Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (5): 407-420.DOI: 10.16819/j.1001-7216.2019.9026
• Research Papers • Previous Articles Next Articles
Qizhang LONG, Yonglan HUANG, Xiuying TANG, Huimin WANG, Ming LU, Linfeng YUAN, Jianlin WAN*()
Received:
2019-03-05
Revised:
2019-05-24
Online:
2019-09-10
Published:
2019-09-10
Contact:
Jianlin WAN
龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林*()
通讯作者:
万建林
基金资助:
CLC Number:
Qizhang LONG, Yonglan HUANG, Xiuying TANG, Huimin WANG, Ming LU, Linfeng YUAN, Jianlin WAN. Creation of Low-Cd-accumulating indica Rice by Disruption of OsNramp5 Gene via CRISPR/Cas9[J]. Chinese Journal OF Rice Science, 2019, 33(5): 407-420.
龙起樟, 黄永兰, 唐秀英, 王会民, 芦明, 袁林峰, 万建林. 利用CRISPR/Cas9敲除OsNramp5基因创制低镉籼稻[J]. 中国水稻科学, 2019, 33(5): 407-420.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9026
Fig. 1. Structure of the T-DNA region of the CRISPR/Cas9 Ti binary vectors pCUbi1390Cas9-U6/U3. LB, T-DNA left border; RB, T-DNA right border; HPTⅡ, Hygromycin resistant gene; 2×35S, Duplicated 35S promoter; CmR-ccdB cassette, Chloramphenicol resistant gene and ccdB suicide gene; Aar I, typeⅡ restriction enzyme recognition site for guide DNA cloning (the cut sites were indicated by black triangles); Pst I-Sna B I-Mlu I, Restriction enzyme sites for further use; The CaMV 3′ UTR and Nos polyA signal of the HPT II and the Cas9 genes are not shown; The only difference between the vectors pCUbi1390Cas9-U6 and pCUbi1390Cas9-U3 is that the two vectors use different sgRNA promoters together with different transcription start bases.
基因型 Genotype | |||||||
---|---|---|---|---|---|---|---|
靶位点1 Target site 1 | 靶位点2 Target site 2 | ||||||
华占 Huazhan | 五丰B Wufeng B | 五山丝苗 Wushansimiao | 中早35 Zhongzao 35 | Kasalath | 合计 Sum | Kasalath | |
野生型Wild type | 5(36%) | 6(30%) | 22(61%) | 7(41%) | 1(10%) | 41(42%) | 0 |
杂合Heterozygous | 0 | 0 | 3(8%) | 0 | 1(10%) | 4(4%) | 2(50%) |
双等位基因Biallelic | 9(64%) | 14(70%) | 11(31%) | 10(59%) | 8(80%) | 52(54%) | 1(25%) |
纯合Homozygous | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
嵌合体Chimeric | 0 | 0 | 0 | 0 | 0 | 0 | 1(25%) |
合计Sum | 14(100%) | 20(100%) | 36(100%) | 17(100%) | 10(100%) | 97(100%) | 4(100%) |
Table 1 Occurrence frequency of the four genotypes among the positive transgenic lines of the five cultivars.
基因型 Genotype | |||||||
---|---|---|---|---|---|---|---|
靶位点1 Target site 1 | 靶位点2 Target site 2 | ||||||
华占 Huazhan | 五丰B Wufeng B | 五山丝苗 Wushansimiao | 中早35 Zhongzao 35 | Kasalath | 合计 Sum | Kasalath | |
野生型Wild type | 5(36%) | 6(30%) | 22(61%) | 7(41%) | 1(10%) | 41(42%) | 0 |
杂合Heterozygous | 0 | 0 | 3(8%) | 0 | 1(10%) | 4(4%) | 2(50%) |
双等位基因Biallelic | 9(64%) | 14(70%) | 11(31%) | 10(59%) | 8(80%) | 52(54%) | 1(25%) |
纯合Homozygous | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
嵌合体Chimeric | 0 | 0 | 0 | 0 | 0 | 0 | 1(25%) |
合计Sum | 14(100%) | 20(100%) | 36(100%) | 17(100%) | 10(100%) | 97(100%) | 4(100%) |
Fig. 2. Target site mutations of OsNramp5 in the genetically edited lines. A and B, The sequence changes in Target sites 1 and 2 of the OsNramp5 gene, respectively. WT, Wild type; #** or ##**, Mutation type numbers; In the WT sequence, the target site, the cut site and the PAM site are indicated with the bases highlighted in grey (The underlined base “G” or “A” indicates the transcription start site of the rice U6 or U3 promoter in the CRISPR/Cas9 system), reverse black triangle and the bases in underlined bold font, respectively; In the mutation sequences, the deleted bases are indicated by dashed lines, the inserted ones are underlined, and those identical with the wild type are shown normally; The numbers on the right indicate the counts of the deleted or inserted bases. C, The occurrence frequency of various mutation types in Target site 1. The mutations were summarized as three types, which are deletions, insertions and InDels. The deletion type includes five subtypes, which are those with 1 bp, 2 bp, 3 bp, 4 bp and ≥6 bp deletion respectively. The insertion type includes four subtypes, which are those with one A, one T, one G and double T insertion, respectively. The data are derived from the analysis of 106 mutation alleles from 56 independent transgenic lines.
