Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (2): 213-224.DOI: 10.16819/j.1001-7216.2023.220305
• Experimental Technology • Previous Articles
ZHANG Jia1,2, WANG Huijie2, HE Zhengquan1,*(), LIU Wenzhen2,*(
)
Received:
2022-03-03
Revised:
2022-05-14
Online:
2023-03-10
Published:
2023-03-10
Contact:
HE Zhengquan, LIU Wenzhen
张佳1,2, 王慧杰2, 何正权1,*(), 刘文真2,*(
)
通讯作者:
何正权,刘文真
基金资助:
ZHANG Jia, WANG Huijie, HE Zhengquan, LIU Wenzhen. Analysis of Agrobacterium-Mediated Genetic Transformation System of indica Rice 9311 and Huazhan[J]. Chinese Journal OF Rice Science, 2023, 37(2): 213-224.
张佳, 王慧杰, 何正权, 刘文真. 农杆菌介导的籼稻9311和华占遗传转化体系的研究[J]. 中国水稻科学, 2023, 37(2): 213-224.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220305
培养基 Medium | 成分 Composition |
---|---|
愈伤诱导培养基 Callus induction medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L Phytagel |
侵染培养基 Infection medium | AA大量+AA微量+AA有机+20 g/L蔗糖+10 g/L葡萄糖+铁盐+0.5 g/L酸水解酪蛋白+876 mg/L L-谷氨酰胺+174 mg/L 精氨酸+260 mg/L天冬氨酸 AA Macro+AA Micro+AA Vitamins+20 g/L sucrose+10 g/L glucose+Fe-Na-EDTA+0.5 g/L acid hydrolyzed casein +876 mg/L L-glutamine +174 mg/L arginine +260 mg/L aspartic acid |
选择培养基 Selection medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+30 g/L甘露醇+2.5 mg/L 2,4-D+0.5 mg/L BAP +5 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+30 g/L mannitol+2.5 mg/L 2,4-D+0.5 mg/L BAP+5 g/L Phytagel |
分化培养基 Regeneration medium | MS大量+MS微量+B5有机+麦芽糖+铁盐+2 g/L酸水解酪蛋白+30 g/L山梨醇+0.2 mg/L NAA +4 mg/L BAP+5 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Maltose+Fe-Na-EDTA+2 g/L acid hydrolyzed casein+30 g/L sorbitol +0.2 mg/L NAA+4 mg/L BAP+5 g/L Phytagel MS大量+MS微量+B5有机+铁盐+30 g/L葡萄糖+0.5 mg/L IBA+4 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Fe-Na-EDTA+30 g/L glucose+0.5 mg/L IBA+4 g/L Phytagel |
生根培养基 Rooting medium | |
YEM培养基 YEM medium | 10 g/L甘露醇+2 g/L C-谷氨酰胺+0.5 g/L磷酸二氢钾+0.2 g/L氯化钠+0.2 g/L硫酸镁+0.3 g/L酵母提取物+15 g/L Agar 10 g/L mannitol +2 g/L C-glutamine +0.5 g/L monopotassium phosphate+0.2 g/L sodium chloride+0.2 g/L magnesium sulfate +0.3 g/L yeast extract +15 g/L Agar |
Table 1. The media used for transformation of the indica rice cultivars 9311 and Huazhan.
