3()
通讯作者:
*email: pxw137@163.com
基金资助:
REN Zhiqi, XUE Kexin, DONG Zheng, LI Xiaoxiang, LI Yongzhao, GUO Yujing, LIU Wenqiang, GUO Liang, SHENG Xinnian, LIU Zhixi, PAN Xiaowu. Identification and Gene Mapping of Outcurved Leaf Mutant ocl1 in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(4): 337-346.
任志奇, 薛可欣, 董铮, 李小湘, 黎用朝, 郭玉静, 刘文强, 郭梁, 盛新年, 刘之熙, 潘孝武. 水稻外卷叶突变体ocl1的鉴定及基因定位[J]. 中国水稻科学, 2023, 37(4): 337-346.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.221004
引物名称 Primer | 用途 Usage | 正向引物(5'→3') Forward primer (5'→3') | 反向引物(5'→3') Reverse primer (5'→3') |
---|---|---|---|
RM217 | 基因定位Gene mapping | ATCGCAGCAATGCCTCGT | GGGTGTGAACAAAGACAC |
ID02356 | 基因定位Gene mapping | CTCACGTAGGTCTTGAGGAG | AGAAGAGGGCAGGAGGAG |
RM19570 | 基因定位Gene mapping | CCCAGATATTCTGTGTGATCATGAGG | GAGTGAATGTGAGCCGTCTATTGG |
RM19575 | 基因定位Gene mapping | TCATCACAAGCTCGTAATCAGG | CCAGAGAATAAGAGGACATGACG |
ID02612 | 基因定位Gene mapping | GCAGTTAATTATTCCATGCG | TTTGAACTCTCCCATATTCG |
ID03100 | 基因定位Gene mapping | CCATGGATGACTCTCTCTCT | ACACCTCCACTCCTCCAT |
RM276 | 基因定位Gene mapping | CTCAACGTTGACACCTCGTG | TCCTCCATCGAGCAGTATCA |
cDNA-S | 测序Sequencing | AGAGAGGAAGAGGCAGAGGTAG | AGAAGATGCTGTCGTAGGTGTC |
OsActin | 内参Reference gene | CATTGGTGCTGAGCGTTTCC | AGAAACAAGCAGGAGGACGG |
RL14 | qRT-PCR | CTCTTTCAGGCATTCCATTGATG | CAACACCTTGTCAGCTTTCAAGC |
ZHD1 | qRT-PCR | CGAGAACGAATGCTCTCTCAG | CGGACCCCGGTATGGTAG |
SLL1 | qRT-PCR | GCCTCTGTGATTGCCATCTAAT | CAGGTGTCCAACCATGAGC |
ROC5 | qRT-PCR | CGCAAGAGGAAGAAGCGATAC | GCTCCAGTTGCGTCTTCATC |
SRL1 | qRT-PCR | TCTCCTGCCTCCTCTGTGTG | TAGGAGGGGTGGTGTTGAAG |
NRL1 | qRT-PCR | TCAGTAGTGTAGTGGTGTCGAGTTCA | GCACTCCTTCATGTGAGCTTCA |
LAC17 | qRT-PCR | CTGCAGATTTGGCACTCGAGAACGTC | CATGCTCTTGGTGTTGCACAG |
EXPA2 | qRT-PCR | GGGCACTCCTACTTCAACCT | TAGGAGTTGCTCTGCCAGTT |
EXPA4 | qRT-PCR | GGGCACTCCTACTTCAACCT | CTGGAAGGAGAGGCTCTGG |
XTH11 | qRT-PCR | ACCTTCTACTTGTCGTCGCA | TGCTGTGGGTTCCAGATGAT |
CESA2 | qRT-PCR | GGTATCCTTGAGATGAGGTGG | GCCTTTGAGGTGACAGTGAA |
CESA3 | qRT-PCR | AAGTTCTTCGGTGGGCTCT | TTTCCAGGATGCCAGTAGC |
Table 1. Primers for gene mapping, sequencing and expression analysis.
