Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (4): 307-315.DOI: 10.16819/j.1001-7216.2020.0301
• Research Papers • Previous Articles Next Articles
Fudeng HUANG1,#, Chaoyue ZHAO2,#, Xin WU2, Huanhuan HE2, Fangmin CHENG2, Chunshou LI1,*(), Gang PAN2
Received:
2020-02-05
Revised:
2020-04-10
Online:
2020-07-10
Published:
2020-07-10
Contact:
Chunshou LI
About author:
#These authors contributed equally to this work
黄福灯1,#, 赵超越2,#, 吴鑫2, 贺焕焕2, 程方民2, 李春寿1,*(), 潘刚2
通讯作者:
李春寿
作者简介:
#共同第一作者
基金资助:
CLC Number:
Fudeng HUANG, Chaoyue ZHAO, Xin WU, Huanhuan HE, Fangmin CHENG, Chunshou LI, Gang PAN. Physiological Characters and Gene Mapping of a Yellow Leaf and Early-senescence Mutant osyes1 in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(4): 307-315.
黄福灯, 赵超越, 吴鑫, 贺焕焕, 程方民, 李春寿, 潘刚. 水稻黄叶早衰突变体osyes1的生理特性和基因定位[J]. 中国水稻科学, 2020, 34(4): 307-315.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.0301
Fig. 1. Phenotype of osyes1 and its WT plants at different growth stages. A, Seedling stage; B, Heading stage; C, Leaves at heading stage; D, Maturity stage; F, 2, 3 and 4 mean flag leaf, the 2nd, the 3rd and the 4th leaf from top, respectively; Bar=10 cm. Chloroplast ultrastructure of the wild-type (E, F) and osyes1(G, H). cl, Chloroplast; nu, Nucleus; sg, Starch granule; Bar=1 μm.
性状Trait | 2018 | 2019 | |||
---|---|---|---|---|---|
野生型WT | 突变体osyes1 | 野生型WT | 突变体osyes1 | ||
株高 Plant height / cm | 104.83±2.04 | 94.01±4.52** | 108.15±4.35 | 95.27±4.74** | |
穗长 Panicle length / cm | 24.04±1.64 | 19.72±1.28** | 24.78±1.43 | 19.13±1.76** | |
有效穗数 Effective panicle number | 8.14±1.14 | 9.17±2.11 | 8.53±1.78 | 9.15±1.87 | |
每穗粒数 Grain number per panicle | 174.97±8.88 | 119.03±10.25** | 175.24±7.99 | 118.48±8.94** | |
结实率 Seed-setting rate / % | 85.27±6.68 | 50.63±3.93** | 85.84±4.98 | 48.72±4.34** | |
千粒重 1000-grain weight / g | 22.63±0.48 | 21.66±2.10 | 22.87±0.75 | 21.69±1.71 |
Table 1 Main agronomic traits of osyes1 and its wild type (WT) plants.
性状Trait | 2018 | 2019 | |||
---|---|---|---|---|---|
野生型WT | 突变体osyes1 | 野生型WT | 突变体osyes1 | ||
株高 Plant height / cm | 104.83±2.04 | 94.01±4.52** | 108.15±4.35 | 95.27±4.74** | |
穗长 Panicle length / cm | 24.04±1.64 | 19.72±1.28** | 24.78±1.43 | 19.13±1.76** | |
有效穗数 Effective panicle number | 8.14±1.14 | 9.17±2.11 | 8.53±1.78 | 9.15±1.87 | |
每穗粒数 Grain number per panicle | 174.97±8.88 | 119.03±10.25** | 175.24±7.99 | 118.48±8.94** | |
结实率 Seed-setting rate / % | 85.27±6.68 | 50.63±3.93** | 85.84±4.98 | 48.72±4.34** | |
千粒重 1000-grain weight / g | 22.63±0.48 | 21.66±2.10 | 22.87±0.75 | 21.69±1.71 |
Fig. 3. Chlorophyll (chl) levels and net photosynthetic rate of leaves in osyes1 and its WT plants at the booting stage. **Significantly different at P<0.01 (t-test).
Fig. 4. H2O2 and O2- levels, and the activities of antioxidases in osyes1 and its WT plants at booting stage. *Significantly different at P<0.05, **Significantly different at P<0.01(t-test).
组合 Cross | 野生型表型单株数 No. of WT-type plants | 突变表型单株数 No. of mutant-type plants | 植株总数 Total number of plants | χ23:1 | P值 P value |
---|---|---|---|---|---|
osyes1/自选1号 osyes1/Zixuan 1 | 596 | 191 | 687 | 0.22 | 0.64 |
osyes1/浙恢7954 osyes1/Zhehui 7954 | 814 | 279 | 1093 | 0.16 | 0.69 |
Table 2 Genetic analysis of the mutant osyes1.
