Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (5): 421-428.DOI: 10.16819/j.1001-7216.2019.9007
• Research Papers • Previous Articles Next Articles
Yongsheng ZHU1,2, Jianlin BAI2, Hongguang XIE1, Fangxi WU1, Xi LUO1, Shenfei JIANG1, Wei HE1, Liping CHEN1, Qiuhua CAI1, Huaan XIE1,2, Jianfu ZHANG1,2,*()
Received:
2019-01-10
Revised:
2019-03-18
Online:
2019-09-10
Published:
2019-09-10
Contact:
Jianfu ZHANG
朱永生1,2, 白建林2, 谢鸿光1, 吴方喜1, 罗曦1, 姜身飞1, 何炜1, 陈丽萍1, 蔡秋华1, 谢华安1,2, 张建福1,2,*()
通讯作者:
张建福
基金资助:
CLC Number:
Yongsheng ZHU, Jianlin BAI, Hongguang XIE, Fangxi WU, Xi LUO, Shenfei JIANG, Wei HE, Liping CHEN, Qiuhua CAI, Huaan XIE, Jianfu ZHANG. Breeding Restore Lines of Hybrid Rice by Pyramiding Genes for Resistance to White Backed Planthoppers and Brown Planthoppers[J]. Chinese Journal OF Rice Science, 2019, 33(5): 421-428.
朱永生, 白建林, 谢鸿光, 吴方喜, 罗曦, 姜身飞, 何炜, 陈丽萍, 蔡秋华, 谢华安, 张建福. 聚合白背飞虱和褐飞虱抗性基因创制杂交水稻恢复系[J]. 中国水稻科学, 2019, 33(5): 421-428.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9007
基因 Gene | 标记性质 Characteristics | 染色体 Chromosome | 标记 Marker | 类型 Type | 标记引物序列 Primer sequence(5′-3′) | 解链温度 Melting temperature /℃ | 产物大小 Production size/bp |
---|---|---|---|---|---|---|---|
qSI-4 | 共显性 Codominant | 4 | RM8213 | SSR | F: AGCCCAGTGATACAAAGATG R: GCGAGGAGATACCAAGAAAG | 55 | 208 |
Bph14 | 共显性 Codominant | 3 | RI35 | InDel | F: CAATCATCAAGCACGCGTTA R: ATCGAAGCCACTTGGTGAAC | 58 | 325 |
Bph15 | 共显性 Codominant | 4 | Y15 | InDel | F: AGGAACAGTGACACGTAGCA R: GGAGAGTTCAGTTTGCCATCC | 55 | 460 |
Table 1 Linkage markers of the white-backed and brown planthoppers resistance genes and primer sequences.
基因 Gene | 标记性质 Characteristics | 染色体 Chromosome | 标记 Marker | 类型 Type | 标记引物序列 Primer sequence(5′-3′) | 解链温度 Melting temperature /℃ | 产物大小 Production size/bp |
---|---|---|---|---|---|---|---|
qSI-4 | 共显性 Codominant | 4 | RM8213 | SSR | F: AGCCCAGTGATACAAAGATG R: GCGAGGAGATACCAAGAAAG | 55 | 208 |
Bph14 | 共显性 Codominant | 3 | RI35 | InDel | F: CAATCATCAAGCACGCGTTA R: ATCGAAGCCACTTGGTGAAC | 58 | 325 |
Bph15 | 共显性 Codominant | 4 | Y15 | InDel | F: AGGAACAGTGACACGTAGCA R: GGAGAGTTCAGTTTGCCATCC | 55 | 460 |
Fig. 2. Molecular marker analysis of insect-resistant gene Bph15 for insect-resistant individuals in segregating populations. M, DNA marker; 1, B5; 2-49 are individual plants of segregating population.
