Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (6): 572-578.DOI: 10.16819/j.1001-7216.2022.211205
• Research Papers • Previous Articles Next Articles
ZHANG Yuanye1, YIN Liying1, LI Rongtian1,*(), HE Mingliang2, LIU Xinxin3, PAN Tingting4, TIAN Xiaojie2, BU Qingyun2, LI Xiufeng2,*(
)
Received:
2021-12-07
Revised:
2022-03-10
Online:
2022-11-10
Published:
2022-11-10
Contact:
LI Rongtian, LI Xiufeng
张元野1, 尹丽颖1, 李荣田1,*(), 何明良2, 刘欣欣3, 潘婷婷4, 田晓杰2, 卜庆云2, 李秀峰2,*(
)
通讯作者:
李荣田,李秀峰
基金资助:
ZHANG Yuanye, YIN Liying, LI Rongtian, HE Mingliang, LIU Xinxin, PAN Tingting, TIAN Xiaojie, BU Qingyun, LI Xiufeng. Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing[J]. Chinese Journal OF Rice Science, 2022, 36(6): 572-578.
张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.211205
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
Table 1. Primers used in this research.
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
Fig. 3. Phenotype and sequencing identification of T1 transgenic plants. A, Phenotype comparison of red rice and wild type(bar=1 cm); B, Sequence comparison between red rice and wild type; C, Comparison of amino acid sequences between red rice and wild type; D, Comparison of bHLH domains between red rice and wild type(the bHLH domain is in the red box).
Fig. 4. Identification of salt and alkali tolerance of T2 generation transgenic plants. A, Bud length in each group under different concentrations of salt treatment; E-F, Bud length in each group under different concentrations of alkali treatment; G, Growth of seedlings treated with 200 mmol/L NaCl (scale=2 cm); H, Growth of seedlings treated with 20 mmol/L Na2CO3 (scale =2 cm).
Fig. 5. Identification of saline-alkali tolerance related gene expression levels in T2 transgenic plants. A, Salt-tolerant gene expression level under 200 mmol/L NaCl treatment; D-F, Identification of alkali-tolerant gene expression level under 20 mmol/L Na2CO3 treatment; G-I, Rc expression level of 200 mmol/L NaCl, 20 mmol/L Na2CO3 and blank control. ns means no significant difference; **,*** and **** mean significant difference at 0.005, 0.001 and 0.0001 levels, respectively (t test). KY180, Kongyu 180;SY453, Shangyu 453;KY-1, Gene editing line of Kongyu 180; SY-1, Gene editing line of Shangyu 453.
[1] | 牛怡君. 基于大数据背景下健康管理的食品营养运用研究[J]. 现代食品, 2020(14): 129-131. |
Niu Y J. Research on the application of food nutrition in health management based on big data[J]. Modern Food, 2020(14): 129-131. (in Chinese) | |
[2] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
Hu S K, Hu P S. Research status and prospect of functional rice[J]. Chinese Journal of Rice Science, 2021, 35(4): 311-325. (in Chinese with English abstract) | |
[3] | 李玉纯, 毕宝山, 郑美花. 特种稻米及开发前景[J]. 吉林农业, 2001(10): 10-11. |
Li Y C, Bi B S, Zheng M H. Special rice and its development prospects[J]. Agriculture of Jilin, 2001(10): 10-11. (in Chinese) | |
[4] | 王子平. 中国红米资源的研究与利用进展[J]. 湖南农业科学, 2008, 36(4): 32-34. |
Wang Z P. Research and utilization of red rice resources in China[J]. Hunan Agricultural Sciences, 2008, 36(4): 32-34. (in Chinese) | |
[5] | Finocchiaro F, Ferrari B, Gianinetti A, Dall'Asta C, Pellegrini N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing[J]. Molecular Nutrition & Food Research, 2010, 51(8): 1006-1019. |
[6] | 吴建, 余显权. 水稻红米色素基因的初步定位[J]. 山地农业生物学报, 2017, 36(3): 75-77. |
Wu J, Yu X Q. Preliminary mapping of pigment genes in rice red rice[J]. Journal of Mountain Agriculture and Biology, 2017, 36(3): 75-77. (in Chinese with English abstract) | |
[7] | Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. The Plant Journal, 2007, 49(1): 91-102. |
[8] | Sweeney Megan T, Michael J T, Bernard E P, Susan M C. Caught Red-Handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell, 2006, 18(2): 283-294. |
[9] | Sweeney M T, Thomson M J, Cho Y G, Park Y J, Williamson S H, Bustamante C D. Global dissemination of a single mutation conferring white pericarp in rice[J]. PloS Genetics, 2007, 3(8): e133. |
[10] | Wang W J, Zhao M H, Zhang G C, Liu Z M, Hua Y C, Jia X T, Song J Y, Ma D R, Sun J. Weedy rice as a novel gene resource: A genome-wide association study of anthocyanin biosynthesis and an evaluation of nutritional quality[J]. Frontiers in Plant Science, 2020, 11: 878. |
[11] | Juan C L, Sun L D, Ping S Z, Soo S H, Lu B R. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives[J]. Annals of Botany, 2004(1): 67. |