组合 Cross | 野生型表型单株数 No. of WT-type plants | 突变表型单株数 No. of mutant-type plants | 植株总数 Total number of plants | χ23:1 | P值 P value |
---|---|---|---|---|---|
osyes1/自选1号 osyes1/Zixuan 1 | 596 | 191 | 687 | 0.22 | 0.64 |
osyes1/浙恢7954 osyes1/Zhehui 7954 | 814 | 279 | 1093 | 0.16 | 0.69 |
基因登录号 | 功能注释 |
---|---|
GeneBank accession No. | Annotation |
LOC_Os07g17130 | 含蛋白质的FYVE锌指结构域 FYVE zinc finger domain containing protein |
LOC_Os07g17184 | 表达蛋白 Expressed protein |
LOC_Os07g17220 | 抗病蛋白 Disease resistance protein |
LOC_Os07g17230 | WRKY123 |
LOC_Os07g17250 | 抗病RPP13样蛋白1 Disease resistance RPP13-like protein 1 |
LOC_Os07g17280 | Ser/Thr蛋白磷酸酶家族蛋白 Ser/Thr protein phosphatase family protein |
LOC_Os07g17330 | B12D蛋白 B12D protein |
LOC_Os07g17350 | 转座子蛋白 Transposon protein |
LOC_Os07g17390 | 光系统Ⅱ的外周蛋白 PsbP |
LOC_Os07g17400 | 环状锌指蛋白 RING-type zinc finger protein |
LOC_Os07g17560 | 表达蛋白 Expressed protein |
LOC_Os07g17689 | 表达蛋白 Expressed protein |
LOC_Os07g17970 | 含AMP结合域的蛋白质 AMP-binding domain containing protein |
LOC_Os07g18050 | RNA结合基序蛋白 RNA-binding motif protein |
LOC_Os07g18070 | 表达蛋白 Expressed protein |
Table 3 Functional annotations of genes expressed in leaves within the target interval.
基因登录号 | 功能注释 |
---|---|
GeneBank accession No. | Annotation |
LOC_Os07g17130 | 含蛋白质的FYVE锌指结构域 FYVE zinc finger domain containing protein |
LOC_Os07g17184 | 表达蛋白 Expressed protein |
LOC_Os07g17220 | 抗病蛋白 Disease resistance protein |
LOC_Os07g17230 | WRKY123 |
LOC_Os07g17250 | 抗病RPP13样蛋白1 Disease resistance RPP13-like protein 1 |
LOC_Os07g17280 | Ser/Thr蛋白磷酸酶家族蛋白 Ser/Thr protein phosphatase family protein |
LOC_Os07g17330 | B12D蛋白 B12D protein |
LOC_Os07g17350 | 转座子蛋白 Transposon protein |
LOC_Os07g17390 | 光系统Ⅱ的外周蛋白 PsbP |
LOC_Os07g17400 | 环状锌指蛋白 RING-type zinc finger protein |
LOC_Os07g17560 | 表达蛋白 Expressed protein |
LOC_Os07g17689 | 表达蛋白 Expressed protein |
LOC_Os07g17970 | 含AMP结合域的蛋白质 AMP-binding domain containing protein |
LOC_Os07g18050 | RNA结合基序蛋白 RNA-binding motif protein |
LOC_Os07g18070 | 表达蛋白 Expressed protein |
[1] | Okita T W, Sun J, Sakulringharoj C, Choi S B, Edwards G E, Kato C, Ito H, Matsui H.Increasing rice productivity and yield by manipulation of starch synthesis[J]. Novartis Foundation Symposium, 2001, 236: 135-146. |
[2] | Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M.Sugar transporters in plants: New insights and discoveries[J]. Plant and Cell Physiology, 2017, 58(9): 1442-1460. |
[3] | 刘道宏. 植物叶片的衰老. 植物生理学通讯[J]. 1983(2): 14-19. |
Liu D H.Plant leaf senescence.Plant Physiology Communications, 1983(2): 14-19. (in Chinese) | |
[4] | Thomas H, Smart C M.Crops that stay green[J]. Annals of Applied Biology, 1993, 123: 193-219. |
[5] | 何冰, 刘玲珑, 张文伟, 万建民. 植物叶色突变体. 植物生理学通讯[J]. 2006, 42: 1-9 |
HE B, Liu L L, Zhang W W, Wan J M.Plant leaf color mutants[J]. Plant Physiology Communications, 2006, 42: 1-9. (in Chinese) | |
[6] | Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L.The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence[J]. Plant Biology (Stuttg), 2008(Suppl 1): 4-14. |
[7] | 杜文凯,袁素霞,胡凤荣. 植物叶色突变分子机制的研究进展[J]. 分子植物育种, 2019, 17(6): 1888-1897. |
Du W K, Yuan S X, Hu F R.Research progress on molecular mechanisms of the leaf color mutation[J]. Molecular Plant Breeding, 2019, 17(6): 1888-1897. (in Chinese with English abstract) | |
[8] | Peng Y L, Zou T, Li L M, Tang S W, Li Q, Zhang J, Chen Y J, Wang X C, Yang G T, Hu Y G.Map-based cloning and functional analysis of YE1 in rice, which is involved in light-dependent chlorophyll biogenesis and photoperiodic flowering pathway[J]. International Journal of Molecular Science, 2019, 20(3): 758. |
[9] | Chen N G, Wang P R, Li C M, Wang Q, Pan J H, Xiao F L, Wang Y, Zhang K, Li C X, Yang B, Sun C H, Deng X J.A single nucleotide mutation of IspE gene participating in the MEP pathway for isoprenoid biosynthesis causes green-revertible yellow leaf phenotype in rice[J]. Plant and Cell Physiology, 2018, 59(9): 1905-1917. |