株系 Line | 抗虫基因 Insect-resistant gene | 抗性均值 Average resistance | 抗性水平 Resistance level | ||
---|---|---|---|---|---|
qsI-4 | Bph14 | Bph15 | |||
FJ717 | + | + | + | 2.93 | R |
FJ718 | + | + | + | 3.81 | R |
FJ719 | - | + | + | 3.08 | R |
FJ723 | + | - | + | 5.43 | MR |
FJ742 | + | + | - | 5.57 | MR |
FJ745 | + | + | + | 3.84 | R |
FJ747 | - | - | + | 6.67 | S |
B5 | - | + | + | 3.07 | R |
FH7011 | + | - | - | 6.33 | S |
FH676 | - | - | - | 8.38 | S |
TN1 | - | - | - | 7.87 | S |
Table 2 Identification of insect-resistant genes and resistance levels of each line.
株系 Line | 抗虫基因 Insect-resistant gene | 抗性均值 Average resistance | 抗性水平 Resistance level | ||
---|---|---|---|---|---|
qsI-4 | Bph14 | Bph15 | |||
FJ717 | + | + | + | 2.93 | R |
FJ718 | + | + | + | 3.81 | R |
FJ719 | - | + | + | 3.08 | R |
FJ723 | + | - | + | 5.43 | MR |
FJ742 | + | + | - | 5.57 | MR |
FJ745 | + | + | + | 3.84 | R |
FJ747 | - | - | + | 6.67 | S |
B5 | - | + | + | 3.07 | R |
FH7011 | + | - | - | 6.33 | S |
FH676 | - | - | - | 8.38 | S |
TN1 | - | - | - | 7.87 | S |
Fig. 4. Artificial resistance identification in the laboratory of the stable lines screened in the field. The picture on the left shows the seedling before identification and the picture on the right shows the seedling at 7 days after insect inoculation.
品系 Line | 株高 Plant height/cm | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
FH676(CK) | 131.9±4.4 | 7.6±0.9 | 175.0±11.6 | 154.0±9.6 | 88.0±1.6 | 31.2±0.3 |
FJ717 | 127.4±1.2* | 8.3±1.2 | 173.6±13.6 | 159.0±12.8 | 91.6±1.9* | 30.7±0.3 |
FJ718 | 125.9±5.3** | 9.2±2.1** | 168.9±15.9* | 154.3±13.3 | 91.3±2.5* | 29.8±0.2 |
FJ719 | 133.9±6. 7 | 6.8±0.6* | 187.1±9.5* | 159.5±8.6 | 85.2±2.7* | 32.0±0.1 |
FJ745 | 126.9±5.2** | 7.4±1.3 | 169.5±12.3 | 151.4±10.2 | 89.3±0.4 | 30.1±0.4 |
Table 3 Comparative analysis of agronomic traits between selected insect-resistant restorer lines and recurrent parents (Shaxian County, Fujian, 2016).
品系 Line | 株高 Plant height/cm | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g |
---|---|---|---|---|---|---|
FH676(CK) | 131.9±4.4 | 7.6±0.9 | 175.0±11.6 | 154.0±9.6 | 88.0±1.6 | 31.2±0.3 |
FJ717 | 127.4±1.2* | 8.3±1.2 | 173.6±13.6 | 159.0±12.8 | 91.6±1.9* | 30.7±0.3 |
FJ718 | 125.9±5.3** | 9.2±2.1** | 168.9±15.9* | 154.3±13.3 | 91.3±2.5* | 29.8±0.2 |
FJ719 | 133.9±6. 7 | 6.8±0.6* | 187.1±9.5* | 159.5±8.6 | 85.2±2.7* | 32.0±0.1 |
FJ745 | 126.9±5.2** | 7.4±1.3 | 169.5±12.3 | 151.4±10.2 | 89.3±0.4 | 30.1±0.4 |
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
II-32A/FH676(CK) | 9.7±0.9 | 190.5±13.6 | 177.6±9.6 | 93.2±1.4 | 28.2±0.9 | 9160.5±169.2 |
II-32A/FJ717 | 9.9±1.2 | 193.6±21.2 | 181.0±12.8 | 93.5±1.5 | 28.7±0.2 | 9749.3±210.2** |
II-32A/FJ718 | 10.1±2.1 | 188.3±5.6 | 175.7±13.3 | 93.3±2.0 | 28.1±1.1 | 9426.1±107.1* |