株系号Line number | 等位 基因 Allele | 基因型Genotype | |||||
---|---|---|---|---|---|---|---|
靶位点1 Target site 1 | 靶位点2 Target site 2 | ||||||
华占 Huazhan | 五丰B Wufeng B | 五山丝苗 Wushansimiao | 中早35 Zhongzao 35 | Kasalath | Kasalath | ||
L01 | 1 | #05 | #26 | WT | #03 | #05 | WT |
2 | #31 | #30 | #28 | #29 | #29 | ##04 | |
L02 | 1 | #06 | #03 | #15 | #03 | #03 | ##01 |
2 | #09 | #05 | #28 | #29 | #13 | ##06 | |
L03 | 1 | #05 | #02 | #05 | #29 | WT | WT |
2 | #28 | #29 | #24 | ? | #21 | ##07 | |
L04 | 1 | #01 | #06 | #03 | #05 | #01 | ##02 |
2 | #09 | #27 | #05 | #25 | #29 | ##03 | |
3 | - | - | - | - | - | ##05 | |
L05 | 1 | #01 | #05 | #05 | #01 | #05 | - |
2 | #29 | #29 | #18 | #05 | ? | - | |
L06 | 1 | #01 | #01 | #18 | #11 | #01 | - |
2 | #05 | #32 | #28 | #17 | #10 | - | |
L07 | 1 | #07 | #05 | WT | #01 | #01 | - |
2 | #15 | #28 | #16 | #09 | #04 | - | |
L08 | 1 | #03 | #03 | #05 | #03 | #12 | - |
2 | #19 | #08 | #10 | #14 | #29 | - | |
L09 | 1 | #05 | #01 | #03 | #01 | #03 | - |
2 | #28 | #29 | #29 | #05 | #20 | - | |
L10 | 1 | - | #05 | #01 | #06 | - | - |
2 | - | #28 | #29 | #29 | - | - | |
L11 | 1 | - | #06 | #23 | - | - | - |
2 | - | #29 | #29 | - | - | - | |
L12 | 1 | - | #03 | #01 | - | - | - |
2 | - | #30 | #28 | - | - | - | |
L13 | 1 | - | #01 | #22 | - | - | - |
2 | - | #05 | #28 | - | - | - | |
L14 | 1 | - | #01 | WT | - | - | - |
2 | - | #29 | #01 | - | - | - |
Table 2 Genotypes of all OsNramp5 edited lines derived from five cultivars.
株系号Line number | 等位 基因 Allele | 基因型Genotype | |||||
---|---|---|---|---|---|---|---|
靶位点1 Target site 1 | 靶位点2 Target site 2 | ||||||
华占 Huazhan | 五丰B Wufeng B | 五山丝苗 Wushansimiao | 中早35 Zhongzao 35 | Kasalath | Kasalath | ||
L01 | 1 | #05 | #26 | WT | #03 | #05 | WT |
2 | #31 | #30 | #28 | #29 | #29 | ##04 | |
L02 | 1 | #06 | #03 | #15 | #03 | #03 | ##01 |
2 | #09 | #05 | #28 | #29 | #13 | ##06 | |
L03 | 1 | #05 | #02 | #05 | #29 | WT | WT |
2 | #28 | #29 | #24 | ? | #21 | ##07 | |
L04 | 1 | #01 | #06 | #03 | #05 | #01 | ##02 |
2 | #09 | #27 | #05 | #25 | #29 | ##03 | |
3 | - | - | - | - | - | ##05 | |
L05 | 1 | #01 | #05 | #05 | #01 | #05 | - |
2 | #29 | #29 | #18 | #05 | ? | - | |
L06 | 1 | #01 | #01 | #18 | #11 | #01 | - |
2 | #05 | #32 | #28 | #17 | #10 | - | |
L07 | 1 | #07 | #05 | WT | #01 | #01 | - |
2 | #15 | #28 | #16 | #09 | #04 | - | |
L08 | 1 | #03 | #03 | #05 | #03 | #12 | - |
2 | #19 | #08 | #10 | #14 | #29 | - | |
L09 | 1 | #05 | #01 | #03 | #01 | #03 | - |
2 | #28 | #29 | #29 | #05 | #20 | - | |
L10 | 1 | - | #05 | #01 | #06 | - | - |
2 | - | #28 | #29 | #29 | - | - | |
L11 | 1 | - | #06 | #23 | - | - | - |
2 | - | #29 | #29 | - | - | - | |
L12 | 1 | - | #03 | #01 | - | - | - |
2 | - | #30 | #28 | - | - | - | |
L13 | 1 | - | #01 | #22 | - | - | - |
2 | - | #05 | #28 | - | - | - | |
L14 | 1 | - | #01 | WT | - | - | - |
2 | - | #29 | #01 | - | - | - |
样品编号 | 镉1 Cd1 | 镉2 Cd2 | 锰1 Mn1 | 铁1 Fe1 | 铜1 Cu1 | 铅1 Pb1 | 铬1 Cr1 |
---|---|---|---|---|---|---|---|
Sample number | /(μg∙kg-1) | /(μg∙kg-1) | /(mg∙kg-1) | /(mg∙kg-1) | /(mg∙kg-1) | /(μg∙kg-1) | /(μg∙kg-1) |
HZ-WT | 2010.3±400.5(3) | 134.7±22.5(3) | 60.1±13.9(3) | 10.4±1.1(3) | 4.7±0.4(3) | 114.2±40.4(3) | 80.8±39.1(3) |
HZ-L01-#05/#05 | 137.6(1) | 11.0(1) | 25.0(1) | 13.3(1) | 5.4(1) | 211.0(1) | 153.0(1) |
HZ-L01-#31/#31 | 46.4(1) | 13.5(1) | 24.2(1) | 27.5(1) | 5.4(1) | 344.3(1) | 169.1(1) |
HZ-L04-#09/#09 | 39.1±11.2(2) | 11.8±0.2(2) | 20.5±1.5(2) | 13.3±1.5(2) | 5.1±0.2(2) | 165.1±15.5(2) | 97.2±16.7(2) |
HZ-L08-#03/#03 | 47.4±10.6(3) | 11.7±1.0(3) | 20.3(1) | 11.7±2.1(3) | 5.4±1.1(3) | 191.0±58.2(3) | 109.2±19.7(3) |
HZ-L08-#19/#19 | 91.0±64.2(2) | 12.6±5.3(2) | 22.5±0.7(2) | 11.9±0.1(2) | 4.7±0.1(2) | 191.3±48.2(2) | 173.5±42.2(2) |
