Chinese Journal OF Rice Science ›› 2015, Vol. 29 ›› Issue (2): 208-214.DOI: 10.3969/j.issn.1001-7216.2015.02.013
• Orginal Article • Previous Articles Next Articles
Yang GAO1,2, Da-wei XUE2, Qian QIAN1, Zhen-yu GAO1,*()
Received:
2014-08-05
Revised:
2014-10-20
Online:
2015-03-10
Published:
2015-03-10
Contact:
Zhen-yu GAO
通讯作者:
高振宇
基金资助:
CLC Number:
Yang GAO, Da-wei XUE, Qian QIAN, Zhen-yu GAO. Application of the Second Generation Sequencing Technology in Rice Genomics and Transcriptomics[J]. Chinese Journal OF Rice Science, 2015, 29(2): 208-214.
高阳, 薛大伟, 钱前, 高振宇. 二代测序技术在水稻基因组学和转录组学研究中的应用[J]. 中国水稻科学, 2015, 29(2): 208-214.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2015.02.013
测序对象 Sequencing objects | 测序仪器 Sequencing machines | 测序深度 Sequencing depth | 目的 Purpose | 文献 |
---|---|---|---|---|
敏感型IR64 耐旱型Nagina22 耐盐碱型Pokkali | Illumina Hiseq2000 | ≈10× | 挖掘对干旱和盐胁迫有差异反应的水稻 品种的遗传变异及其与功能的关系 | [21] |
水稻限制酶切片段 | Illumina GAⅡX | ≈19× | 证明简化基因组测序的可靠性和准确性 | [24] |
两优培九重组自交系 亲本93-11 亲本培矮64S | Illumina Hiseq2000 | ≈4× ≈36× ≈48× | 更新亲本基因组序列、QTL精细定位农艺 性状基因 | [25] |
40个栽培稻 10个野生稻 | Illumina GAⅡ | >15× | 鉴定重要农艺性状基因、揭示栽培稻驯化中的基因选择 | [27] |
3000份水稻品种 | Illumina Hiseq2000 | ≈14× | 构建水稻遗传数据库 | [28] |
1083个栽培稻 446个野生稻 | Illumina GAⅡX | ≈1× ≈2× | 水稻基因组多样性及栽培稻起源分析 | [32] |
澳洲普通野生稻 澳洲南方野生稻 | Illumina GAⅡX | 6.2× 4.9× | 研究水稻基因组的进化 | [33] |
淡绿叶突变体 | Illumina GAⅡX | ≤3× | 利用MutMap鉴定突变位点 | [38] |
517个地方品种 | Illumina GAⅡ | ≈1× | GWAS分析14个农艺性状位点 | [42] |
950个栽培品种 | Illumina GAⅡX | ≤1× | GWAS研究花期和粒重相关位点 | [43] |
日本晴生长7d的 苗和根 | Illumina GAⅡX | 定量水稻5号染色体着丝粒区域的 基因表达 | [46] | |
分蘖期和抽穗期的根 | Illumina Hiseq2000 | 研究杂种优势的分子机理 | [47,48] |
Table 1 The second generation sequencing application in rice research.
测序对象 Sequencing objects | 测序仪器 Sequencing machines | 测序深度 Sequencing depth | 目的 Purpose | 文献 |
---|---|---|---|---|
敏感型IR64 耐旱型Nagina22 耐盐碱型Pokkali | Illumina Hiseq2000 | ≈10× | 挖掘对干旱和盐胁迫有差异反应的水稻 品种的遗传变异及其与功能的关系 | [21] |
水稻限制酶切片段 | Illumina GAⅡX | ≈19× | 证明简化基因组测序的可靠性和准确性 | [24] |
两优培九重组自交系 亲本93-11 亲本培矮64S | Illumina Hiseq2000 | ≈4× ≈36× ≈48× | 更新亲本基因组序列、QTL精细定位农艺 性状基因 | [25] |
40个栽培稻 10个野生稻 | Illumina GAⅡ | >15× | 鉴定重要农艺性状基因、揭示栽培稻驯化中的基因选择 | [27] |
3000份水稻品种 | Illumina Hiseq2000 | ≈14× | 构建水稻遗传数据库 | [28] |
1083个栽培稻 446个野生稻 | Illumina GAⅡX | ≈1× ≈2× | 水稻基因组多样性及栽培稻起源分析 | [32] |
澳洲普通野生稻 澳洲南方野生稻 | Illumina GAⅡX | 6.2× 4.9× | 研究水稻基因组的进化 | [33] |
淡绿叶突变体 | Illumina GAⅡX | ≤3× | 利用MutMap鉴定突变位点 | [38] |
517个地方品种 | Illumina GAⅡ | ≈1× | GWAS分析14个农艺性状位点 | [42] |
950个栽培品种 | Illumina GAⅡX | ≤1× | GWAS研究花期和粒重相关位点 | [43] |
日本晴生长7d的 苗和根 | Illumina GAⅡX | 定量水稻5号染色体着丝粒区域的 基因表达 | [46] | |
分蘖期和抽穗期的根 | Illumina Hiseq2000 | 研究杂种优势的分子机理 | [47,48] |
[1] | Goff S A, Ricke D, Lan T H, et al.A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).Science, 2002, 296: 92-100. |
[2] | Yu J, Hu S N, Wang J, et al.A draft sequence of the rice genome(Oryza sativa L. ssp. indica).Science, 2002, 296: 79-92. |
[3] | Whitfeld P R.A method for the determination of nucleotide sequence in polyribonucleotides.Biochem J, 1954, 58: 390-396. |
[4] | Sanger F S, Nicklen, Coulson A R, et al. DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA, 1977, 74: 5463-5467. |
[5] | Glenn T C.Field guide to next-generation DNA sequencers.Mol Ecol Resour, 2011, 11: 759-769. |
[6] | Sanger F, Air G M, Barrell B G, et al.Nucleotide sequence of bacterioph age phiX174 DNA.Nature, 1977, 265: 687-695. |
[7] | Sultan M, Schulz M H, Richard H, et al.A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome.Science, 2008, 321: 956-960. |