培养基 Medium | 成分 Composition |
---|---|
愈伤诱导培养基 Callus induction medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+2.5 mg/L 2, 4-D+0.5 mg/L BAP+1.5 mg/L ABA +3.9 g/L Phytagel |
侵染培养基 Infection medium | AA大量+AA微量+AA有机+20 g/L蔗糖+10 g/L葡萄糖+铁盐+0.5 g/L酸水解酪蛋白+876 mg/L L-谷氨酰胺+174 mg/L 精氨酸+260 mg/L天冬氨酸 AA Macro+AA Micro+AA Vitamins+20 g/L sucrose+10 g/L glucose+Fe-Na-EDTA+0.5 g/L acid hydrolyzed casein +876 mg/L L-glutamine +174 mg/L arginine +260 mg/L aspartic acid |
选择培养基 Selection medium | MS大量+B5微量+N6有机+麦芽糖+铁盐+0.3 g/L酸水解酪蛋白+2.87 g/L脯氨酸+30 g/L甘露醇+2.5 mg/L 2,4-D+0.5 mg/L BAP +5 g/L植物凝胶 MS Macro+B5 Micro+N6 Vitamins+Maltose+Fe-Na-EDTA+0.3 g/L acid hydrolyzed casein+2.87 g/L Proline+30 g/L mannitol+2.5 mg/L 2,4-D+0.5 mg/L BAP+5 g/L Phytagel |
分化培养基 Regeneration medium | MS大量+MS微量+B5有机+麦芽糖+铁盐+2 g/L酸水解酪蛋白+30 g/L山梨醇+0.2 mg/L NAA +4 mg/L BAP+5 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Maltose+Fe-Na-EDTA+2 g/L acid hydrolyzed casein+30 g/L sorbitol +0.2 mg/L NAA+4 mg/L BAP+5 g/L Phytagel MS大量+MS微量+B5有机+铁盐+30 g/L葡萄糖+0.5 mg/L IBA+4 g/L植物凝胶 MS Macro+MS Micro+B5 Vitamins+Fe-Na-EDTA+30 g/L glucose+0.5 mg/L IBA+4 g/L Phytagel |
生根培养基 Rooting medium | |
YEM培养基 YEM medium | 10 g/L甘露醇+2 g/L C-谷氨酰胺+0.5 g/L磷酸二氢钾+0.2 g/L氯化钠+0.2 g/L硫酸镁+0.3 g/L酵母提取物+15 g/L Agar 10 g/L mannitol +2 g/L C-glutamine +0.5 g/L monopotassium phosphate+0.2 g/L sodium chloride+0.2 g/L magnesium sulfate +0.3 g/L yeast extract +15 g/L Agar |
培养基名称 Media | 基本培养基 Basal media(BM) | 碳源 Carbon source | 平均愈伤诱导率 Average frequency of callus induction / % | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|---|
大量 Macro | 微量 Micro | 有机 Vitamin | 9311 | 华占Huazhan | 9311 | 华占 Huazhan | |||
RBM1 | N6 | N6 | N6 | 蔗糖Sucrose | 76.0±4.0 | 81.3±1.2 | 14.6±2.1 ab | 2.7±2.7 bc | |
RBM2 | N6 | MS×5 | MS | 麦芽糖Maltose | 78.3±0.7 | 75.7±1.7 | 2.7±2.7 c | 7.8±2.2 ab | |
RBM3 | N6 | B5 | B5 | 混合 Mixed | 69.7±3.5 | 79.5±5.5 | 7.2±2.9 abc | 2.4±2.4 bc | |
RBM4 | MS | N6 | MS | 混合 Mixed | 69.3±4.8 | 77.0±1.0 | 15.9±4.1 ab | 13.0±2.4 a | |
RBM5 | MS | MS×5 | B5 | 蔗糖Sucrose | 82.7±2.0 | 71.3±2.6 | 5.2±0.4 bc | 8.9±2.2 ab | |
RBM6 | MS | B5 | N6 | 麦芽糖Maltose | 78.0±5.3 | 68.0±3.0 | 20.0±5.5 a | 8.5±2.6 ab | |
RBM7 | DKN | N6 | B5 | 麦芽糖Maltose | 48.7±3.5 | 56.7±3.4 | 0.0±0.0 c | 0.0±0.0 c | |
RBM8 | DKN | MS×5 | N6 | 混合 Mixed | 49.3±3.2 | 53.7±2.3 | 0.0±0.0 c | 0.0±0.0 c | |
RBM9 | DKN | B5 | MS | 蔗糖Sucrose | 49.0±1.5 | 57.0±1.0 | 0.0±0.0 c | 0.0±0.0 c |
Table 2. Effects of different basal media on 9311 and Huazhan tissue culture.
