Chinese Journal of Rice Science ›› 2012, Vol. 26 ›› Issue (3): 373-382.DOI: 10.3969/j.issn.10017216.2012.03.018
• Reviews and Special Topics • Previous Articles
HU Shikai, SU Yan, YE Weijun, GUO Longbiao*
Received:
2011-09-13
Revised:
2011-09-25
Online:
2012-05-10
Published:
2012-05-10
Contact:
GUO Longbiao*
胡时开,苏岩,叶卫军,郭龙彪*
通讯作者:
郭龙彪*
基金资助:
国家973计划资助项目(2011CB100200); 国家自然科学基金资助项目(30921140408, 30900074)。
CLC Number:
HU Shikai, SU Yan, YE Weijun, GUO Longbiao*. Advances in Genetic Analysis and Molecular Regulation Mechanism of Heading Date in Rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2012, 26(3): 373-382.
胡时开,苏岩,叶卫军,郭龙彪*. 水稻抽穗期遗传与分子调控机理研究进展[J]. 中国水稻科学, 2012, 26(3): 373-382.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.10017216.2012.03.018
\[1\]崔读昌. 气候变暖对水稻生育期影响的情景分析. 应用气象学报, 1995(3): 361365.\[2\]陈恩谦. 不同类型水稻品种营养生长期的温光效应研究. 中国农学通报, 2005, 21(5): 242244.\[3\]陈恩谦. 温光生态因素对不同类型水稻幼穗分化期长短的影响. 中国农学通报, 2005(9): 203205.\[4\]陈恩谦. 对不同类型水稻品种营养生长期的温光效应研究. 种子, 2007, 26(5): 7274.\[5\]Li Z, Pinson S R M, Stansel J W, et al. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.) . Theor Appl Genet, 1995, 91(2): 374381.\[6\]Lu C, Shen L, Tan Z, et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theor Appl Genet, 1996, 93(8): 12111217.\[7\]谭震波, 沈利爽, 况浩池, 等. 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996(6): 439446.\[8\]林鸿宣, 钱惠荣, 熊振民, 等. 几个水稻品种抽穗期主效基因与微效基因的定位研究. 遗传学报, 1996(3): 205213.\[9\]郭龙彪, 罗利军, 邢永忠, 等. 汕优63重组自交系群体重要农艺性状遗传分析和利用. 作物学报, 2002, 28(5): 644649.\[10\]Li Z K, Yu S B, Lafitte H R, et al. QTL×environment interactions in rice:Ⅰ. Heading date and plant height. Theor Appl Genet, 2003, 108(1): 141153.\[11\]Mei H W, Luo L J, Ying C S, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107(1): 89101.\[12\]Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110(4): 649659.\[13\]Thomson M J, Tai T H, McClung A M, et al. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet, 2003, 107(3): 479493.\[14\]Thomson M J, Edwards J D, Septiningsih E M, et al. Substitution mapping of dth1.1, a floweringtime quantitative trait locus (QTL) associated with transgressive variation in rice, reveals multiple subQTL. Genetics, 2006, 172(4): 25012514.\[15\]Wang C M, Hideshi Y, Atsushi Y, et al. Identification of quantitative trait loci controlling F2 sterility and heading date in rice. Acta Genet Sin, 2002, 29(04): 339342.\[16\]Maheswaran M, Huang N, Sreerangasamy S R, et al. Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.) . Mol Breeding, 2000, 6(2): 145155.\[17\]Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a highdensity linkage map. Theor Appl Genet, 1997, 95: 1025 1032.\[18\]Yano M, Katayose Y, Ashikari M, et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12(12): 24732484.\[19\]Takahashi Y, Shomura A, Sasaki T, et al. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98(14): 79227927.\[20\]Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3a , a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under shortday conditions. Plant Cell Physiol, 2002, 43(10): 10961105.\[21\]Doi K, Izawa T, Fuse T, et al. Ehd1, a Btype response regulator in rice, confers shortday promotion of flowering and controls FTlike gene expression independently of Hd1. Genes & Dev, 2004, 18(8): 926936.\[22\]Saito H, Yuan Q, Okumoto Y, et al. Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theor Appl Genet, 2009, 119(2): 315323.\[23\]Matsubara K, Yamanouchi U, Wang Z X, et al. Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by upregulating Ehd1. Plant Physiol, 2008, 148(3): 14251435.\[24\]Izawa T, Oikawa T, Tokutomi S, et al. Phytochromes confer the photoperiodic control of flowering in rice. Plant J, 2000, 22(5): 391399.\[25\]Andrés F, Galbraith D W,Talón M,et al. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Plant Physiol, 2009, 151(2): 681690.\[26\]Saito H, Okumoto Y, Yoshitake Y, et al. Complete loss of photoperiodic response in the rice mutant line X61 is caused by deficiency of phytochrome chromophore biosynthesis gene. Theor Appl Genet, 2011, 122(1): 109118.\[27\]Xue W, Xing Y, Weng X, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40(6): 761767.\[28\]Wei X, Xu J, Guo H, et al. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol, 2010, 153(4): 17471758.\[29\]Yan W H, Wang P, Chen H X, et al. A major QTL, Ghd8 , plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice. Mol Plant, 2011, 4(2): 319330.\[30\]Dai C, Xue H W. Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J, 2010, 29(11): 19161927.\[31\]Hayama R, Yokoi S, Tamaki S, et al. Adaptation of photoperiodic control pathways produces shortday flowering in rice. Nature, 2003, 422(6933): 719722.\[32\]Kim S L, Lee S, Kim H J, et al. OsMADS51 is a shortday flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a. Plant Physiol, 2007, 145(4): 14841494.\[33\]Lee S, Kim J, Han J J, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUSLIKE 20 (SOC1/AGL20) ortholog in rice. Plant J, 2004, 38(5): 754764.\[34\]Colasanti J, Tremblay R, Wong A, et al. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genom, 2006, 7(1): 158.\[35\]Park S J, Kim S L, Lee S, et al. Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J, 2008, 56(6): 10181029.\[36\]Wu C, You C, Li C, et al. RID1, encoding a Cys2/His2type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA, 2008, 105(35): 1291512920.\[37\]McClung C R. Plant circadian rhythms. Plant Cell, 2006, 18(4): 792803.\[38\] Itoh H, Nonoue Y, Yano M, et al. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet, 2010, 42(7): 635638.\[39\]Komiya R, Ikegami A, Tamaki S, et al. Hd3aand RFT1 are essential for flowering in rice. Development, 2008, 135(4): 767774.\[40\]Tamaki S, Matsuo S, Wong H L, et al. Hd3a protein is a mobile flowering signal in rice. Science, 2007, 316(5827): 10331036.\[41\]Taoka K, Ohki I, Tsuji H, et al. 1433 proteins act as intracellular receptors for rice Hd3a florigen. Nature, 2011, 476(7360):332335.\[42\] Wuriyanghan H, Zhang B, Cao W H, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice. Plant Cell, 2009, 21:14731494.\[43\]Kobayashi Y, Weigel D. Move on up, it’s time for change—mobile signals controlling photoperioddependent flowering. Genes & Dev, 2007, 21(19): 23712384.\[44\]Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol, 2008, 59: 573594.\[45\]Kardailsky I, Shukla V K, Ahn J H, et al. Activation tagging of the floral inducer FT. Science, 1999, 286(5446): 19621965.\[46\]Samach A, Onouchi H, Gold S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000, 288(5471): 16131616.\[47\]SuarezLopez P, Wheatley K, Robson F, et al. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 2001, 410(6832): 11161120.\[48\]Yanovsky M J, Kay SA. Molecular basis of seasonal time measurement in Arabidopsis. Nature, 2002, 419(6904): 308312.\[49\]Valverde F, Mouradov A, Soppe W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science, 2004, 303(5660): 10031006.\[50\]Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science, 2005, 309(5737): 10521056.\[51\]Corbesier L, Vincent C, Jang S, et al. FT protein movement contributes to longdistance signaling in floral induction of Arabidopsis. Science, 2007, 316(5827): 10301033.\[52\]Giakountis A, Coupland G. Phloem transport of flowering signals. Curr Opin Plant Biol, 2008, 11(6): 687694.\[53\]Blázquez M A. Flower development pathways. J Cell Sci, 2000(113): 35473548.\[54\]EndoHigashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol, 2011, 52(6): 10831094. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | FU Rongtao, CHEN Cheng, WANG Jian, ZHAO Liyu, CHEN Xuejuan, LU Daihua. Combined Transcriptome and Metabolome Analyses Reveals the Pathogenic Factors of Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(4): 375-385. |
[5] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[6] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[7] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[8] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[9] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[10] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[11] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[12] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[13] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[14] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[15] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||