Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (6): 572-578.DOI: 10.16819/j.1001-7216.2022.211205
• Research Papers • Previous Articles Next Articles
ZHANG Yuanye1, YIN Liying1, LI Rongtian1,*(), HE Mingliang2, LIU Xinxin3, PAN Tingting4, TIAN Xiaojie2, BU Qingyun2, LI Xiufeng2,*(
)
Received:
2021-12-07
Revised:
2022-03-10
Online:
2022-11-10
Published:
2022-11-10
Contact:
LI Rongtian, LI Xiufeng
张元野1, 尹丽颖1, 李荣田1,*(), 何明良2, 刘欣欣3, 潘婷婷4, 田晓杰2, 卜庆云2, 李秀峰2,*(
)
通讯作者:
李荣田,李秀峰
基金资助:
ZHANG Yuanye, YIN Liying, LI Rongtian, HE Mingliang, LIU Xinxin, PAN Tingting, TIAN Xiaojie, BU Qingyun, LI Xiufeng. Breeding of Rc Function Restoration Red Rice via CRISPR/Cas9 Mediated Genome Editing[J]. Chinese Journal OF Rice Science, 2022, 36(6): 572-578.
张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.211205
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
Table 1. Primers used in this research.
引物名称 Primer name | 引物序列(5'-3') Primer sequence(5'-3') |
---|---|
CAS-U6a-Rc1-LP | GCCGCGCAAGTGGATGCCATCCA |
CAS-U6a-Rc1-RP | AAACTGGATGGCATCCACTTGCG |
CAS-U6b-Rc2-LP | GTTGGCACTGAAATCACCTTGGA |
CAS-U6b-Rc2-RP | AAACTCCAAGGTGATTTCAGTGC |
M13-F | GTAAAACGACGGCCAGT |
Rc-F | CACAGAGAATGCTCAAGA |
Rc-R | CGGCTTTATAGAAATAGAGG |
HPT-F | TGCGCCCAAGCTGCATCAT |
HPT-R | TGAACTCACCGCGACGTCTGT |
qRT-bZIP71-F | AGGGATGATGAGGAACTTGG |
qRT-bZIP71-R | GGTATGCATGCGATCATTTC |
qRT-NHX1-F | ACATTGGAACGCTGGATGTA |
qRT-NHX1-R | TCACAACACCTTCACCGAAT |
qRT-CHX11-F | AGATCCTGGGTGGCATCTT |
qRT-CHX11-R | AGGAAGAGGAAGAGCAGCAG |
qRT-IRO2-F | TCGCCGTGGCTGGACCTAGAC |
qRT-IRO2-R | CCCCAACACTCCTGGTTTGCAG |
qRT-IDEF1-F | GAGGCTAGTCTTCCACCTTTG |
qRT-IDEF1-R | TGGCCAGTACCTGTACTTAAAC |
qRT-IRT1-F | TCACCGCATCTGGTCATACT |
qRT-IRT1-R | GAGATTGAGGAGAGGCTTGG |
qRT-Rc-F | ACACTAACAACACTGACACT |
qRT-Rc-R | CTCTTACCACTTCTGACATCT |
Fig. 3. Phenotype and sequencing identification of T1 transgenic plants. A, Phenotype comparison of red rice and wild type(bar=1 cm); B, Sequence comparison between red rice and wild type; C, Comparison of amino acid sequences between red rice and wild type; D, Comparison of bHLH domains between red rice and wild type(the bHLH domain is in the red box).
Fig. 4. Identification of salt and alkali tolerance of T2 generation transgenic plants. A, Bud length in each group under different concentrations of salt treatment; E-F, Bud length in each group under different concentrations of alkali treatment; G, Growth of seedlings treated with 200 mmol/L NaCl (scale=2 cm); H, Growth of seedlings treated with 20 mmol/L Na2CO3 (scale =2 cm).
Fig. 5. Identification of saline-alkali tolerance related gene expression levels in T2 transgenic plants. A, Salt-tolerant gene expression level under 200 mmol/L NaCl treatment; D-F, Identification of alkali-tolerant gene expression level under 20 mmol/L Na2CO3 treatment; G-I, Rc expression level of 200 mmol/L NaCl, 20 mmol/L Na2CO3 and blank control. ns means no significant difference; **,*** and **** mean significant difference at 0.005, 0.001 and 0.0001 levels, respectively (t test). KY180, Kongyu 180;SY453, Shangyu 453;KY-1, Gene editing line of Kongyu 180; SY-1, Gene editing line of Shangyu 453.