培养基名称 Media | 基本培养基 Basal media(BM) | 碳源 Carbon source | 平均愈伤诱导率 Average frequency of callus induction / % | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|---|
大量 Macro | 微量 Micro | 有机 Vitamin | 9311 | 华占Huazhan | 9311 | 华占 Huazhan | |||
RBM1 | N6 | N6 | N6 | 蔗糖Sucrose | 76.0±4.0 | 81.3±1.2 | 14.6±2.1 ab | 2.7±2.7 bc | |
RBM2 | N6 | MS×5 | MS | 麦芽糖Maltose | 78.3±0.7 | 75.7±1.7 | 2.7±2.7 c | 7.8±2.2 ab | |
RBM3 | N6 | B5 | B5 | 混合 Mixed | 69.7±3.5 | 79.5±5.5 | 7.2±2.9 abc | 2.4±2.4 bc | |
RBM4 | MS | N6 | MS | 混合 Mixed | 69.3±4.8 | 77.0±1.0 | 15.9±4.1 ab | 13.0±2.4 a | |
RBM5 | MS | MS×5 | B5 | 蔗糖Sucrose | 82.7±2.0 | 71.3±2.6 | 5.2±0.4 bc | 8.9±2.2 ab | |
RBM6 | MS | B5 | N6 | 麦芽糖Maltose | 78.0±5.3 | 68.0±3.0 | 20.0±5.5 a | 8.5±2.6 ab | |
RBM7 | DKN | N6 | B5 | 麦芽糖Maltose | 48.7±3.5 | 56.7±3.4 | 0.0±0.0 c | 0.0±0.0 c | |
RBM8 | DKN | MS×5 | N6 | 混合 Mixed | 49.3±3.2 | 53.7±2.3 | 0.0±0.0 c | 0.0±0.0 c | |
RBM9 | DKN | B5 | MS | 蔗糖Sucrose | 49.0±1.5 | 57.0±1.0 | 0.0±0.0 c | 0.0±0.0 c |
基本培养基 Basal medium | 处理 Treatment | 植物激素浓度 Phytohormone concentration / (mg L−1) | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|
BAP | KT | TDZ | ABA | 9311 | 华占 Huazhan | |||
BM2 | T1 | 0.25 | 0.00 | 0.10 | 0.00 | 11.3±3.0 bc | 6.0±1.7 d | |
T2 | 0.25 | 0.75 | 0.00 | 1.50 | 12.6±3.5 bc | 18.5±3.5 bc | ||
T3 | 0.25 | 1.50 | 0.20 | 3.00 | 39.0±8.2 a | 31.9±2.7 a | ||
T4 | 0.00 | 0.00 | 0.00 | 3.00 | 1.7±1.7 c | 0.0±0.0 e | ||
T5 | 0.00 | 0.75 | 0.20 | 0.00 | 2.4±2.4 c | 8.9±1.8 cd | ||
T6 | 0.00 | 1.50 | 0.10 | 1.50 | 34.6±5.4 a | 24.4±4.8 ab | ||
T7 | 0.50 | 0.00 | 0.20 | 1.50 | 22.2±4.1 b | 14.9±3.6 cd | ||
T8 | 0.50 | 0.75 | 0.10 | 3.00 | 9.2±1.5 c | 9.4±3.0 cd | ||
T9 | 0.50 | 1.50 | 0.00 | 0.00 | 1.5±1.5 c | 26.2±0.4 ab |
Table 3. Effects of different phytohormones on 9311 and Huazhan tissue culture.