HZ-MUT3 | 65.2±41.4(9)* | 12.0±2.1(9)* | 22.2±2.0(7)* | 14.0±5.2(9) | 5.2±0.6(9) | 204.6±64.2(9)* | 132.3±38.9(9) |
WF-WT | 1753.7±167.5(3) | 123.7±31.3(3) | 42.6±7.0(3) | 12.8±0.9(3) | 4.5±0.3(3) | 168.0±34.7(3) | 60.8±5.0(3) |
WF-L03-#02/#02 | 30.5(1) | 13.3(1) | 22.9(1) | 13.8(1) | 4.7(1) | 138.6(1) | 124.4(1) |
WF-L03-#29/#29 | 29.1(1) | 14.6(1) | 21.1(1) | 14.8(1) | 3.9(1) | 100.9(1) | 54.6(1) |
WF-L04-#27/#27 | 42.0(1) | 14.1(1) | 16.8(1) | 14.2(1) | 4.4(1) | 183.4(1) | 104.8(1) |
WF-L05-#29/#29 | 68.3±33.5(2) | 15.9±0.7(2) | 16.0±0.6(2) | 13.6±0.1(2) | 4.5±0.2(2) | 161.7±32.5(2) | 108.7±39.5(2) |
WF-L08-#03/#03 | 82.2±0.3(2) | 18.9±0.2(2) | 17.9±0.6(2) | 14.5±0.6(2) | 5.1±0.2(2) | 166.4±43.7(2) | 66.6±5.0(2) |
WF-L08-#08/#08 | 29.1(1) | 15.0(1) | 17.1(1) | 14.9(1) | 4.7(1) | 149.0(1) | 73.9(1) |
WF-MUT3 | 53.9±26.9(8)** | 15.8±2.1(8)* | 18.2±2.5(8)* | 14.2±0.6(8)** | 4.6±0.4(8) | 153.5±32.4(8) | 88.5±30.0(8) |
WS-WT | 1765.6±246.4(6) | 129.2±32.3(3) | 37.1±5.1(3) | 9.5±0.7(3) | 4.6±0.2(3) | 133.9±41.5(3) | 74.0±23.9(3) |
WS-L01-#28/#28 | 134.2±150.4(2) | 17.7±1.4(2) | 16.6±1.3(2) | 12.3±1.1(2) | 4.3±0.1(2) | 124.9±4.9(2) | 114.0±29.6(2) |
WS-L02-#15/#15 | 42.6±8.2(2) | 15.6±0.4(2) | 15.8±0.6(2) | 12.4±2.1(2) | 4.6±0.1(2) | 170.2±60.7(2) | 119.6±13.1(2) |
WS-L02-#28/#28 | 187.3(1) | 13.6(1) | 16.9(1) | 11.9(1) | 4.6(1) | 128.2(1) | 100.1(1) |
WS-MUT3 | 108.2±98.6(5)** | 16.0±1.9(5)* | 16.3±0.9(5)* | 12.2±1.2(5)* | 4.5±0.2(5) | 143.7±38.9(5) | 113.4±18.0(5)* |
ZZ-WT | 1140.3±143.0(3) | 69.9±12.7(3) | 29.1±1.2(3) | 14.4±1.3(3) | 5.0±0.1(3) | 123.7±3.2(3) | 56.9±9.5(3) |
ZZ-L01-#03/#03 | 121.5(1) | 13.6(1) | 23.8(1) | 17.4(1) | 4.5(1) | 196.6(1) | 85.5(1) |
ZZ-L01-#29/#29 | 31.9(1) | 14.1(1) | 16.7(1) | 14.8(1) | 4.7(1) | 131.9(1) | 109.0(1) |
ZZ-L08-#03/#03 | 99.4±89.9(2) | 18.9±4.7(2) | 17.0±0.6(2) | 14.4±1.3(2) | 4.2±0.2(2) | 139.6±8.8(2) | 109.4±13.4(2) |
ZZ-L08-#14/#14 | 107.2±95.7(2) | 17.3±1.3(2) | 20.3±2.8(2) | 17.5±2.7(2) | 4.2±0.1(2) | 119.0±17.1(2) | 93.1±8(2) |
ZZ-MUT3 | 94.4±66.7(6)** | 16.7±3.2(6)* | 19.2±3.1(6)** | 16.0±2.1(6) | 4.4±0.2(6)** | 140.9±30.1(6) | 99.9±12.7(6)** |
Table 3 Changes of mineral element contents in the grains of the OsNramp5 knockout lines.
样品编号 | 镉1 Cd1 | 镉2 Cd2 | 锰1 Mn1 | 铁1 Fe1 | 铜1 Cu1 | 铅1 Pb1 | 铬1 Cr1 |
---|---|---|---|---|---|---|---|
Sample number | /(μg∙kg-1) | /(μg∙kg-1) | /(mg∙kg-1) | /(mg∙kg-1) | /(mg∙kg-1) | /(μg∙kg-1) | /(μg∙kg-1) |
HZ-WT | 2010.3±400.5(3) | 134.7±22.5(3) | 60.1±13.9(3) | 10.4±1.1(3) | 4.7±0.4(3) | 114.2±40.4(3) | 80.8±39.1(3) |
HZ-L01-#05/#05 | 137.6(1) | 11.0(1) | 25.0(1) | 13.3(1) | 5.4(1) | 211.0(1) | 153.0(1) |
HZ-L01-#31/#31 | 46.4(1) | 13.5(1) | 24.2(1) | 27.5(1) | 5.4(1) | 344.3(1) | 169.1(1) |
HZ-L04-#09/#09 | 39.1±11.2(2) | 11.8±0.2(2) | 20.5±1.5(2) | 13.3±1.5(2) | 5.1±0.2(2) | 165.1±15.5(2) | 97.2±16.7(2) |
HZ-L08-#03/#03 | 47.4±10.6(3) | 11.7±1.0(3) | 20.3(1) | 11.7±2.1(3) | 5.4±1.1(3) | 191.0±58.2(3) | 109.2±19.7(3) |
HZ-L08-#19/#19 | 91.0±64.2(2) | 12.6±5.3(2) | 22.5±0.7(2) | 11.9±0.1(2) | 4.7±0.1(2) | 191.3±48.2(2) | 173.5±42.2(2) |
HZ-MUT3 | 65.2±41.4(9)* | 12.0±2.1(9)* | 22.2±2.0(7)* | 14.0±5.2(9) | 5.2±0.6(9) | 204.6±64.2(9)* | 132.3±38.9(9) |
WF-WT | 1753.7±167.5(3) | 123.7±31.3(3) | 42.6±7.0(3) | 12.8±0.9(3) | 4.5±0.3(3) | 168.0±34.7(3) | 60.8±5.0(3) |
WF-L03-#02/#02 | 30.5(1) | 13.3(1) | 22.9(1) | 13.8(1) | 4.7(1) | 138.6(1) | 124.4(1) |
WF-L03-#29/#29 | 29.1(1) | 14.6(1) | 21.1(1) | 14.8(1) | 3.9(1) | 100.9(1) | 54.6(1) |
WF-L04-#27/#27 | 42.0(1) | 14.1(1) | 16.8(1) | 14.2(1) | 4.4(1) | 183.4(1) | 104.8(1) |
WF-L05-#29/#29 | 68.3±33.5(2) | 15.9±0.7(2) | 16.0±0.6(2) | 13.6±0.1(2) | 4.5±0.2(2) | 161.7±32.5(2) | 108.7±39.5(2) |