引物名称 Primer | 用途 Usage | 正向引物(5'→3') Forward primer (5'→3') | 反向引物(5'→3') Reverse primer (5'→3') |
---|---|---|---|
RM217 | 基因定位Gene mapping | ATCGCAGCAATGCCTCGT | GGGTGTGAACAAAGACAC |
ID02356 | 基因定位Gene mapping | CTCACGTAGGTCTTGAGGAG | AGAAGAGGGCAGGAGGAG |
RM19570 | 基因定位Gene mapping | CCCAGATATTCTGTGTGATCATGAGG | GAGTGAATGTGAGCCGTCTATTGG |
RM19575 | 基因定位Gene mapping | TCATCACAAGCTCGTAATCAGG | CCAGAGAATAAGAGGACATGACG |
ID02612 | 基因定位Gene mapping | GCAGTTAATTATTCCATGCG | TTTGAACTCTCCCATATTCG |
ID03100 | 基因定位Gene mapping | CCATGGATGACTCTCTCTCT | ACACCTCCACTCCTCCAT |
RM276 | 基因定位Gene mapping | CTCAACGTTGACACCTCGTG | TCCTCCATCGAGCAGTATCA |
cDNA-S | 测序Sequencing | AGAGAGGAAGAGGCAGAGGTAG | AGAAGATGCTGTCGTAGGTGTC |
OsActin | 内参Reference gene | CATTGGTGCTGAGCGTTTCC | AGAAACAAGCAGGAGGACGG |
RL14 | qRT-PCR | CTCTTTCAGGCATTCCATTGATG | CAACACCTTGTCAGCTTTCAAGC |
ZHD1 | qRT-PCR | CGAGAACGAATGCTCTCTCAG | CGGACCCCGGTATGGTAG |
SLL1 | qRT-PCR | GCCTCTGTGATTGCCATCTAAT | CAGGTGTCCAACCATGAGC |
ROC5 | qRT-PCR | CGCAAGAGGAAGAAGCGATAC | GCTCCAGTTGCGTCTTCATC |
SRL1 | qRT-PCR | TCTCCTGCCTCCTCTGTGTG | TAGGAGGGGTGGTGTTGAAG |
NRL1 | qRT-PCR | TCAGTAGTGTAGTGGTGTCGAGTTCA | GCACTCCTTCATGTGAGCTTCA |
LAC17 | qRT-PCR | CTGCAGATTTGGCACTCGAGAACGTC | CATGCTCTTGGTGTTGCACAG |
EXPA2 | qRT-PCR | GGGCACTCCTACTTCAACCT | TAGGAGTTGCTCTGCCAGTT |
EXPA4 | qRT-PCR | GGGCACTCCTACTTCAACCT | CTGGAAGGAGAGGCTCTGG |
XTH11 | qRT-PCR | ACCTTCTACTTGTCGTCGCA | TGCTGTGGGTTCCAGATGAT |
CESA2 | qRT-PCR | GGTATCCTTGAGATGAGGTGG | GCCTTTGAGGTGACAGTGAA |
CESA3 | qRT-PCR | AAGTTCTTCGGTGGGCTCT | TTTCCAGGATGCCAGTAGC |
Fig. 1. Plant architecture of the wild type and ocl1. A, Plant architecture of WT and ocl1 at the seedling stage, bar=5 cm; B, Plant architecture of WT and ocl1 at the tillering stage, bar=15 cm; C, Leaf morphology of WT and ocl1 at the tillering stage, bar=1 cm; D, Leaf rolling index of WT and ocl1 at the tillering stage; E, Plant architecture of WT and ocl1 at the heading stage, bar=10 cm; F, Seed setting of WT and ocl1, bar=2 cm.
Fig. 2. Cross-sectional and leaf slice observation of WT and ocl1. A, Cross-sectional observation of WT and ocl1, bar=1 mm; B, Leaf slice observation of WT and ocl1, black lines point to bulliform cells of WT and ocl1, bar=100 μm; C, Number of bulliform cells of WT and ocl1; D, Area of bulliform cells of WT and ocl1; NS means there is no significant difference between the mutant and WT; ** Significant difference between the mutant and WT at 0.01 level. ad, Adaxial side; ab, Abaxial side.