基本培养基 Basal medium | 处理 Treatment | 植物激素浓度 Phytohormone concentration / (mg L−1) | 组织培养再生率 Regeneration rate of tissue culture / % | |||||
---|---|---|---|---|---|---|---|---|
BAP | KT | TDZ | ABA | 9311 | 华占 Huazhan | |||
BM2 | T1 | 0.25 | 0.00 | 0.10 | 0.00 | 11.3±3.0 bc | 6.0±1.7 d | |
T2 | 0.25 | 0.75 | 0.00 | 1.50 | 12.6±3.5 bc | 18.5±3.5 bc | ||
T3 | 0.25 | 1.50 | 0.20 | 3.00 | 39.0±8.2 a | 31.9±2.7 a | ||
T4 | 0.00 | 0.00 | 0.00 | 3.00 | 1.7±1.7 c | 0.0±0.0 e | ||
T5 | 0.00 | 0.75 | 0.20 | 0.00 | 2.4±2.4 c | 8.9±1.8 cd | ||
T6 | 0.00 | 1.50 | 0.10 | 1.50 | 34.6±5.4 a | 24.4±4.8 ab | ||
T7 | 0.50 | 0.00 | 0.20 | 1.50 | 22.2±4.1 b | 14.9±3.6 cd | ||
T8 | 0.50 | 0.75 | 0.10 | 3.00 | 9.2±1.5 c | 9.4±3.0 cd | ||
T9 | 0.50 | 1.50 | 0.00 | 0.00 | 1.5±1.5 c | 26.2±0.4 ab |
Fig. 1. Effects of different phytohormones concentration on rice regeneration frequency. A, Regeneration frequency of 9311 on medium (RBM2+1.5 mg/L ABA); B, Regeneration frequency of Huazhan on medium (RBM2+1.5 mg/L ABA); C, Regeneration frequency of 9311 on medium (RBM6+1.5 mg/L ABA); D, Regeneration frequency of Huazhan on medium (RBM6+1.5 mg/L ABA). Different small letters mean that they significantly differ from each other at P = 0.05. Vertical bar indicates standard error.
基因型 Rice genotype | AS浓度 AS concentration /(µmol·L−1) | 侵染 愈伤数 Infection callus number | 抗性 愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % |
---|---|---|---|---|---|---|---|---|
9311 | 100 | 75.0±0.6 a | 47.7±1.9 a | 63.6±2.4 a | 4.3±1.2 a | 8.9±2.3 a | 28.9±10.6 a | 1.3±0.0 a |
200 | 78.7±2.7 a | 50.0±2.9 a | 63.5±2.6 a | 0.6±0.2 b | 1.3±0.6 b | 0.0±0.0 a | 0.0±0.0 b | |
华占Huazhan | 100 | 66.3±0.9 a | 55.7±0.9 a | 84.0±2.3 a | 3.7±0.3 a | 6.6±0.7 a | 44.4±5.6 a | 2.5±0.5 a |
200 | 73.3±1.8 b | 62.3±2.2 b | 86.7±2.0 a | 2.3±0.3 b | 3.7±0.5 b | 38.9±20.0 a | 1.4±0.8 a |
Table 4. Effects of different AS concentration on genetic transformation efficiency of the indica rice cultivar.
基因型 Rice genotype | AS浓度 AS concentration /(µmol·L−1) | 侵染 愈伤数 Infection callus number | 抗性 愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % |
---|---|---|---|---|---|---|---|---|
9311 | 100 | 75.0±0.6 a | 47.7±1.9 a | 63.6±2.4 a | 4.3±1.2 a | 8.9±2.3 a | 28.9±10.6 a | 1.3±0.0 a |
200 | 78.7±2.7 a | 50.0±2.9 a | 63.5±2.6 a | 0.6±0.2 b | 1.3±0.6 b | 0.0±0.0 a | 0.0±0.0 b | |
华占Huazhan | 100 | 66.3±0.9 a | 55.7±0.9 a | 84.0±2.3 a | 3.7±0.3 a | 6.6±0.7 a | 44.4±5.6 a | 2.5±0.5 a |
200 | 73.3±1.8 b | 62.3±2.2 b | 86.7±2.0 a | 2.3±0.3 b | 3.7±0.5 b | 38.9±20.0 a | 1.4±0.8 a |
A | B | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants | ||||
---|---|---|---|---|---|---|---|---|---|
9311 | HZ | 9311 | HZ | 9311 | HZ | 9311 | HZ | ||
12/12 | 24 L | 64.7±0.9 a | 58.0±1.2 b | 32.7±1.4 a | 41.0±1.5 a | 68.6±1.6 a | 71.9±0.9 a | 5.0±0.6 b | 3.3±0.3 b |
12/12 | 24.0±2.1 c | 72.3±1.5 a | 12.0±4.0 c | 25.7±4.3 b | 67.3±3.4 a | 64.8±1.7 ab | 3.0±1.0 c | 6.3±0.3 a | |