WF-L08-#03/#03 | 82.2±0.3(2) | 18.9±0.2(2) | 17.9±0.6(2) | 14.5±0.6(2) | 5.1±0.2(2) | 166.4±43.7(2) | 66.6±5.0(2) |
WF-L08-#08/#08 | 29.1(1) | 15.0(1) | 17.1(1) | 14.9(1) | 4.7(1) | 149.0(1) | 73.9(1) |
WF-MUT3 | 53.9±26.9(8)** | 15.8±2.1(8)* | 18.2±2.5(8)* | 14.2±0.6(8)** | 4.6±0.4(8) | 153.5±32.4(8) | 88.5±30.0(8) |
WS-WT | 1765.6±246.4(6) | 129.2±32.3(3) | 37.1±5.1(3) | 9.5±0.7(3) | 4.6±0.2(3) | 133.9±41.5(3) | 74.0±23.9(3) |
WS-L01-#28/#28 | 134.2±150.4(2) | 17.7±1.4(2) | 16.6±1.3(2) | 12.3±1.1(2) | 4.3±0.1(2) | 124.9±4.9(2) | 114.0±29.6(2) |
WS-L02-#15/#15 | 42.6±8.2(2) | 15.6±0.4(2) | 15.8±0.6(2) | 12.4±2.1(2) | 4.6±0.1(2) | 170.2±60.7(2) | 119.6±13.1(2) |
WS-L02-#28/#28 | 187.3(1) | 13.6(1) | 16.9(1) | 11.9(1) | 4.6(1) | 128.2(1) | 100.1(1) |
WS-MUT3 | 108.2±98.6(5)** | 16.0±1.9(5)* | 16.3±0.9(5)* | 12.2±1.2(5)* | 4.5±0.2(5) | 143.7±38.9(5) | 113.4±18.0(5)* |
ZZ-WT | 1140.3±143.0(3) | 69.9±12.7(3) | 29.1±1.2(3) | 14.4±1.3(3) | 5.0±0.1(3) | 123.7±3.2(3) | 56.9±9.5(3) |
ZZ-L01-#03/#03 | 121.5(1) | 13.6(1) | 23.8(1) | 17.4(1) | 4.5(1) | 196.6(1) | 85.5(1) |
ZZ-L01-#29/#29 | 31.9(1) | 14.1(1) | 16.7(1) | 14.8(1) | 4.7(1) | 131.9(1) | 109.0(1) |
ZZ-L08-#03/#03 | 99.4±89.9(2) | 18.9±4.7(2) | 17.0±0.6(2) | 14.4±1.3(2) | 4.2±0.2(2) | 139.6±8.8(2) | 109.4±13.4(2) |
ZZ-L08-#14/#14 | 107.2±95.7(2) | 17.3±1.3(2) | 20.3±2.8(2) | 17.5±2.7(2) | 4.2±0.1(2) | 119.0±17.1(2) | 93.1±8(2) |
ZZ-MUT3 | 94.4±66.7(6)** | 16.7±3.2(6)* | 19.2±3.1(6)** | 16.0±2.1(6) | 4.4±0.2(6)** | 140.9±30.1(6) | 99.9±12.7(6)** |
样品编号 Sample number | 株高 Plant height /cm | 有效分蘖数 Effective tiller number | 每穗总粒数 Total grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) | 增产率 Yield increasing rate/% |
---|---|---|---|---|---|---|---|---|
HZ-WT | 115.3±3.6(68) | 8.8±2.4(68) | 239.1±91.5(115) | 192.9±75.0(115) | 81±11(115) | 19.6±0.1(2) | 9009.0 | - |
HZ-L01-#31/#31 | 111.4±3.1(57)** | 9.2±2.2(57) | 257.1±97.6(89) | 178.7±69.9(89) | 70±12(89)** | 18.9±0.1(2)* | 8376.0 | -7.0 |
HZ-L04-#09/#09 | 112.1±2.6(71)** | 8.8±2.3(71) | 235.9±63.7(105) | 181.9±53.7(105) | 77±9(105)** | 19.4±0.0(2) | 8418.0 | -6.6 |
HZ-L08-#19/#19 | 107.9±4.4(70)** | 9.7±2.6(70) | - | - | - | 18.6±0.2(2)* | - | - |
P值 P value | 0.000 | 0.129 | 0.211 | 0.322 | 0.000 | 0.003 | - | - |
WF-WT | 78.9±2.1(46) | 7.3±1.6(46) | 129.8±26.1(73) | 121.3±26.5(73) | 93±5(73) | 24.0±0.1(2) | 5760.0 | - |
WF-L03-#02/#02 | 74.6±1.8(46)** | 7.6±1.5(46) | 120.8±26.2(81) | 109.5±27.5(81)* | 90±7(81)** | 23.6±0.1(2) | 5310.0 | -7.8 |
WF-L03-#29/#29 | 77.7±2.4(46)* | 7.3±2.1(46) | 130.8±24.2(75) | 117.4±24.4(75) | 89±6(75)** | 23.7±0.0(2) | 5512.5 | -4.3 |
P值 P value | 0.000 | 0.664 | 0.028 | 0.018 | 0.000 | 0.083 | - | - |
WS-WT | 116.2±3.8(45) | 8.7±2.4(45) | 223.8±70.2(103) | 201.7±61.7(103) | 90±4(103) | 20.4±0.0(2) | 9660.0 | - |
WS-L01-#28/#28(1) | 110.4±2.9(46)** | 8.5±1.6(46) | 229.2±92.1(104) | 190.4±75.7(104) | 84±9(104)** | 19.6±0.1(2)** | 8596.5 | -11.0 |
WS-L01-#28/#28(2) | 110.8±3.3(46)** | 9.6±2.6(46) | 211.6±58.0(96) | 187.8±50.7(96) | 89±7(96) | 19.3±0.0(2)** | 9435.0 | -2.3 |
WS-L02-#15/#15 | 109.6±4.1(46)** | 9.2±1.8(46) | 183.5±68.3(103)** | 164.7±61.0(103)** | 90±3(103) | 20.1±0.1(2)* | 8220.0 | -14.9 |
WS-L02-#28/#28 | 111.1±3.2(38)** | 9.6±2.2(38) | - | - | - | 19.9±0.0(2)** | - | - |
P值 P value | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | - | - |
ZZ-WT | 83.8±3.1(46) | 7.2±1.9(46) | 115.2±42.7(83) | 101.0±41.3(83) | 86±8(83) | 29.4±0.2(2) | 5770.5 | - |
ZZ-L08-#14/#14 | 78.1±2.3(45)** | 7.8±1.9(45) | 106.6±41.7(88) | 92.7±35.6(88) | 87±6(88) | 27.8±0.1(2)** | 5458.5 | -5.4 |
Table 4 Effects of OsNramp5 disruption on plant height and yield traits.