材料 Material | 单株穗数 | 每穗总粒数 | 结实率 | 千粒重 | 单株产量 | |
---|---|---|---|---|---|---|
No. of panicles per plant | No. of spikelets per panicle | Seed-setting rate / % | 1000-grain weight / g | Yield per plant / g | ||
WT | 11.9±0.4 | 94.2±1.3 | 74.4±0.8 | 29.6±0.1 | 24.7±1.1 | |
ocl1 | 11.3±0.1 | 92.4±4.0 | 45.7±2.0** | 24.8±0.1** | 11.8±0.7** |
Table 2. Agronomic traits of the WT and ocl1.
材料 Material | 单株穗数 | 每穗总粒数 | 结实率 | 千粒重 | 单株产量 | |
---|---|---|---|---|---|---|
No. of panicles per plant | No. of spikelets per panicle | Seed-setting rate / % | 1000-grain weight / g | Yield per plant / g | ||
WT | 11.9±0.4 | 94.2±1.3 | 74.4±0.8 | 29.6±0.1 | 24.7±1.1 | |
ocl1 | 11.3±0.1 | 92.4±4.0 | 45.7±2.0** | 24.8±0.1** | 11.8±0.7** |
Fig. 3. Analysis of grain morphology between WT and ocl1. A, Grain length of WT and ocl1, bar=1 cm; B, Grain width of WT and ocl1, bar=5 mm; C, Grain plumpness of WT and ocl1, bar=1 cm; D, Statistical analysis of grain length, grain width and grain thickness of WT and ocl1; **Significant difference between the mutant and WT at 0.01 level.
Fig. 4. Map-based cloning of OCL1. A, Mapping of OCL1 gene. Black boxes, white boxes and black lines represent exons, UTR and introns, respectively. Black arrow indicates the mutation site; B, Sequence comparison of WT and ocl1 at the mutation site; C, Electrophoresis detection of cDNA amplification products; D, cDNA sequence alignment of the OCL1 gene between WT and ocl1; E, Alignment of the amino acid sequence between WT and ocl1.
[1] | 刘永巍, 田红刚, 李春光, 孟昭河, 程芳艳, 孙翊轩, 刘忠良. 水稻超高产育种的研究[J]. 植物学研究, 2014, 3(4): 172-177. |
Liu Y W, Tian H G, Li C G, Meng Z H, Cheng F Y, Sun Y X, Liu Z L. The study on super high yield breeding of rice[J]. Botanical Research, 2014, 3(4): 172-177. (in Chinese with English abstract) | |
[2] | Xu Y, Ma K, Zhao Y, Wang X, Zhou K, Yu G, Li C, Li P, Yang Z, Xu C. Genomic selection: A breakthrough technology in rice breeding[J]. The Crop Journal, 2021, 9(3): 669-677. |
[3] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学: 生命科学, 2019, 49(10): 1185-1212. |
Guo T, Yu H, Qiu J, Li J X, Han B, Lin H X. Advances in rice genetics and breeding by molecular design in China[J]. Science China: Life Sciences, 2019, 49(10): 1185-1212. (in Chinese with English abstract) | |
[4] | 梁程, 向珣朝, 张欧玲, 游慧, 许亮, 陈永军. 两份新株型水稻品系的农艺性状与遗传特性分析[J]. 中国水稻科学, 2022, 36(2): 171-180. |
Liang C, Xiang X C, Zhang O L, You H, Xu L, Chen Y J. Analyses on agronomic traits and genetic characteristics of two new plant-architecture lines in rice[J]. Chinese Journal of Rice Science, 2022, 36(2): 171-180. (in Chinese with English abstract) | |
[5] | 刘坚, 陶红剑, 施思, 叶卫军, 钱前, 郭龙彪. 水稻穗型的遗传和育种改良[J]. 中国水稻科学, 2012, 26(2): 227-234. |
Liu J, Tao H J, Shi S, Ye W J, Qian Q, Guo L B. Genetics and breeding improvement for panicle type in rice[J]. Chinese Journal of Rice Science, 2012, 26(2): 227-234. (in Chinese with English abstract) | |
[6] | Luo Y, Zhao F, Sang X, Ling Y, Yang Z, He G. Genetic analysis and gene mapping of a novel rolled-leaf mutant rl12(t) in rice[J]. Acta Agronomica Sinica, 2009, 35(11): 1967-1972. |