II-32A/FJ719 | 7.8±0.6 | 213.5±9.8 | 185.3±8.6 | 86.8±1.7 | 29.0±0.2 | 8878.3±192.5 |
II-32A/FJ745 | 10.4±1.3 | 194.5±18.4 | 173.8±10.2 | 89.3±1.3 | 27.2±0.4 | 9308.9±98.4 |
Y58S//FH676(CK) | 9.1±0.8 | 205.1±11.6 | 176.4±9.6 | 86.0±0.9 | 26.2±0.3 | 7950.9±214.5 |
Y58S//FJ717 | 8.3±0.2 | 210.3±14.6 | 185.5±12.8 | 88.2±0.9 | 26.7±1.4 | 7732.2±110.2 |
Y58S//FJ718 | 10.3±1.4 | 196.7±5.6 | 171.5±13.3 | 87.2±3.2 | 26.6±0.1 | 8886.5±183.1** |
Y58S//FJ719 | 7.8±0.8 | 223.5±109.9 | 184.8±8.6 | 82.7±1.7 | 28.0±0.9 | 7571.3±199.2 |
Y58S//FJ745 | 9.8±0.3 | 197.4±13.2 | 174.2±10.2 | 88.3±1.4 | 26.1±0.3 | 8397.5±210.1* |
Table 4 Comparative analysis of agronomic traits of hybrid progenies between selected insect-resistant restorer lines and recurrent parents(Shaxian County, Fujian, China, 2018).
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
II-32A/FH676(CK) | 9.7±0.9 | 190.5±13.6 | 177.6±9.6 | 93.2±1.4 | 28.2±0.9 | 9160.5±169.2 |
II-32A/FJ717 | 9.9±1.2 | 193.6±21.2 | 181.0±12.8 | 93.5±1.5 | 28.7±0.2 | 9749.3±210.2** |
II-32A/FJ718 | 10.1±2.1 | 188.3±5.6 | 175.7±13.3 | 93.3±2.0 | 28.1±1.1 | 9426.1±107.1* |
II-32A/FJ719 | 7.8±0.6 | 213.5±9.8 | 185.3±8.6 | 86.8±1.7 | 29.0±0.2 | 8878.3±192.5 |
II-32A/FJ745 | 10.4±1.3 | 194.5±18.4 | 173.8±10.2 | 89.3±1.3 | 27.2±0.4 | 9308.9±98.4 |
Y58S//FH676(CK) | 9.1±0.8 | 205.1±11.6 | 176.4±9.6 | 86.0±0.9 | 26.2±0.3 | 7950.9±214.5 |
Y58S//FJ717 | 8.3±0.2 | 210.3±14.6 | 185.5±12.8 | 88.2±0.9 | 26.7±1.4 | 7732.2±110.2 |
Y58S//FJ718 | 10.3±1.4 | 196.7±5.6 | 171.5±13.3 | 87.2±3.2 | 26.6±0.1 | 8886.5±183.1** |
Y58S//FJ719 | 7.8±0.8 | 223.5±109.9 | 184.8±8.6 | 82.7±1.7 | 28.0±0.9 | 7571.3±199.2 |
Y58S//FJ745 | 9.8±0.3 | 197.4±13.2 | 174.2±10.2 | 88.3±1.4 | 26.1±0.3 | 8397.5±210.1* |
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
丰两优4号(CK) Fengliangyou 4(CK) | 8.9±0.7 | 191.4±8.3 | 159.5±6.4 | 83.4±2.2 | 28.5±0.1 | 7619.2±203.5 |
Ⅱ优明86 ⅡYouming 86 | 9.3±0.7 | 190.7±4.4 | 174.0±3.3 | 91.2±2.8 | 28.3±0.1 | 8683.0±219.3 |
泰丰A/FJ717 Taifeng A/FJ717 | 10.3±0.5 | 186.6±11.3 | 161.4±8.6 | 86.5±1.7 | 25.3±0.1 | 7965.3±184.8* |
泰丰A/FJ718 Taifeng A/FJ718 | 9.8±0.4 | 179.5±10.3 | 157.2±9.0 | 87.6±3.4 | 25.0±0.1 | 7241.6±114.7 |
泰丰A/FJ745 Taifeng A/FJ745 | 10.3±0.4 | 182.8±13.4 | 157.9±12.0 | 86.4±1.8 | 25.3±0.1 | 7795.3±217.6 |
泸香618A/FJ717 Luxiang 618A/FJ717 | 9.7±0.3 | 199.8±9.1 | 178.4±7.3 | 89.3±1.2 | 25.4±0.2 | 8279.0±117.9** |
泸香618A/FJ718 Luxiang 618A/FJ718 | 11.1±0.7 | 176.4±9.8 | 154.1±6.3 | 87.3±0.8 | 25.5±0.2 | 8214.2±254.7** |
泸香618A/FJ745 Luxiang 618A/FJ745 | 9.4±1.0 | 193.0±12.7 | 171.8±10.7 | 89.0±1.1 | 25.8±0.4 | 7857.7±247.7 |
Table 5 Comparative analysis of agronomic traits of hybrid progenies between selected insect-resistant restorer lines and recurrent parents(Sanya, Hainan, China, 2018).