样品编号 Sample number | 株高 Plant height /cm | 有效分蘖数 Effective tiller number | 每穗总粒数 Total grain number per panicle | 每穗实粒数 Filled grain number per panicle | 结实率 Seed setting rate/% | 千粒重 1000-grain weight/g | 理论产量 Theoretical yield /(kg∙hm-2) | 增产率 Yield increasing rate/% |
---|---|---|---|---|---|---|---|---|
HZ-WT | 115.3±3.6(68) | 8.8±2.4(68) | 239.1±91.5(115) | 192.9±75.0(115) | 81±11(115) | 19.6±0.1(2) | 9009.0 | - |
HZ-L01-#31/#31 | 111.4±3.1(57)** | 9.2±2.2(57) | 257.1±97.6(89) | 178.7±69.9(89) | 70±12(89)** | 18.9±0.1(2)* | 8376.0 | -7.0 |
HZ-L04-#09/#09 | 112.1±2.6(71)** | 8.8±2.3(71) | 235.9±63.7(105) | 181.9±53.7(105) | 77±9(105)** | 19.4±0.0(2) | 8418.0 | -6.6 |
HZ-L08-#19/#19 | 107.9±4.4(70)** | 9.7±2.6(70) | - | - | - | 18.6±0.2(2)* | - | - |
P值 P value | 0.000 | 0.129 | 0.211 | 0.322 | 0.000 | 0.003 | - | - |
WF-WT | 78.9±2.1(46) | 7.3±1.6(46) | 129.8±26.1(73) | 121.3±26.5(73) | 93±5(73) | 24.0±0.1(2) | 5760.0 | - |
WF-L03-#02/#02 | 74.6±1.8(46)** | 7.6±1.5(46) | 120.8±26.2(81) | 109.5±27.5(81)* | 90±7(81)** | 23.6±0.1(2) | 5310.0 | -7.8 |
WF-L03-#29/#29 | 77.7±2.4(46)* | 7.3±2.1(46) | 130.8±24.2(75) | 117.4±24.4(75) | 89±6(75)** | 23.7±0.0(2) | 5512.5 | -4.3 |
P值 P value | 0.000 | 0.664 | 0.028 | 0.018 | 0.000 | 0.083 | - | - |
WS-WT | 116.2±3.8(45) | 8.7±2.4(45) | 223.8±70.2(103) | 201.7±61.7(103) | 90±4(103) | 20.4±0.0(2) | 9660.0 | - |
WS-L01-#28/#28(1) | 110.4±2.9(46)** | 8.5±1.6(46) | 229.2±92.1(104) | 190.4±75.7(104) | 84±9(104)** | 19.6±0.1(2)** | 8596.5 | -11.0 |
WS-L01-#28/#28(2) | 110.8±3.3(46)** | 9.6±2.6(46) | 211.6±58.0(96) | 187.8±50.7(96) | 89±7(96) | 19.3±0.0(2)** | 9435.0 | -2.3 |
WS-L02-#15/#15 | 109.6±4.1(46)** | 9.2±1.8(46) | 183.5±68.3(103)** | 164.7±61.0(103)** | 90±3(103) | 20.1±0.1(2)* | 8220.0 | -14.9 |
WS-L02-#28/#28 | 111.1±3.2(38)** | 9.6±2.2(38) | - | - | - | 19.9±0.0(2)** | - | - |
P值 P value | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | - | - |
ZZ-WT | 83.8±3.1(46) | 7.2±1.9(46) | 115.2±42.7(83) | 101.0±41.3(83) | 86±8(83) | 29.4±0.2(2) | 5770.5 | - |
ZZ-L08-#14/#14 | 78.1±2.3(45)** | 7.8±1.9(45) | 106.6±41.7(88) | 92.7±35.6(88) | 87±6(88) | 27.8±0.1(2)** | 5458.5 | -5.4 |
样品编号 Sample number | 整精米长 Head rice length /mm | 整精米宽 Head rice width /mm | 长宽比 Length/width | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味分 Taste score |
---|---|---|---|---|---|---|---|---|
HZ-WT | 5.59±0.02 | 1.80±0.00 | 3.11±0.02 | 4.50±0.12 | 1.25±0.06 | 8.20±0.03 | 12.18±0.25 | - |
HZ-L04-#09/#09 | 5.67±0.01 | 1.74±0.01** | 3.27±0.01** | 3.85±0.45 | 1.18±0.12 | 8.47±0.02** | 12.05±0.27 | - |
HZ-L08-#19/#19 | 5.55±0.03 | 1.72±0.00** | 3.23±0.02** | 4.06±0.65 | 0.97±0.18 | 8.41±0.03** | 11.54±0.17 | - |
HZ-L01-#31/#31 | 5.61±0.01 | 1.73±0.01** | 3.25±0.01** | 3.27±0.51 | 0.94±0.19 | 8.77±0.01** | 11.66±0.18 | - |
P值 P value | 0.015 | 0.000 | 0.000 | 0.400 | 0.402 | 0.000 | 0.202 | - |
WF-WT | 5.28±0.01 | 2.21±0.00 | 2.39±0.00 | 37.36±1.03 | 6.94±0.50 | 9.02±0.01 | 9.00±0.63 | - |
WF-L03-#02/#02 | 5.46±0.01** | 2.17±0.00** | 2.52±0.00** | 34.45±0.54 | 6.99±0.02 | 9.33±0.01** | 7.85±0.21 | - |
WF-L03-#29/#29 | 5.38±0.00** | 2.15±0.00** | 2.50±0.00** | 35.17±1.96 | 6.80±0.61 | 9.03±0.01 | 7.93±0.27 | - |