[7] | Shi Z, Wang J, Wan X, Shen G, Wang X, Zhang J. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta, 2007, 226(1): 99-108. |
[8] | Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Marco W, Sekiguchi H. Narrow leaf7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics & Genomics, 2008, 279(5): 499-507. |
[9] | Zhang G, Xu Q, Zhu X, Qian Q, Xue H. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell, 2009, 21(3): 719-735. |
[10] | Fang L, Zhao F, Cong Y, Sang X, Du Q, Wang D, Li Y, Ling Y, Yang Z, He G. Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal, 2012, 10(5): 524-532. |
[11] | Itoh J I, Nonomura K I, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y. Rice plant development: from zygote to spikelet[J]. Plant Cell Physiology, 2005, 46(1): 23-47. |
[12] | Xiang J, Zhang G, Qian Q, Xue H. SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol- anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiology, 2012, 159(4): 1488-1500. |
[13] | Sun J, Cui X, Teng S, Kunnong Z, Wang Y, Chen Z, Sun X, Wu J, Ai P, Quick W P, Lu T, Zhang Z. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2559-2572. |
[14] | Zou L, Sun X, Zhang Z, Liu P, Wu J, Tian C, Qiu J, Lu T. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology, 2011, 156(3): 1589-1602. |
[15] | Li L, Shi Z, Li L, Shen G, Wang X, An L S, Zhang J. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice[J]. Molecular Plant, 2010, 3(5): 807-817. |
[16] | Xu Y, Kong W, Wang F, Wang J, Tao Y, Li W, Chen Z, Fan F, Jiang Y, Zhu Q, Yang J. Heterodimer formed by ROC8 and ROC5 modulates leaf rolling in rice[J]. Plant Physiology, 2021, 19(12): 2662-2672. |
[17] | Fang J, Guo T, Xie Z, Chun Y, Zhao J, Peng L, Zafar S A, Yuan S, Xiao L, Li X. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice[J]. Plant Physiology, 2021, 185(4): 1722-1744. |
[18] | Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice[J]. Developmental Biology, 2009, 334(2): 345-354. |
[19] | Chen Q, Xie Q, Gao J, Wang W Y, Sun B, Liu B, Zhu H, Peng H, Zhao H, Liu C, Wang J, Zhang J, Zhang G, Zhang Z. Characterization of rolled and erect leaf 1 in regulating leave morphology in rice[J]. Journal of Experimental Botany, 2015, 66(19): 6047-6058. |
[20] | Xu Y, Wang Y, Long Q, Huang J, Wang Y, Zhou K, Zheng M, Sun J, Chen S H, Jiang L, Wang C M, Wan J. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice[J]. Planta, 2014, 239(4): 803-816. |
[21] | 谢园华, 李凤菲, 马晓慧, 谭佳, 夏赛赛, 桑贤春, 杨正林, 凌英华. 水稻半外卷叶突变体sol1 的表型分析与基因定位[J]. 作物学报, 2020, 46(2): 204-213. |
Xie Y H, Li F F, Ma X H, Tan J, Xia S S, Sang X C, Yang Z L, Ling Y H. Phenotype characterization and gene mapping of the semi-outcurved leaf mutant sol1 in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2020, 46(2): 204-213. (in Chinese with English abstract) | |
[22] | 刘强, 张贵友, 陈受宜. 植物转录因子的结构与调控作用[J]. 科学通报, 2000, 45(14): 1465-1474. |
Liu Q, Zhang G Y, Chen S Y. Structure and regulation of plant transcription factors[J]. Chinese Science Bulletin, 2000, 45(14): 1465-1474. (in Chinese with English abstract) | |