[1] | 牛怡君. 基于大数据背景下健康管理的食品营养运用研究[J]. 现代食品, 2020(14): 129-131. |
Niu Y J. Research on the application of food nutrition in health management based on big data[J]. Modern Food, 2020(14): 129-131. (in Chinese) | |
[2] | 胡时开, 胡培松. 功能稻米研究现状与展望[J]. 中国水稻科学, 2021, 35(4): 311-325. |
Hu S K, Hu P S. Research status and prospect of functional rice[J]. Chinese Journal of Rice Science, 2021, 35(4): 311-325. (in Chinese with English abstract) | |
[3] | 李玉纯, 毕宝山, 郑美花. 特种稻米及开发前景[J]. 吉林农业, 2001(10): 10-11. |
Li Y C, Bi B S, Zheng M H. Special rice and its development prospects[J]. Agriculture of Jilin, 2001(10): 10-11. (in Chinese) | |
[4] | 王子平. 中国红米资源的研究与利用进展[J]. 湖南农业科学, 2008, 36(4): 32-34. |
Wang Z P. Research and utilization of red rice resources in China[J]. Hunan Agricultural Sciences, 2008, 36(4): 32-34. (in Chinese) | |
[5] | Finocchiaro F, Ferrari B, Gianinetti A, Dall'Asta C, Pellegrini N. Characterization of antioxidant compounds of red and white rice and changes in total antioxidant capacity during processing[J]. Molecular Nutrition & Food Research, 2010, 51(8): 1006-1019. |
[6] | 吴建, 余显权. 水稻红米色素基因的初步定位[J]. 山地农业生物学报, 2017, 36(3): 75-77. |
Wu J, Yu X Q. Preliminary mapping of pigment genes in rice red rice[J]. Journal of Mountain Agriculture and Biology, 2017, 36(3): 75-77. (in Chinese with English abstract) | |
[7] | Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp[J]. The Plant Journal, 2007, 49(1): 91-102. |
[8] | Sweeney Megan T, Michael J T, Bernard E P, Susan M C. Caught Red-Handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell, 2006, 18(2): 283-294. |
[9] | Sweeney M T, Thomson M J, Cho Y G, Park Y J, Williamson S H, Bustamante C D. Global dissemination of a single mutation conferring white pericarp in rice[J]. PloS Genetics, 2007, 3(8): e133. |
[10] | Wang W J, Zhao M H, Zhang G C, Liu Z M, Hua Y C, Jia X T, Song J Y, Ma D R, Sun J. Weedy rice as a novel gene resource: A genome-wide association study of anthocyanin biosynthesis and an evaluation of nutritional quality[J]. Frontiers in Plant Science, 2020, 11: 878. |
[11] | Juan C L, Sun L D, Ping S Z, Soo S H, Lu B R. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives[J]. Annals of Botany, 2004(1): 67. |
[12] | Lang H, He Y T, Zeng F L, Xu F, Zhao M, Ma D. Comparative transcriptomic and physiological analyses of weedy rice and cultivated rice to identify vital differentially expressed genes and pathways regulating the ABA response[J]. Scientific Reports, 2021, 11(1): 12881. |
[13] | Wang M, Mao Y, Lu Y, Wang Z, Tao X, Zhu, J K. Multiplex gene editing in rice with simplified CRISPR- Cpf1 and CRISPR-Cas9 systems[J]. Journal of Integrative Plant Biology, 2018, 60(8): 626-631. |
[14] | Li X F, Zhou W J, Ren Y K, Tian X J, Lü T X, Wang Z Y, Fang J, Chu C C, Yang J, Bu Q Y. High-efficiency breeding of early-maturing rice cultivars via CRISPR/ Cas9-mediated genome editing[J]. Journal of Genetics and Genomics, 2017, 44: 175-178. |
[15] | Zhang Q, Zhang Y, Lu M H, Chai Y P, Jiang Y Y, Zhou Y, Wang X C, Chen Q J. A novel ternary vector system united with morphogenic genes enhances CRISPR/Cas delivery in maize[J]. Plant Physiology, 2019, 181(4): 1441-1448. |
[16] | Al Amin N, Ahmad N, Wu N, Pu X M, Ma T, Du Y Y, Bo X X, Wang N, Sharif R, Wang P W. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max. L)[J]. BMC Biotechnology, 2019, 19(1): 9. |