24 D | 24 L | 45.0±1.7 b | 61.3±2.4 b | 28.7±3.8 ab | 28.3±1.7 b | 75.0±4.2 a | 58.9±1.7 b | 8.0±0.6 a | 1.3±0.3 c |
12/12 | 26.7±0.9 c | 26.7±0.9 c | 13.0±1.0 c | 7.7±1.2 c | 67.1±2.4 a | 56.8±5.1 b | 3.0±0.0 c | 0.7±0.3 cd | |
24 L | 24 L | 48.0±1.5 b | 61.3±1.2 b | 22.3±1.5 b | 25.7±0.7 b | 55.7±1.2 b | 56.7±2.4 b | 0.0±0.0 d | 0.0±0.0 d |
A | B | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % | |||||
9311 | HZ | 9311 | HZ | 9311 | HZ | ||||
12/12 | 24 L | 15.3±1.5 b | 7.9±0.6 b | 52.2±7.8 a | 58.3±12.7 a | 4.1±1.1 ab | 3.4±0.9 a | ||
12/12 | 25.3±1.9 a | 25.6±2.7 a | 23.3±14.5 bc | 56.3±15.5 a | 3.5±0.2 b | 5.0±1.5 a | |||
24 D | 24 L | 28.6±2.8 a | 4.7±1.0 bc | 33.1±2.6 ab | 33.3±33.3 ab | 6.0±0.9 a | 0.6±0.6 b | ||
12/12 | 23.3±1.7 a | 8.1±4.2 b | 22.2±11.1 bc | 0.0±0.0 b | 3.7±0.1 b | 0.0±0.0 b | |||
24 L | 24 L | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 b | 0.0±0.0 c | 0.0±0.0 b |
Table 5. Effects of different photoperiod treatments on genetic transformation efficiency of the indica rice cultivars.
A | B | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants | ||||
---|---|---|---|---|---|---|---|---|---|
9311 | HZ | 9311 | HZ | 9311 | HZ | 9311 | HZ | ||
12/12 | 24 L | 64.7±0.9 a | 58.0±1.2 b | 32.7±1.4 a | 41.0±1.5 a | 68.6±1.6 a | 71.9±0.9 a | 5.0±0.6 b | 3.3±0.3 b |
12/12 | 24.0±2.1 c | 72.3±1.5 a | 12.0±4.0 c | 25.7±4.3 b | 67.3±3.4 a | 64.8±1.7 ab | 3.0±1.0 c | 6.3±0.3 a | |
24 D | 24 L | 45.0±1.7 b | 61.3±2.4 b | 28.7±3.8 ab | 28.3±1.7 b | 75.0±4.2 a | 58.9±1.7 b | 8.0±0.6 a | 1.3±0.3 c |
12/12 | 26.7±0.9 c | 26.7±0.9 c | 13.0±1.0 c | 7.7±1.2 c | 67.1±2.4 a | 56.8±5.1 b | 3.0±0.0 c | 0.7±0.3 cd | |
24 L | 24 L | 48.0±1.5 b | 61.3±1.2 b | 22.3±1.5 b | 25.7±0.7 b | 55.7±1.2 b | 56.7±2.4 b | 0.0±0.0 d | 0.0±0.0 d |
A | B | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化频率 Transformation frequency / % | |||||
9311 | HZ | 9311 | HZ | 9311 | HZ | ||||
12/12 | 24 L | 15.3±1.5 b | 7.9±0.6 b | 52.2±7.8 a | 58.3±12.7 a | 4.1±1.1 ab | 3.4±0.9 a | ||
12/12 | 25.3±1.9 a | 25.6±2.7 a | 23.3±14.5 bc | 56.3±15.5 a | 3.5±0.2 b | 5.0±1.5 a | |||
24 D | 24 L | 28.6±2.8 a | 4.7±1.0 bc | 33.1±2.6 ab | 33.3±33.3 ab | 6.0±0.9 a | 0.6±0.6 b | ||
12/12 | 23.3±1.7 a | 8.1±4.2 b | 22.2±11.1 bc | 0.0±0.0 b | 3.7±0.1 b | 0.0±0.0 b | |||
24 L | 24 L | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 c | 0.0±0.0 b | 0.0±0.0 c | 0.0±0.0 b |
Fig. 2. Process of Agrobacterium-mediated genetic transformation of the indica rice cultivars 9311 and Huazhan. A and G, Calli formed from mature seeds after 14 days of induction; B and H, Cocultured calli were subjected to the first hygromycin selection for 10 days; C and I, Calli were subjected to the second hygromycin selection for 10 days. D and J, Resistant calli were cultured on regeneration medium and green tips appeared on the surface of resistant calli; E and K, Plantlets generated from resistant calli; F and L, Plantlets were transferred to test-tube with rooting medium for further development.