P值 P value | 0.000 | 0.000 | 0.000 | 0.338 | 0.952 | 0.000 | 0.166 | - |
WS-WT | 5.74±0.01 | 1.81±0.00 | 3.19±0.01 | 3.96±0.47 | 0.82±0.05 | 8.43±0.04 | 18.10±0.27 | 88.03±0.16 |
WS-L02-#15/#15 | 5.91±0.01** | 1.81±0.00 | 3.26±0.01** | 2.82±0.31 | 0.45±0.04** | 8.72±0.02** | 17.93±0.11 | 88.16±0.30 |
WS-L01-#28/#28 | 5.70±0.01 | 1.77±0.01** | 3.24±0.01** | 3.69±0.34 | 1.18±0.18 | 8.87±0.01** | 18.51±0.17 | 86.11±0.24** |
WS-L02-#28/#28 | 5.81±0.00** | 1.80±0.00 | 3.24±0.00** | 2.68±0.68 | 0.55±0.08 | 8.63±0.04** | 18.52±0.01 | 87.88±0.01 |
P值 P value | 0.000 | 0.000 | 0.000 | 0.229 | 0.001 | 0.000 | 0.106 | 0.000 |
ZZ-WT | 5.50±0.01 | 2.56±0.01 | 2.16±0.00 | 98.22±0.35 | 40.92±0.87 | 9.10±0.01 | 34.68±0.94 | - |
ZZ-L08-#14/#14 | 5.60±0.01** | 2.49±0.00** | 2.26±0.01** | 91.65±0.74** | 36.60±0.68* | 9.38±0.01* | 30.32±0.49* | - |
Table 5 Quality change of the milled rice from the OsNramp5 knockout lines relative to those from the wild type.
样品编号 Sample number | 整精米长 Head rice length /mm | 整精米宽 Head rice width /mm | 长宽比 Length/width | 垩白粒率 Chalky grain percentage/% | 垩白度 Chalkiness degree/% | 蛋白质含量 Protein content/% | 直链淀粉含量 Amylose content/% | 食味分 Taste score |
---|---|---|---|---|---|---|---|---|
HZ-WT | 5.59±0.02 | 1.80±0.00 | 3.11±0.02 | 4.50±0.12 | 1.25±0.06 | 8.20±0.03 | 12.18±0.25 | - |
HZ-L04-#09/#09 | 5.67±0.01 | 1.74±0.01** | 3.27±0.01** | 3.85±0.45 | 1.18±0.12 | 8.47±0.02** | 12.05±0.27 | - |
HZ-L08-#19/#19 | 5.55±0.03 | 1.72±0.00** | 3.23±0.02** | 4.06±0.65 | 0.97±0.18 | 8.41±0.03** | 11.54±0.17 | - |
HZ-L01-#31/#31 | 5.61±0.01 | 1.73±0.01** | 3.25±0.01** | 3.27±0.51 | 0.94±0.19 | 8.77±0.01** | 11.66±0.18 | - |
P值 P value | 0.015 | 0.000 | 0.000 | 0.400 | 0.402 | 0.000 | 0.202 | - |
WF-WT | 5.28±0.01 | 2.21±0.00 | 2.39±0.00 | 37.36±1.03 | 6.94±0.50 | 9.02±0.01 | 9.00±0.63 | - |
WF-L03-#02/#02 | 5.46±0.01** | 2.17±0.00** | 2.52±0.00** | 34.45±0.54 | 6.99±0.02 | 9.33±0.01** | 7.85±0.21 | - |
WF-L03-#29/#29 | 5.38±0.00** | 2.15±0.00** | 2.50±0.00** | 35.17±1.96 | 6.80±0.61 | 9.03±0.01 | 7.93±0.27 | - |
P值 P value | 0.000 | 0.000 | 0.000 | 0.338 | 0.952 | 0.000 | 0.166 | - |
WS-WT | 5.74±0.01 | 1.81±0.00 | 3.19±0.01 | 3.96±0.47 | 0.82±0.05 | 8.43±0.04 | 18.10±0.27 | 88.03±0.16 |
WS-L02-#15/#15 | 5.91±0.01** | 1.81±0.00 | 3.26±0.01** | 2.82±0.31 | 0.45±0.04** | 8.72±0.02** | 17.93±0.11 | 88.16±0.30 |
WS-L01-#28/#28 | 5.70±0.01 | 1.77±0.01** | 3.24±0.01** | 3.69±0.34 | 1.18±0.18 | 8.87±0.01** | 18.51±0.17 | 86.11±0.24** |
WS-L02-#28/#28 | 5.81±0.00** | 1.80±0.00 | 3.24±0.00** | 2.68±0.68 | 0.55±0.08 | 8.63±0.04** | 18.52±0.01 | 87.88±0.01 |
P值 P value | 0.000 | 0.000 | 0.000 | 0.229 | 0.001 | 0.000 | 0.106 | 0.000 |
ZZ-WT | 5.50±0.01 | 2.56±0.01 | 2.16±0.00 | 98.22±0.35 | 40.92±0.87 | 9.10±0.01 | 34.68±0.94 | - |
ZZ-L08-#14/#14 | 5.60±0.01** | 2.49±0.00** | 2.26±0.01** | 91.65±0.74** | 36.60±0.68* | 9.38±0.01* | 30.32±0.49* | - |
Fig. 3. Melting curves of various mutation alleles and the wild type in HRM analysis. The sample sizes (n) for the genotypes WT(upper panel), WT(lower panel), #03, #05, #06, #09, #14, #26 and #27 are 9, 13, 11, 2, 4, 2, 2, 1 and 1, respectively.