[12] | Lang H, He Y T, Zeng F L, Xu F, Zhao M, Ma D. Comparative transcriptomic and physiological analyses of weedy rice and cultivated rice to identify vital differentially expressed genes and pathways regulating the ABA response[J]. Scientific Reports, 2021, 11(1): 12881. |
[13] | Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu, J K. Multiplex gene editing in rice with simplified CRISPR- Cpf1 and CRISPR-Cas9 systems[J]. Journal of Integrative Plant Biology, 2018, 60(8): 626-631. |
[14] | Li X F, Zhou W J, Ren Y K, Tian X J, Lü T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. High-efficiency breeding of early-maturing rice cultivars via CRISPR/ Cas9-mediated genome editing[J]. Journal of Genetics and Genomics, 2017, 44: 175-178. |
[15] | Zhang Q, Zhang Y, Lu M H, Chai Y P, Jiang Y Y, Zhou Y, Wang X C, Chen Q J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize[J]. Plant Physiology, 2019, 181(4): 1441-1448. |
[16] | Al Amin N, Ahmad N, Wu N, Pu X M, Ma T, Du Y Y, Bo X X, Wang N, Sharif R, Wang P W. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max. L)[J]. BMC Biotechnology, 2019, 19(1): 9. |
[17] | 徐善斌, 郑洪亮, 刘利峰, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻[J]. 中国水稻科学, 2020, 34(5): 406-412. |
Xu S B, Zhen H L, Liu L F, Bu Q Y, Li X F, Zou D T. Using CRISPR/Cas9 technology to efficiently create long grain fragrant rice[J]. Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese with English abstract) | |
[18] | 周文甲, 田晓杰, 任月坤, 魏祥进, 高扬, 谢黎虹, 刘华招, 卜庆云, 李秀峰. 利用CRISPR/Cas9创造早熟香味水稻[J]. 土壤与作物, 2017, 6(2): 146-152. |
Zhou W J, Tian X J, Ren Y K, Wei X J, Gao Y, Xie L H, Liu H Z, Bu Q Y, Li X F. CRISPR/Cas9 technology was used to create early-maturing fragrant rice[J]. Soils and Crops, 2017, 6(2): 146-152. (in Chinese with English abstract) | |
[19] | Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fang J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. Fin-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[20] | 苏正亮. 特种稻红米品种红稻8号选育及栽培技术[J]. 乡村科技, 2020(21): 2. |
Su Z L. Breeding and cultivation techniques of special rice red rice variety Hongdao 8[J]. Rural Science and Technology, 2020(21): 2. (in Chinese) | |
[21] | 宗伟勋, 林建勇, 温灶婵, 梁克勤, 梁结彩, 荣建星, 邓汉儒. 特优质红米杂交水稻新组合清红优1号[J]. 杂交水稻, 2022, 37(2): 53-55. |
Zong W X, Lin J Y, Wen Z C, Liang K Q, Liang C J, Ron J X, Deng H R. High quality hybrid red rice Qinghongyou 1[J]. Hybrid Rice, 2022, 37(2): 53-55. (in Chinese with English abstract) | |
[22] | 李文绍, 许鸿江, 廖荣周. 红米稻开发前景及其遗传育种研究进展[J]. 福建农业科技, 2013(4): 4 |
Li W Z, Xu H J, Liao R Z, Development prospect and genetic breeding of red rice[J]. Fujian Agricultural Science and Technology, 2013(4): 4. (in Chinese) | |
[23] | Zhu Y W, Lin Y R, Chen S B, Liu H Q, Chen Z J, Fan M Y, Hu T J, Mei F T, Chen J M, Chen L, Wang F. CRISPR/Cas9 edited functional recovery of the recessive RC allele to develop red rice[J]. Plant Biotechnology Journal, 2019, 17(11): 2096-2105. |
[24] | 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J]. 中国科学: 生命科学, 2018, 48(7): 783-794. |
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. Operational methods for plant CRISPR/Cas9 multi-gene editing vector construction and mutation analysis[J]. Science in China: Life Sciences, 2018, 48(7): 783-794. (in Chinese with English abstract) | |
[25] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[26] | Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Gittler J, Kempa S, Krischke M, Dietrich K, Mueller M J, Vicente-Carbajosa J, Hanson J, Droge-Laser W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots[J]. Plant Cell, 2015, 27: 2244-2260. |
[27] | Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188. |
[28] | Passricha N, Saifi S K, Kharb P, Tuteja N. Rice lectin receptor-like kinase provides salinity tolerance by ion homeostasis[J]. Biotechnology and Bioengineering, 2020, 117(2): 498-510. |
[29] | Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. Plant Journal, 2010, 51(3): 366-377. |
[30] | Kobayashi T, Ogo Y, Itai R N, Nakanishi H, Takahashi M, Mori S, Nishizawa N K. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 19150-19155. |
[31] | Tan S, Yin L P. Research of the iron-regulated transporter 1 (IRT1) in the past decades and its latest development[J]. Chinese Science Bulletin, 2017, 62(5): 350-359. |
[1] |
LIU Shuli, ZHANG Rui, Shahid HUSSAIN, WANG Yang, CHEN Yinglong, WEI Huanhe, HOU Hongyan, DAI Qigen.