[8] | Samarakoon U.High-throughput 454 resequencing for allele discovery and recombination mapping in Plasmodium falciparum.BMC Genom, 2011, 12: 116-129. |
[9] | Mick W.Illuminating the future of DNA sequencing.Genom Biol, 2014, 15: 108-123. |
[10] | Deschamps S V, Llaca G D, May G D.Genotyping-by-Sequencing in plants. Biology (Basel), 2012, 1: 460-483. |
[11] | Hillier L W, Marth G T, Quinlan A R, et al.Whole-genome sequencing and variant discovery inC. elegans. Nat Methods, 2008, 5: 183-188. |
[12] | Margulies M, Egholm M, Altman W E, et al.Genome Sequencing in microfabricated high-density picolitre reactors.Nature, 2005, 437: 376-380. |
[13] | Shaffer C.Next-generation sequencing outpaces expectations.Nat Biotechnol, 2007, 25: 149. |
[14] | Porreca G j, Zhang K, Li J B, et al. Multiplex amplification of large sets of human exons.Nat Methods, 2007, 4: 931-936. |
[15] | Shendure J, Ji H.Next-generation DNA sequencing.Nat Biotechnol, 2008, 26: 1135-1145. |
[16] | Schuster S C.Next-generation sequencing transforms today’s biology.Nat Methods, 2008, 5: 16-18. |
[17] | Goossens D.Simultaneous mutation and copy number variation (CNV) detection by multiplex PCR-based GS-FLX sequencing.Hum Mutat, 2009, 30: 472-476. |
[18] | Deng Y W, Lei Q N, Xiong Y X, et al.Denovo assembly, gene annotation, and simple sequence repeat marker development using Illumina paired-end transcriptome sequences in the pearl oyster Pinctada maxima. Biosci, Biotechnol,Biochem, 2014. 10: e936351. |
[19] | Mascher M.Application of genotyping-by-sequencing on semiconductor sequencing platforms: A comparison of genetic and reference-based marker ordering in barley.PLoS One, 2013, 8: e76925. |
[20] | Nicholas J L.Performance comparison of benchtop high-throughput sequencing platforms.Nat Biotechnol, 2012, 30: 434-439. |
[21] | Jain M, Moharana K C, Shankar R, et al.Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance.Plant Biotechnol J, 2013, 12: 253-264. |
[22] | van Tassell C P, Smith T P, Matukumalli L K, et al. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries.Nat Methods, 2008, 5: 247-252. |
[23] | Kerstens H H, Crooijmans R P, Veenendaal A, et al.Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: Applied to turkey.BMC Genom, 2009, 10: 479-487. |
[24] | Sun X W, Liu D Y, Zhang X F, et al.SLAF-seq: An Efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing.PLoS One, 2013. 8: e58700. |
[25] | Gao Z Y, Guo L B, Peng Y L, et al.Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences.Proc Natl Acad Sci USA, 2013, 110: 14492-14497. |
[26] | Takuji Sasaki, Benjamin Burr.International Rice Genome Sequencing Project: the effort to completely sequence the rice genome.Sci Dir, 2000, 2, 138-142. |
[27] | Xu X, Liu X, Ge S, et al.Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes.Nature Biotechnology, 2012, 30: 105-111. |
[28] | The 3,000 rice genomes project.Gigascience, 2014, 3: 7-13. |
[29] | Kovach M J, Sweeney M T, McCouch S R. New insights into the history of rice domestication.Trends Genet, 2007, 23: 578-587. |
[30] | Molina J, Sikora M, Garud N, et al.Molecular evidence for a single evolutionary origin of domesticated rice.Proc Natl Acad Sci USA, 2011, 108: 8351-8356. |
[31] | Fuller D Q, Qin L.Declining oaks, increasing artistry, and cultivating rice: The environmental and social context of the emergence of farming in the Lower Yangtze Region.Environ Archaeol, 2010, 15: 139-159. |
[32] | Huang X H, Kurata N, Wei X H, et al.A map of rice genome variation reveals the origin of cultivated rice.Nature, 2013, 490: 497-501. |