[1] | Grant C A, Clarke J M, Duguid S, Chaney R L.Selection and breeding of plant cultivars to minimize cadmium accumulation.Sci Total Environ, 2008, 390: 301-310. |
[2] | Sebastian A, Prasad M N V. Cadmium minimization in rice. A review.Agron Sustain Dev, 2014, 34(1): 155-173. |
[3] | Järup L, Åkesson A.Current status of cadmium as an environmental health problem.Toxicol Appl Pharmacol , 2009, 238: 201-208. |
[4] | Arao T, Ae N.Genotypic variations in cadmium levels of rice grain.Soil Sci Plant Nutr, 2003, 49(4): 473-479 |
[5] | Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong M H.Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet.J Sci Food Agric, 2005, 85: 147-153. |
[6] | 王林友, 竺朝娜, 王建军, 张礼霞, 金庆生, 石春海. 水稻镉、铅、砷低含量基因型的筛选. 浙江农业学报, 2012, 24(1): 133-138. |
Wang L Y, Zhu C N, Wang J J, Zhang L X, Jin Q S, Shi C H.Screening for rice (Oryza sativa L.) genotyeps with lower Cd, Pb and As contents. Acta Agric Zhejiang, 2012, 24(1): 133-138. (in Chinese with English abstract) | |
[7] | 叶新新, 周艳丽, 孙波. 适于轻度Cd、As污染土壤种植的水稻品种筛选. 农业环境科学学报, 2012, 31(6): 1082-1088. |
Ye X X, Zhou Y L, Sun B.Screening of suitable rice cultivars for the adaptation to lightly contaminated soil with Cd and As.J Agro-Environ Sci, 2012, 31(6): 1082-1088. (in Chinese with English abstract) | |
[8] | Uraguchi S, Fujiwara T.Rice breaks ground for cadmium-free cereals.Curr Opin Plant Biol, 2013, 16(3): 328-334. |
[9] | Uraguchi S, Fujiwara T.Cadmium transport and tolerance in rice: Perspectives for reducing grain cadmium accumulation.Rice, 2012, 5(1): 5. |
[10] | Satoh-Nagasawa N, Mori M, Nakazawa N, Kawamoto T, Nagato Y, Sakurai K, Takahashi H, Watanabe A, Akagi H.Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant Cell Physiol, 2012, 53(1): 213-224. |
[11] | Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H.The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice.Plant Cell Environ, 2012, 35(11): 1948-1957. |
[12] | Yamaji N, Xia J, Mitani-Ueno N, Yokosho K, Feng M J.Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2.Plant Physiol, 2013, 162(2): 927-939. |
[13] | Ueno D, Yamaji N, Kono I, Huang C F, Ando T, Yano M, Ma J F.Gene limiting cadmium accumulation in rice.Proc Natl Acad Sci USA, 2010, 107(38): 16 500-16 505. |
[14] | Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T.Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains.Proc Natl Acad Sci USA, 2011, 108(52): 20 959-20 964. |
[15] | Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K.Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot, 2011, 62(15): 5727-5734. |
[16] | Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H.Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.Proc Natl Acad Sci USA, 2012, 109(47): 19 166-19 171. |
[17] | Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K.Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport.Sci Rep, 2012, 2: 286. |
[18] | Sasaki A, Yamaji N, Yokosho K, Ma J F.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice.Plant Cell, 2012, 24(5): 2155-2167. |
[19] | Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V.Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system.Plant Methods, 2013, 9(1): 39. |
[20] | Peng H, Zhang Q, Li Y, Lei C, Zhai Y, Sun X, Sun D, Sun Y, Lu T.A putative leucine-rich repeat receptor kinase, OsBRR1, is involved in rice blast resistance.Planta, 2009, 230(2): 377-385. |
[21] | Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J.Targeted mutagenesis in rice using CRISPR-Cas system.Cell Res, 2013, 23(10): 1233-1236. |
[22] | Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K.Efficient genome editing in plants using a CRISPR/Cas system.Cell Res, 2013, 23(10): 1229-1232. |
[23] | Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F.Multiplex genome engineering using CRISPR/Cas systems.Science, 2013, 339(6121): 819-823. |
[24] | Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L L.CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants.Mol Plant, 2017, 10(3): 530-532. |
[25] | Lei Y, Lu L, Liu H Y, Li S, Xing F, Chen L L.CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants.Mol Plant, 2014, 7(9): 1494-1496. |
[26] | Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J. Transfection and transformation ofAgrobacterium tumefaciens. Mol Gen Genet, 1978, 163(2): 181-187. |
[27] | Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H.Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice.Plant J, 2006, 47(6): 969-976. |
[28] | Allen G C, Flores-Vergara M A, Krasynanski S, Kumar S, Thompson W F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethy- lammonium bromide.Nat Protoc, 2006, 1(5): 2320-2325. |
[29] | 刘巧泉, 陈秀花, 王兴稳, 彭凌涛, 顾铭洪. 一种快速检测转基因水稻中潮霉素抗性的简易方法. 农业生物技术学报, 2001, 9(3): 264-268. |
Liu Q Q, Chen X H, Wang X Y, Peng T L, Gu M H.A rapid simple method of assaying hygromysin resistance in transgenic rice. J Agric Biotechnol, 2001, 9(3): 264-268. (in Chinese with English abstract) | |
[30] | Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia S, Zhao B.Knockout ofOsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep, 2017, 7(1): 14 438. |