侵染培养基 Infection medium | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化率 Transformation frequency / % |
---|---|---|---|---|---|---|---|
A | 54.7±1.5 a | 45.3±0.9 a | 83.0±0.8 a | 10.7±1.2 a | 23.5±2.2 a | 50.2±4.9 a | 9.7±1.0 a |
B | 44.3±1.2 b | 34.7±2.2 b | 78.1±3.5 a | 9.7±1.9 a | 28.0±5.6 b | 36.6±9.5 b | 7.6±2.2 a |
Table 6. Effects of different infection medium on genetic transformation efficiency of the indica rice cultivar Huazhan.
侵染培养基 Infection medium | 侵染愈伤数 Infection callus number | 抗性愈伤数 Resistant callus number | 抗性愈伤率 Resistant callus rate / % | 再生植株数 Regenerated plants number | 再生率 Regeneration rate / % | HPT阳性率 HPT positive rate / % | 转化率 Transformation frequency / % |
---|---|---|---|---|---|---|---|
A | 54.7±1.5 a | 45.3±0.9 a | 83.0±0.8 a | 10.7±1.2 a | 23.5±2.2 a | 50.2±4.9 a | 9.7±1.0 a |
B | 44.3±1.2 b | 34.7±2.2 b | 78.1±3.5 a | 9.7±1.9 a | 28.0±5.6 b | 36.6±9.5 b | 7.6±2.2 a |
Fig. 3. PCR analysis of transgenic rice events using HPT and 35S promoter specific primers. 581 bp fragment of HPT gene was amplified using HPT specific primers. The 522 bp and 195 bp fragments of the 35S promoter were amplified using 35S promoter specific primers. The PCR product was electrophoresed on 1.0% (w/v) agarose gel. A, Identification of 9311 transgenic plants (24 h dark/24 h light). B, Identification of Huazhan transgenic plants (12 h dark /12 h light). M, 2000 bp DNA marker. 1-10, Genomic DNA from transgenic plants. 11, Genomic DNA from untransformed plants.
[1] | Ray D K, Mueller N D, West P C, Foley J A, Hart J P. Yield trends are insufficient to double global crop production by 2050[J]. PLoS ONE, 2013, 8(6): e66428. |
[2] | Amini M, Deljou A, Nabiabad H S. Improvement of in vitro embryo maturation, plantlet regeneration and transformation efficiency from alfalfa somatic embryos using Cuscuta campestris extract[J]. Physiology & Molecular Biology of Plants, 2016, 22(3): 1-10. |
[3] | Arun M, Chinnathambi A, Subramanyam K, Ganapathi K S. Involvement of exogenous polyamines enhances regeneration and Agrobacterium-mediated genetic transformation in half-seeds of soybean[J]. 3 Biotech, 2016, 6(2): 1-12. |
[4] | He Y, Jones H D, Chen S, Chen X M, Wang D S, Xia L Q. Agrobacterium -mediated transformation of durum wheat with improved efficiency[J]. Journal of Experimental Botany, 2010, 61(6): 1567-1581. |
[5] | Hiei Y, Komari T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens[J]. Plant Cell, Tissue and Organ Culture, 2006, 85(3): 271. |
[6] | Hiei Y, Ohta S, Toshihiro K, Komari T. Efficient transformation of rice mediated by Agrobacterium and sequences analysis of the boundaries of the T-DNA[J]. Plant Journal, 1994, 6(2): 271-282. |
[7] | Daigen M, Kawakami O, Nagasawa Y. Efficient anther culture method of the japonica rice cultivar Koshihikari[J]. Breeding Science, 2000, 50(3): 197-202. |
[8] | Ozawa K. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice[J]. Plant Science, 2009, 176(4): 522-527. |
[9] | Ozawa K. A high-efficiency Agrobacterium-mediated transformation system of rice[J]. Methods in Molecular Biology, 2012, 847: 51-57. |
[10] | Sallaud C, Meynard D, van Boxtel J, Gay C, Bès M, Brizard J P, Larmande P, Ortega D, Portefaix M R, Al E. Highly efficient production and characterization of T-DNA plants for rice functional genomics[J]. Theoretical and Applied Genetics, 2003, 106(8): 1396-1408. |