[33] | Krishnan S G, Waters D L, Henry R J.Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.PLoS One, 2014, 9: e98843. |
[34] | Fawcett J A, Kado T, Sasaki E, et al.QTL map meets population genomics: An application to rice.PLoS One, 2013, 8: e83720. |
[35] | Huang X H, Feng Q, Qian Q, et al. High-throughput genotyping by whole-genome resequencing. Genome Res, 2009, 19: 1068--1076. |
[36] | Fekih R, Takagi H, Tamiru M, et al.MutMap+: Genetic mapping and mutant identification without crossing in rice.PLoS One, 2013, 8: e68529. |
[37] | Takagi H, Uemura A, Yaegashi H, et al.MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii.New Phytol, 2013, 200: 276-283. |
[38] | Abe A, Kosugi S, Yoshida K, et al.Genome sequencing reveals agronomically important loci in rice using MutMap.Nat Biotechnol, 2012, 30: 174-178. |
[39] | The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature, 2007, 447: 661-678. |
[40] | Altshuler D, Daly M J, Lander E S.Genetic mapping in human disease.Science, 2008, 322, 881-888. |
[41] | Huang X H, Lu T T, Han B, et al.Resequencing rice genomes: An emerging new era of rice genomics.Trends Genet, 2013, 29: 225-230. |
[42] | Huang X H, Wei X H, Sang T, et al.Genome-wide association studies of 14 agronomic traits in rice landraces.Nat Genet, 2010, 42: 961-967. |
[43] | Huang X H, Zhao Y, Wei XH, et al.Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm.Nat Genet, 2012, 44: 32-41. |
[44] | Wang L, Xie W, Chen Y, et al.A dynamic gene expression atlas covering the entire life cycle of rice.Plant J, 2011, 61: 752-766. |
[45] | Sato Y, Antonio B A, Namiki N, et al.RiceXPro: A platform for monitoring gene expression in japonica rice grown under natural field conditions.Nucleic Acids Res, 2011, 39: 1141-1148. |
[46] | Mizuno H, Kawahwrw Y, Wu J Z, et al.Asymmetric distribution of gene expression in the centromeric region of rice chromosome 5.Front Plant Sci, 2011, 2: e00016. |
[47] | Zhai R R, Feng Y, Wang H M, et al.Transcriptome analysis of rice root heterosis by RNA-Seq.BMC Genom, 2013, 14: 1471-2164. |
[48] | Zhai R R, Feng Y, Zhan X D, et al.Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou 9308.PLoS One, 2013, 8: e60668. |
[49] | Wang C, Zhang D.A novel compression tool for efficient storage of genome resequencing data.Nucleic Acids Res, 2011, 39: e45. |
[50] | Hu W H, Wang T Z, Yue E K, et al.Flexible microRNA arm selection in rice.Biochem Biophys Res Commun, 2012, 447: 526-530. |
[51] | Chodavarapu R K, Feng S, Ding B, et al.Transcriptome and methylome interactions in rice hybrids.Proc Natl Acad Sci USA, 2012, 109: 12040-12045. |
[52] | Arenhart R A, Bai Y, Wang Z Y, et al.New insights into aluminum tolerance in rice: The ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes.Mol Plant, 2014, 7: 709-721. |
[53] | Eid J, Fehr A, Gray J, et al.Real-time DNA sequencing from single polymerase molecules.Science, 2009, 323: 133-138. |
[54] | Levene M J, Korlach J, Turner S W, et al.Zero-mode waveguides for single-molecule analysis at high concentrations.Science, 2003, 299: 682-686. |
[55] | Harris T D, Buzby P R, Babcock H, et al.Single-molecule DNA sequencing of a viral genome.Science, 2008, 320: 106-109. |
[56] | Tombacz D, Sharon D, Olah P, et al.Strain kaplan of pseudorabies virus genome sequenced by pacBio single-molecule real-time sequencing technology.Genome Announc, 2014, 2: e006028. |
[57] | Stoddart D, Heron A J, Mikhailova E, et al.Single-nueleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore.Proc Natl Acad Sci USA, 2009, 106: 7702-7707. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||