杂交组合 Hybrid rice combination | 单株穗数 Panicle number per plant | 每穗粒数 Grain number per panicle | 每穗实粒数 Filled grain per panicle | 结实率 Seed-setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) |
---|---|---|---|---|---|---|
丰两优4号(CK) Fengliangyou 4(CK) | 8.9±0.7 | 191.4±8.3 | 159.5±6.4 | 83.4±2.2 | 28.5±0.1 | 7619.2±203.5 |
Ⅱ优明86 ⅡYouming 86 | 9.3±0.7 | 190.7±4.4 | 174.0±3.3 | 91.2±2.8 | 28.3±0.1 | 8683.0±219.3 |
泰丰A/FJ717 Taifeng A/FJ717 | 10.3±0.5 | 186.6±11.3 | 161.4±8.6 | 86.5±1.7 | 25.3±0.1 | 7965.3±184.8* |
泰丰A/FJ718 Taifeng A/FJ718 | 9.8±0.4 | 179.5±10.3 | 157.2±9.0 | 87.6±3.4 | 25.0±0.1 | 7241.6±114.7 |
泰丰A/FJ745 Taifeng A/FJ745 | 10.3±0.4 | 182.8±13.4 | 157.9±12.0 | 86.4±1.8 | 25.3±0.1 | 7795.3±217.6 |
泸香618A/FJ717 Luxiang 618A/FJ717 | 9.7±0.3 | 199.8±9.1 | 178.4±7.3 | 89.3±1.2 | 25.4±0.2 | 8279.0±117.9** |
泸香618A/FJ718 Luxiang 618A/FJ718 | 11.1±0.7 | 176.4±9.8 | 154.1±6.3 | 87.3±0.8 | 25.5±0.2 | 8214.2±254.7** |
泸香618A/FJ745 Luxiang 618A/FJ745 | 9.4±1.0 | 193.0±12.7 | 171.8±10.7 | 89.0±1.1 | 25.8±0.4 | 7857.7±247.7 |
[1] | 沈君辉, 尚金梅, 刘光杰. 中国的白背飞虱研究概况. 中国水稻科学, 2003, 17(增刊): 7-22. |
Shen J H, Shang J M, Liu G J.Management of the whitebacked planthopper,Sogatella furcifera in China: A mini-review. Chin J Rice Sci, 2003, 17(Suppl): 7-22. (in Chinese with English abstract) | |
[2] | 任西明, 向聪, 雷东阳, 管利凤. 水稻抗褐飞虱育种研究进展与展望. 作物研究, 2017, 31(4): 453-458. |
Ren X M, Xiang C, Lei D Y, Guan L F.Present status and prospect of resistance breeding of brow planthopper in rice.Crop Res, 2017, 31(4): 453-458. | |
[3] | 蒋宁飞. 利用昌恢891和02428的回交自交系群体定位抗稻飞虱的QTL. 南昌: 江西农业大学, 2016. |
Jiang N F.Mapping quantitative trait loci(QTL) for rice planthopper resistance of Changhui 891/02428 backcross inbred lines. Nanchang: Jiangxi Agriculture University, 2016. (in Chinese with English abstract) | |
[4] | 王彦华, 王鸣华. 褐飞虱抗药性及再猖獗研究进展. 农药, 2006, 45(4): 227-231. |
Wang Y H, Wang M H.Research progress onNilaparvata lugens insecticide resistance and proliferation of the resistant biotype. Agrochemicals, 2006, 45(4): 227-231. (in Chinese with English abstract) | |
[5] | 姜辉, 林荣华, 刘亮, 瞿唯钢, 陶传江. 稻飞虱的危害及再猖獗机制. 昆虫知识, 2005, 42(6): 612-615. |
Jiang H, Lin R H, Liu L, Qu W G, Tao C J.Planthoppers damage to rice and the resurgence mechanism.Entomol Knowl, 2005, 42(6): 612-615. (in Chinese with English abstract) | |
[6] | 侯丽媛, 于萍, 徐群, 袁筱萍, 余汉勇, 王一平, 王彩红, 万国, 彭锁堂, 魏兴华. 两个水稻抗褐飞虱隐性基因的遗传分析与初步定位. 中国水稻科学, 2010, 24(4): 367-371. |