[11] | Chakraborty M, Reddy P S, Narasu M L, Rana K. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker[J]. Physiology and Molecular Biology of Plants, 2016, 22(1): 51-60. |
[12] | Hoque M E, Mansfield J W. Effect of genotype and explant age on callus induction and subsequent plant regeneration from root-derived callus of indica rice genotypes[J]. Plant Cell Tissue and Organ Culture, 2004, 78(3): 217-223. |
[13] | Torrizo L B, Zapata F J. Anther culture in rice: IV. The effect of abscisic acid on plant regeneration[J]. Plant Cell Reports, 1986, 5(2): 136-139. |
[14] | Ge X J, Chu Z H, Lin Y J, Wang S. A tissue culture system for different germplasms of indica rice[J]. Plant Cell Reports, 2006, 25(5): 392-402. |
[15] | Tan L W, Rahman Z A, Goh H H, Hwang D J, Zainal Z. Production of transgenic rice overexpressing Abp57 gene through Agrobacterium-mediated transformation[J]. Sains Malaysiana, 2017, 46(5): 703-711. |
[16] | Chu C C. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources[J]. Science in China, 1975, 18(5): 659. |
[17] | Gamborg O L, Ojima K. Nutrient requirements of suspension cultures of soybean root cells[J]. Experimental Cell Research, 1968, 50(1): 151-158. |
[18] | Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473-497. |
[19] | Dewir Y H, Naidoo Y, Dasilva J A T. Thidiazuron-induced abnormalities in plant tissue cultures[J]. Plant Cell Reports, 2018, 37(11): 1451-1470. |
[20] | Jimenez V M, Bangerth F. Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro[J]. Plant Science, 2001, 160(2): 247-257. |
[21] | Ramesh M, Gupta A K. Transient expression of β-glucuronidase gene in indica and japonica rice callus cultures after different stages of co-bombardment[J]. African Journal of Biotechnology, 2005, 4(7): 596-600. |
[22] | Wani S H, Sanghera G S, Gosal S S. An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice variety PAU 201[J]. New Biotechnology, 2011, 28(4): 418-422. |
[23] | 别晓敏, 杜丽璞, 佘茂云, 徐惠君, 叶兴国. 不同生长素类型及ABA搭配对小麦幼胚再生效果的影响[J]. 核农学报, 2011, 25(5): 1023-1028. |
Bie X M, Du L P, She M Y, Xu H J, Ye X G. Effects of Different auxins and combining application with ABA on regeneration of immature embryos of wheat[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5): 1023-1028. (in Chinese with English abstract) | |
[24] | 田文忠. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报, 1994, 21(3): 215-221. |
Tian W Z. Improvement of plant regeneration frequency in vitro in indica rice[J]. Journal of Genetics and Genomics, 1994, 21(3): 215-221. (in Chinese with English abstract) | |
[25] | Aldemita R R, Hodges T K. Agrobacterium tumefaciens -mediated transformation of japonica and indica rice varieties[J]. Planta, 1996, 199(4): 612-617. |
[26] | Godwin I, Todd G, Ford-Lloyd B, Newbury H J. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991, 9(12): 671-675. |
[27] | Smith R H, Hood E E. Agrobacterium tumefaciens transformation of monocotyledons[J]. Crop Science, 1995, 35(2): 301-309. |
[28] | Clement W K F, Lai K S, Wong M Y, Maziah M. Heat and hydrolytic enzymes treatment improved the Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.)[J]. Plant Cell, Tissue and Organ Culture, 2015, 125(1): 183-190. |