Research Progress in Alleviating Effects of Exogenous Substances on Salt Stress in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(1): 1-15. |
[2] |
PEI Feng, WANG Guangda, GAO Peng, FENG Zhiming, HU Keming, CHEN Zongxiang, CHEN Hongqi, CUI Ao, ZUO Shimin.
Evaluation of New japonica Rice Lines with Low Cadmium Accumulation and Good Quality Generated by Knocking Out OsNramp5 [J]. Chinese Journal OF Rice Science, 2023, 37(1): 16-28. |
[3] |
WANG Shiguang, LU Zhanhua, LIU Wei, LU Dongbai, WANG Xiaofei, FANG Zhiqiang, WU Haoxiang, HE Xiuying .
Generating Guangdong Simiao Rice Germplasms by Applying CRISPR/Cas9 Gene Editing and Marker-assisted Selection Technology [J]. Chinese Journal OF Rice Science, 2023, 37(1): 29-36. |
[4] |
YUAN Yang, AO Hejun, ZHOU Zhonghua, YING Jiezheng, ZHANG Jian, NI Shen.
Fine-mapping of SegD8 Loci for Rice Hybrid Segregation Distortion [J]. Chinese Journal OF Rice Science, 2023, 37(1): 37-44. |
[5] |
TANG Jie, LONG Tuan, WU Chunyu, LI Xinpeng, ZENG Xiang, WU Yongzhong, HUANG Peijin.
Identification and Gene Mapping of a New Photo-thermo-sensitive Male Sterile Mutant tms3650 in Rice [J]. Chinese Journal OF Rice Science, 2023, 37(1): 45-54. |
[6] |
CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin.
Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection [J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65. |
[7] |
YANG Taotao, ZOU Jixiang, WU Longmei, BAO Xiaozhe, JIANG Yu, ZHANG Nan, ZHANG Bin.
Effect of Free Air Temperature Increase on Grain Quality of Double-cropping Rice in South China [J]. Chinese Journal OF Rice Science, 2023, 37(1): 66-77. |
[8] |
ZHANG Lu, LIANG Qingduo, WU Longlong, HUANG Jing, TIAN Cang, ZHANG Junhua, CAO Xiaochuang, ZHU Chunquan, KONG Yali, JIN Qianyu, ZHU Lianfeng.
Effects of Nitrogen-reducing and Oxygen-increasing Irrigation on Rice Yield and Nitrogen Use Efficiency [J]. Chinese Journal OF Rice Science, 2023, 37(1): 78-88. |
[9] |
CHEN Pin, LIU Jiacheng, ZHAO Xiaosong.
Demand Elasticity Estimation and Market Potential of Middle and High-end Rice in China: A Case Study of the Yangtze River Delta Market [J]. Chinese Journal OF Rice Science, 2023, 37(1): 102-112. |
[10] | WU Mingming, ZENG Wei, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Research Progress in Molecular Mechanism and Breeding Status of Salt Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 551-561. |
[11] | LI Xiaoxiu, LÜ Qiming, YUAN Dingyang. Research Progress on the Effects of OsNramp5 Mutation on Important Agronomic Traits in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 562-571. |
[12] | MAO Hui, PENG Yan, MAO Bigang, SHAO Ye, ZHENG Wenjie, HU Liming, ZHOU Kai, ZHAO Bingran. Function and Effect Analysis of a New Gene Wx410 Regulating Amylose Synthesis in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 579-585. |
[13] | SHI Yuliang, YANG Yong, LI Xuefei, LI Qianfeng, HUANG Lichun, ZHANG Changquan, SONG Xuetang, LIU Qiaoquan. Comparison of Grain Quality Profiles of japonica Soft Rice Varieties with Different Amylose Contents [J]. Chinese Journal OF Rice Science, 2022, 36(6): 601-610. |
[14] | WEI Xiaodong, ZHANG Yadong, SONG Xuemei, CHEN Tao, ZHU Zhen, ZHAO Qinyong, ZHAO Ling, LU Kai, LIANG Wenhua, HE Lei, HUANG Shengdong, XIE Yinfeng, WANG Cailin. Photosynthetic and Physiological Characteristics of High Yield japonica Rice Variety Nanjingjinggu [J]. Chinese Journal OF Rice Science, 2022, 36(6): 611-622. |
[15] | TANG Ruodi, CHEN Chao. Effects of Outsourcing Services on Elderly Farmers Participation in Rice Production [J]. Chinese Journal OF Rice Science, 2022, 36(6): 647-655. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||