Hou L Y, Yu P, Xu Q, Yuan Y P, Yu H Y, Wang Y P, Wang C H, Wan G, Peng S T, Wei X H.Genetic analysis and preliminary mapping of two recessive resistance genes in rice to brown planthopper,Nilaparvata lugens. Chin J Rice Sci, 2010, 24(4): 367-371. (in Chinese with English abstract) | |
[7] | Jairin J, Sansen K, Wongboon W, Jate K.Detection of a brown planthopper resistance genebph4 at the same chromosomal position of Bph3 using two different genetic backgrounds of rice. Breeding Sci, 2010, 60(1): 71-75. |
[8] | Zhao Y, Huang J, Wang Z Z, Jing S L, Wang Y, Ouyang Y, Cai B D, Xin X F, Liu X, Zhang C X, Pan Y F, Ma R, Li Q F, Jiang W H, Zeng Y, Shangguan X X, Wang H Y, Du B, Zhu L L. Xu X, Feng Y Q, He S Y, Chen R Z, Zhang Q F, He G C.Allelic diversity in an NLR geneBPH9 enables rice to combat planthopper variation. Proc Natl Acad Sci, 2016, 113(45): 12850-12855. |
[9] | Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z He R, Zhu L, Chen R, Han B, He G. Identification and characterization ofBph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci, 2009, 106(52): 22163-22168. |
[10] | Lv W, Du B, Shangguan X, Zhao Y, Pan Y, Zhu L, He Y, He G.BAC and RNA sequencing reveal the brown planthopper resistance gene BPH15 in a recombination cold spot that mediates a unique defense mechanism.BMC Genom, 2014, 11(15): 674. |
[11] | Jena K K, Jeung J U, Lee J H, Choi C, Brar D S.High-resolution mapping of a new brown planthopper (BPH)resistance gene,Bph18(t), and marker-assisted selection for BPH resistance in rice, 2006, 112(2): 288-297. |
[12] | Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H.Map-based cloning and characterization of a brown planthopper resistance gene BPH26 fromOryza sativa L. ssp. indica cultivar ADR52. Sci Reps, 2014, 4: 58-72. |
[13] | Wang Y, Cao L, Zhang Y, Cao C, Liu F, Huang F, Qiu Y, Li R, Luo X.Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice.J Exp Bot, 2015, 66(19): 6035-6045. |
[14] | Ren J, Gao F, Wu X, Lu X, Zeng L, Lv J, Su X, Luo H, Ren G.Bph32, a novel gene encoding an unknown SCR domain containing protein, confers resistance against the brown planthopper in rice. Sci Rep, 2016, 6: 37 645. |
[15] | Hu J, Zhou J, Peng X, Xu H, Liu C, Du B, Yuan H, Zhu L, He G.TheBphi008a gene interacts with the ethylene pathway and transcriptionally regulates MAPK genes in the response of rice to brown planthopper feeding. Plant Physiol, 2011, 156(2): 856-872. |
[16] | Guo J, Xu C, Wu D, Zhao Y, Qiu Y.Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet, 2018, 50(2): 297-306. |
[17] | Huang Z, He Z, Shu L, Li X.Identification and mapping of two brown planthopper resistance genes in rice.Theor Appl Genet, 2001, 102: 929-934. |