[17] | 徐善斌, 郑洪亮, 刘利峰, 卜庆云, 李秀峰, 邹德堂. 利用CRISPR/Cas9技术高效创制长粒香型水稻[J]. 中国水稻科学, 2020, 34(5): 406-412. |
Xu S B, Zhen H L, Liu L F, Bu Q Y, Li X F, Zou D T. Using CRISPR/Cas9 technology to efficiently create long grain fragrant rice[J]. Chinese Journal of Rice Science, 2020, 34(5): 406-412. (in Chinese with English abstract) | |
[18] | 周文甲, 田晓杰, 任月坤, 魏祥进, 高扬, 谢黎虹, 刘华招, 卜庆云, 李秀峰. 利用CRISPR/Cas9创造早熟香味水稻[J]. 土壤与作物, 2017, 6(2): 146-152. |
Zhou W J, Tian X J, Ren Y K, Wei X J, Gao Y, Xie L H, Liu H Z, Bu Q Y, Li X F. CRISPR/Cas9 technology was used to create early-maturing fragrant rice[J]. Soils and Crops, 2017, 6(2): 146-152. (in Chinese with English abstract) | |
[19] | Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fang J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. Fin-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19(1): 11-13. |
[20] | 苏正亮. 特种稻红米品种红稻8号选育及栽培技术[J]. 乡村科技, 2020(21): 2. |
Su Z L. Breeding and cultivation techniques of special rice red rice variety Hongdao 8[J]. Rural Science and Technology, 2020(21): 2. (in Chinese) | |
[21] | 宗伟勋, 林建勇, 温灶婵, 梁克勤, 梁结彩, 荣建星, 邓汉儒. 特优质红米杂交水稻新组合清红优1号[J]. 杂交水稻, 2022, 37(2): 53-55. |
Zong W X, Lin J Y, Wen Z C, Liang K Q, Liang C J, Ron J X, Deng H R. High quality hybrid red rice Qinghongyou 1[J]. Hybrid Rice, 2022, 37(2): 53-55. (in Chinese with English abstract) | |
[22] | 李文绍, 许鸿江, 廖荣周. 红米稻开发前景及其遗传育种研究进展[J]. 福建农业科技, 2013(4): 4 |
Li W Z, Xu H J, Liao R Z, Development prospect and genetic breeding of red rice[J]. Fujian Agricultural Science and Technology, 2013(4): 4. (in Chinese) | |
[23] | Zhu Y W, Lin Y R, Chen S B, Liu H Q, Chen Z J, Fan M Y, Hu T J, Mei F T, Chen J M, Chen L, Wang F. CRISPR/Cas9 edited functional recovery of the recessive RC allele to develop red rice[J]. Plant Biotechnology Journal, 2019, 17(11): 2096-2105. |
[24] | 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J]. 中国科学: 生命科学, 2018, 48(7): 783-794. |
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. Operational methods for plant CRISPR/Cas9 multi-gene editing vector construction and mutation analysis[J]. Science in China: Life Sciences, 2018, 48(7): 783-794. (in Chinese with English abstract) | |
[25] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[26] | Hartmann L, Pedrotti L, Weiste C, Fekete A, Schierstaedt J, Gittler J, Kempa S, Krischke M, Dietrich K, Mueller M J, Vicente-Carbajosa J, Hanson J, Droge-Laser W. Crosstalk between two bZIP signaling pathways orchestrates salt-induced metabolic reprogramming in Arabidopsis roots[J]. Plant Cell, 2015, 27: 2244-2260. |
[27] | Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes[J]. Planta, 2011, 233(1): 175-188. |
[28] | Passricha N, Saifi S K, Kharb P, Tuteja N. Rice lectin receptor-like kinase provides salinity tolerance by ion homeostasis[J]. Biotechnology and Bioengineering, 2020, 117(2): 498-510. |
[29] | Ogo Y, Itai R N, Nakanishi H, Kobayashi T, Takahashi M, Mori S, Nishizawa N K. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. Plant Journal, 2010, 51(3): 366-377. |
[30] | Kobayashi T, Ogo Y, Itai R N, Nakanishi H, Takahashi M, Mori S, Nishizawa N K. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 19150-19155. |
[31] | Tan S, Yin L P. Research of the iron-regulated transporter 1 (IRT1) in the past decades and its latest development[J]. Chinese Science Bulletin, 2017, 62(5): 350-359. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||