[31] | Rizwan M, Ali S, Adrees M, Rizvi H, Zia-Ur-Rehman M, Hannan F, Qayyum M F, Hafeez F, Ok Y S.Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management: A critical review.Environ Sci Pollut Res Int, 2016, 23(18): 17 859-17 879. |
[32] | 吴平. 应用RFLP标记分析水稻株高与分蘖的遗传相关性. 中国科学C辑: 生命科学, 1996, 26(3): 264-270. |
Wu P.Genetic correlation analysis of rice plant height and tiller number using RFLP markers.Sci China: Ser C, 1996, 26(3): 264-270. (in Chinese; the title was translated into English by us) | |
[33] | Allen F, Crepaldi L, Alsinet C, Strong A J, Kleshchevnikov V, De Angeli P, Páleníková P, Khodak A, Kiselev V, Kosicki M, Bassett A R, Harding H, Galanty Y, Muñoz-Martínez F, Metzakopian E, Jackson S P, Parts L.Predicting the mutations generated by repair of Cas9-induced double-strand breaks.Nat Biotechnol, 2018, 37: 64-72. |
[34] | Wang C, Guo W, Ye S, Wei P, Ow D W.Reduction of Cd in rice through expression ofOXS3-like gene fragments. Mol Plant, 2016, 9(2): 301-304 |
[35] | Uraguchi S, Kamiya T, Clemens S, Fujiwara T.Characterization of OsLCT1, a cadmium transporter from indica rice (Oryza sativa). Physiol Plant, 2014, 151(3): 339-347. |
[36] | Hao X, Zeng M, Wang J, Zeng Z, Dai J, Xie Z, Yang Y, Tian L, Chen L, Li D.A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice.Front Plant Sci, 2018, 9: 476. |
[1] | TANG Zhiwei, ZHU Xiangcheng, ZHANG Jun, DENG Aixing, ZHANG Weijian. Effects of Green Manure Planting and Lime Application on Cadmium Content in Double-cropping Rice Under Controlled Irrigation [J]. Chinese Journal OF Rice Science, 2024, 38(2): 211-222. |
[2] | LIANG Chuyan, WU Mingming, HUANG Fengming, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Prospects for the Application of Gene Editing and Genomic Selection in Rice Breeding [J]. Chinese Journal OF Rice Science, 2024, 38(1): 1-12. |
[3] | HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8 [J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24. |
[4] | LAN Jinsong, ZHUANG Hui. Advances in the Molecular Mechanism of Rice Plant Type [J]. Chinese Journal OF Rice Science, 2023, 37(5): 449-458. |
[5] | HUANG Qina, XU Youxiang, LIN Guanghao, DANG Hongyang, ZHENG Zhenquan, ZHANG Yan, WANG Han, SHAO Guosheng, YIN Xianyuan. Effects of Silicon on Antioxidant Enzyme System and Expression Levels of Genes Related to Cd2+ Uptake and Transportation in Rice Seedlings Under Cadmium Stress [J]. Chinese Journal OF Rice Science, 2023, 37(5): 486-496. |
[6] | CHEN Liming, YANG Taotao, XIONG Ruoyu, TAN Xueming, HUANG Shang, ZENG Yongjun, PAN Xiaohua, SHI Qinghua, ZHANG Jun, ZENG Yanhua. Effect of Free-air Temperature Increasing on Activities of Enzymes Involved in Starch Synthesis and Accumulation of Double-cropping indica Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 166-177. |
[7] | ZHANG Jia, WANG Huijie, HE Zhengquan, LIU Wenzhen. Analysis of Agrobacterium-Mediated Genetic Transformation System of indica Rice 9311 and Huazhan [J]. Chinese Journal OF Rice Science, 2023, 37(2): 213-224. |
[8] | PEI Feng, WANG Guangda, GAO Peng, FENG Zhiming, HU Keming, CHEN Zongxiang, CHEN Hongqi, CUI Ao, ZUO Shimin. Evaluation of New japonica Rice Lines with Low Cadmium Accumulation and Good Quality Generated by Knocking Out OsNramp5 [J]. Chinese Journal OF Rice Science, 2023, 37(1): 16-28. |
[9] | WU Mingming, ZENG Wei, ZHAI Rongrong, YE Jing, ZHU Guofu, YU Faming, ZHANG Xiaoming, YE Shenghai. Research Progress in Molecular Mechanism and Breeding Status of Salt Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 551-561. |
[10] | LI Xiaoxiu, LÜ Qiming, YUAN Dingyang. Research Progress on the Effects of OsNramp5 Mutation on Important Agronomic Traits in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(6): 562-571. |
[11] | DONG Zheng, WANG Yamei, LI Yongchao, XIONG Haibo, XUE Canhui, PAN Xiaowu, LIU Wenqiang, WEI Xiucai, LI Xiaoxiang. Genome-wide Association Analysis of Cadmium Content in Rice Based on MAGIC Population [J]. Chinese Journal OF Rice Science, 2022, 36(1): 35-42. |
[12] | Wenbang TANG, Fan LI, Guilian ZHANG, Huabing DENG, Feng WANG, Xingquan MING. Breeding Practice and Prospect of Rice Male Sterile Lines with High Harvest Index [J]. Chinese Journal OF Rice Science, 2021, 35(6): 519-528. |
[13] | Shaochuan ZHOU, Wei KE, Ruowei MIAO, Hong LI, Daoqiang HUANG, Chongrong WANG. Creation and Application of the Breeding Theory Based on Rice Core Germplasm [J]. Chinese Journal OF Rice Science, 2021, 35(6): 529-534. |
[14] | Xiaobo XU, Penghu AN, Tianjiao GUO, Dan HAN, Wei JIA, Wuxing HUANG. Research Progresses on Response Mechanisms and Control Measures of Cadmium Stress in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(5): 415-426. |
[15] | Cailin WANG, Yadong ZHANG, Tao CHEN, Zhen ZHU, Qingyong ZHAO, Shu YAO, Ling ZHAO, Chunfang ZHAO, Lihui ZHOU, Xiaodong Wei, Kai LU, Wenhua LIANG. Rapid Breeding of New Semi-glutinous japonica Rice Varieties with Good Eating Quality by Crossing Between Sister Lines [J]. Chinese Journal OF Rice Science, 2021, 35(5): 455-465. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||