[18] | 徐晓明, 程攀, 陈龙, 曲姗姗, 阴云火, 田发春, 彭炳生, 吴帅, 李土明, 周卫营. 应用分子标记辅助选育抗褐飞虱水稻两系不育系. 安徽农业科学, 2016, 44(20): 107-108. |
Xu X M, Cheng P, Chen L, Qu S S, Yin Y H, Tian F C, Peng B S, Wu S, Li T M, Zhou W Y.Breeding TGMS lines with resistance to brown planthopper by marker-assisted selection.J Anhui Agric Sci, 2016, 44(20): 107-108. (in Chinese with English abstract) | |
[19] | 胡巍, 李艳芳, 胡侃, 江奕君, 张扬. 分子标记辅助选择抗褐飞虱基因改良桂农占的BPH抗性. 分子植物育种, 2015, 13(5): 951-960. |
Hu W, Li Y F, Hu K, Jiang Y J, Zhang Y.Improving BPH-resistance of rice cultivar Guinongzhan by marker-assisted selection for BPH-resistant genes.Mol Plant Breeding, 2015, 13(5): 951-960. (in Chinese with English abstract) | |
[20] | 王海鹏, 黄晓西, 梁越洋, 朱军, 张翠霞, 王秀梅, 贡常委, 郑爱萍, 邓其明, 李双成, 王玲霞, 李平, 王世全. 转Cry30Fa1基因抗褐飞虱水稻的获得及鉴定. 中国水稻科学, 2016, 30(3): 256-264. |
Wang H P, Huang X X, Liang Y Y, Zhu J, Zhang C X, Wang X M, Gong C W, Zheng A P, Deng Q M, Li S C, Wang L X, Li P, Wang S Q.Development and Identification of insect resistant transgenic rice with Cry30Fa1 gene. Chin J Rice Sci, 2016, 30(3): 256-264. (in Chinese with English abstract) | |
[21] | 张建福, 曾大力, 朱永生, 谢鸿光, 蔡秋华, 连玲, 吴方喜, 罗曦, 王颖姮, 郑轶, 谢华安. 分子标记辅助选择创制抗白背飞虱水稻恢复系. 中国水稻科学, 2013, 27(3): 329-334. |
Zhang J F, Zeng D L, Zhu Y S, Xie H G, Cai Q H, Lian L, Wu F X, Luo X, Wang Y H, Zheng Y, Xie H A.Breeding of rice restore lines with white-backed planthopper resistance by marker-assisted selection.Chin J Rice Sci, 2013, 27(3): 329-334. (in Chinese with English abstract) | |
[22] | 刘光杰, 付志红, 沈君辉, 张亚辉. 水稻品种对稻飞虱抗性鉴定方法的比较研究. 中国水稻科学, 2002, 16(1): 52-56. |
Liu G J, Fu Z H, Shen J H, Zhang Y H.Comparative study on evaluation methods for resistance to rice planthoppers (Homoptera: Delphacidae) in rice.Chin J Rice Sci, 2002, 16(1): 52-56. (in Chinese with English abstract) | |
[23] | 李荣华, 夏岩石, 刘顺枝, 孙莉丽, 郭培国, 廖绅裕, 陈健辉. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009, 28(9): 14-16. |
Li R H, Xia Y S, Liu S Z, Sun L L, Guo P G, Liao S Y, Chen J H.CTAB improved method of DNA extraction in plant.Res Explor Lab, 2009, 28(9): 14-16. (in Chinese with English abstract) | |
[24] | 何光存, 陈荣智, 杜波, 祝莉莉. 水稻抗褐飞虱基因Bph15的特异性共显性分子标记及其应用: CN107779522A.2018-03-09. |
He G C, Chen R Z, Du B, Zhu L L. Specific co-dominant molecular markers of rice brown planthopper resistance gene Bph15 and their application: CN107779522A.2018-03-09. (in Chinese) | |
[25] | Sidhu G S, Khush G S.Genetic analysis of brown planthopper resistance in twenty varieties of rice,Oryza stativa L. Theor Appl Genet, 1978, 53: 199-203. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||