[10] | Sheng Z H, Lü Y S, Li W, Luo R J, Wei X J, Xie L H, Jiao G L, Shao G N, Wang J L, Tang S Q, Hu P S.Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice(Oryza sativa L.)[J/OL]. PLoS ONE, 2017, 12(5): e0177989. |
[11] | Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M, Gu M H, Liang G H.Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice[J/OL]. PLoS ONE, 2013, 8(9): e75299. |
[12] | Murashige T, Skoog F.A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15: 473-497. |
[13] | Yang X, Gong P, Li K Y, Huang F D, Cheng F M, Pan G.A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany, 2016, 67(9): 2761-2776. |
[14] | 龚盼, 黎坤瑜, 黄福灯, 韦荔全, 杨茜, 程方民, 潘刚. 水稻叶片早衰突变体ospls3的生理特征和基因定位[J]. 作物学报, 2016, 42(5): 667-674. |
Gong P, Li K Y, Huang F D, Wei L Q, Yang X, Cheng F M, Pan G.Physiological characteristics and gene mapping of a precocious leaf senescence mutant ospls3 in rice[J]. Acta Agronomica Sinica, 2016, 42(5): 667-674. (in Chinese with English abstract) | |
[15] | Gong P, Luo Y M, Huang F D, Chen Y D, Zhao C Y, Wu X, Li K Y, Yang X, Cheng F M, Xiang X, Wu C Y, Pan G.Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice[J]. Plant Molecular Biology, 2019, 100(1-2): 133-149. |
[16] | Pan G, Si P, Yu Q, Tu J M, Powles S.Non-target site mechanism of metribuzin tolerance in induced tolerant mutants of narrow-leafed lupin(Lupinus angustifolius L.)[J]. Crop and Pasture Science, 2012, 63(5): 452-458 |
[17] | Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology, 2004, 135(3): 1198-1205. |
[18] | Lim P O, Kim H J, Nam H G.Leaf senescence[J]. Annual Review of Plant Biology, 2007, 58: 115-136. |
[19] | Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R.Reactive oxygen species homeostasis and signaling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33(4): 453-467. |
[20] | Jajic I, Sarna T, Strzalka K.Senescence, stress, and reactive oxygen species[J]. Plants(Basel), 2015, 4(3): 393-411. |
[21] | Rogers H, Munné-Bosch S.Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: Similar but different[J]. Plant Physiology, 2016, 171(3): 1560-1568. |
[22] | 华春, 王仁雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化[J]. 西北植物学报, 2003, 23(3): 406-409. |
Hua C, Wang R L.Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(3): 406-409. (in Chinese with English abstract) | |
[23] | Wu X Y, Kuai B K, Jia J Z, Jing H C.Regulation of leaf senescence and crop genetic improvement[J]. Journal of Integrative Plant Biology, 2012, 54(12): 936-952. |
[24] | Gregersen P L, Culetic A, Boschian L, Krupinska K.Plant senescence and crop productivity[J]. Plant Molecular Biology, 2013, 82(6): 603-622. |
[25] | Woo H R, Kim H J, Lim P O, Nam H G.Leaf senescence: systems and dynamics aspects[J]. Annual Review of Plant Biology, 2019, 70: 347-376. |
[26] | Bengoa Luoni S, Astigueta F H, Nicosia S, Moschen S, Fernandez P, Heinz R.Transcription factors associated with leaf senescence in crops[J]. Plants(Basel), 2019, 8(10): 411. |
[27] | Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B.A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiology, 2006, 141(4): 1376-1388. |
[28] | Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K.OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes[J]. Plant Physiology, 2013, 161(3): 1202-1216. |
[29] | Shim Y, Kang K, An G, Paek N C.Rice DNA-binding one zinc finger 24 (OsDOF24) delays leaf senescence in a jasmonate-mediated pathway[J]. Plant and Cell Physiology, 2019, 60(9): 2065-2076. |
[30] | Han M, Kim C Y, Lee J, Lee S K, Jeon J S.OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Molecules and Cells, 2014, 37(7): 532-539. |
[31] | Na J K, Kim J K, Kim D Y, Assmann S M.Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(13): 4023-4033. |
[32] | Zhang B Y, Jia J H, Yang M, Yan C V, Han Y Z.Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis[J]. Molecules and Cells, 2012, 34(4): 367-374. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||