[23] | 吴方喜, 罗曦, 蒋家焕, 连玲, 魏毅东, 何炜, 陈丽萍, 蔡秋华, 谢华安, 张建福. 水稻卷叶突变体基因 shallot like1-Fuhui673 鉴定, 克隆与序列分析[J]. 科学通报, 2018, 63(23): 2369-2377. |
Wu F X, Luo X, Jiang J H, Lian L, Wei Y D, He W, Chen L P, Cai Q H, Xie H A, Zhang J F. Identification, cloning and sequence analysis shallot like1-Fuhui673 a rolled leaf mutant in rice[J]. Chinese Science Bulletin, 2018, 63(23): 2369-2377. (in Chinese with English abstract) | |
[24] | Eshed Y, Izhaki A, Baum S F, Floyd S K, Bowman J L. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities[J]. Development, 2004, 131(12): 2997-3006. |
[25] | Wang B, Smith S M, Li J. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. |
[26] | 邓秋雨, 肖应辉. 水稻卷叶类型及调控机制研究进展[J]. 作物研究, 2021, 35(4): 376-384. |
Deng Q Y, Xiao Y H. Research progress on types and regulation mechanism of rice rolled leaf[J]. Crop Research, 2021, 35(4): 376-384. (in Chinese with English abstract) | |
[27] | 张小惠, 秦亚芝, 张迎信, 占小登, 张振华, 沈希宏, 程式华, 曹立勇, 吴先军. 水稻窄卷叶突变体Nrl3(t)的基因定位[J]. 中国水稻科学, 2015, 29(6): 595-600. |
Zhang X H, Qin Y Z, Zhang Y X, Zhan X D, Zhang Z H, Shen X H, Cheng S H, Cao L Y, Wu X J. Gene mapping of a narrow and rolled leaf mutant Nrl3(t) in rice[J]. Chinese Journal of Rice Science, 2015, 29(6): 595-600. (in Chinese with English abstract) | |
[28] | Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z. OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth[J]. Plant Biotechnology Journal, 2010, 9(4): 513-524. |
[29] | 赵芳明, 魏霞, 马玲, 桑贤春, 王楠, 张长伟, 凌英华, 何光华. 水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测[J]. 科学通报, 2015, 60(32): 3133-3143. |
Zhao F M, Wei X, Ma L, Sang X C, Wang N, Zhang C W, Ling Y H, He G H. Identification, gene mapping and candidate gene prediction of a late-stage rolled leaf mutant lrl1 in rice (Oryza sativa L.)[J]. Chinese Science Bulletin, 2015, 60(32): 3133-3143. (in Chinese with English abstract) | |
[30] | 刘晨, 孔维一, 尤世民, 钟秀娟, 江玲, 赵志刚, 万建民. 一个水稻卷叶基因的遗传分析和精细定位[J]. 中国农业科学, 2015, 48(13): 2487-2496. |
Liu C, Kong W Y, You L M, Zhong X J, Jiang L, Zhao Z G, Wan J M. Genetic analysis and fine mapping of a novel rolled leaf gene in rice[J]. Scientia Agricultura Sinica, 2015, 48(13): 2487-2496. (in Chinese with English abstract) | |
[31] | Wang D, Liu H, Li K, Li S, Tao Y. Genetic analysis and gene mapping of a narrow leaf mutant in rice (Oryza sativa L)[J]. Chinese Science Bulletin, 2009, 54: 752-758. |
[32] | Li C, Zou X, Zhang C, Shao Q, Liu J, Liu B, Li H, Zhao T. OsLBD3-7 overexpression induced adaxially rolled leaves in rice[J]. PLoS One, 2016, 11(6): e0156413. |
[33] | Li W, Zhang M, Gan P, Qian L, Yang S, Miao, Wang G, Zhang M, Liu W, Li H, Shi C, Chen K. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice[J]. The Plant Journal, 2017, 92(5): 904-923. |
[34] | Jan A, Yang G, Nakamura H, Ichikawa H, Kitano H, Matsuoka M, Matsumoto H, Komatsu S. Characterization of a xyloglucan endotransglucosylase gene that is up-regulated by gibberellin in rice[J]. Plant Physiology, 2004, 136(3): 3670-3681. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||