[29] | Yaqoob U, Kaul T, Nawchoo I A. Development of an efficient protocol for Agrobacterium mediated transformation of some recalcitrant indica rice varieties[J]. Indian Journal of Plant Physiology, 2017, 22(3): 346-353. |
[30] | Lin Y J, Zhang Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice[J]. Plant Cell Reports, 2005, 23(8): 540-547. |
[31] | Patel M, Dewey R E, Qu R. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection[J]. Plant Cell, Tissue and Organ Culture, 2013, 114(1): 19-29. |
[32] | Amoah B K, Wu H, Sparks C, Jones D H. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue[J]. Journal of Experimental Botany, 2001, 52(358): 1135-1142. |
[33] | Shri M, Rai A, Verma P K, Misra P, Dubey S, Kumar S, Verma S, Gautam N. An improved Agrobacterium-mediated transformation of recalcitrant indica rice cultivars[J]. Protoplasma, 2013, 250(2): 631-636. |
[34] | Toriyama K, Hinata K. Cell suspension and protoplast culture in rice[J]. Plant Science, 1985, 41(3): 179-183. |
[35] | Basu A, Ray A, Sarkar S, Chaudhuri T R, Kundu S. Agrobacterium mediated genetic transformation of popular Indica rice Ratna (IET 1411) [J]. African Journal of Biotechnology, 2014, 13(31): 3187-3197. |
[36] | Burman N, Chandran D, Khurana J P. A rapid and highly efficient method for transient gene expression in rice Plants[J]. Front Plant Science, 2020, 11: 584011-584022. |
[37] | Sundararajan S, Sivaraman B, Rajendran V, Ramalingam S. Tissue culture and Agrobacterium-mediated genetic transformation studies in four commercially important indica rice cultivars[J]. Journal of Crop Science and Biotechnology, 2017, 20(3): 175-183. |
[38] | Nguyen V C, Nguyen V K, Singh C H, Devi G S. Fast recovery of transgenic submergence tolerant rice cultivars of North-East India by early co-cultivation of Agrobacterium with pre-cultured callus[J]. Physiolgy and Molecular Biology of Plants, 2017, 23(1): 115-123. |
[39] | 郝建琴, 许语辉, 黄敏, 张伟漫, 刘伟利, 方标, 王振南, 王化琪. 山梨醇对栽培稻成熟胚愈伤组织分化的影响[J]. 农业生物技术学报, 2014, 22(8): 983-991. |
Hao J Q, Xu Y H, Huang M, Zhang W M, Liu W L, Fang B, Wang Z N, Wang H Q. Effect of sorbitol on callus regeneration from mature embryos of rice[J]. Journal of Agricultural Biotechnology, 2014, 22(8): 983-991. (in Chinese with English abstract) | |
[40] | 沈秋平, 严孙艺, 薛宇彤, 张立朋, 吕尊富, 李飞飞. 籼稻9311成熟胚高效再生体系的建立[J]. 杂交水稻, 2019, 34(2): 49-52. |
Shen Q P, Yan S Y, Xue Y T, Zhang L P, Lü Z F, Li F F. Establishment of high-efficiency regeneration system from mature embryo as explants of indica rice 9311[J]. Hybrid Rice, 2019, 34(2): 49-52. | |
[41] | 周永国, 尹中明, 沈忠伟, 李建粤. 籼稻9311成熟胚再生体系[J]. 上海师范大学学报, 2007, 36(4): 71-77. |
Zhou Y G, Yin Z M, Shen Z W, Li J Y. Study on the regeneration system from mature embryo of the indica rice 9311[J]. Journal of Shanghai Normal University, 2007, 36(4): 71-77. (in Chinese with English abstract) | |
[42] | Doyle J F, Dickson E E. Preservation of plant samples for DNA restriction endonuclease analysis[J]. Taxon, 1987, 36(4): 715-722. |
[43] | Zaidi M A, Narayanan M, Sardana R, Taga I, Postel S, Johns R, Mcnulty M, Mottiar M, Mao J, Loit E. Optimizing tissue culture media for efficient transformation of different indica rice genotypes[J]. Agronomy Research, 2006, 4(2): 563-575. |
[44] | 易自力, 曹守云, 王力, 储成才, 李祥, 何锶洁, 唐祚舜, 周朴华, 田文忠. 提高农杆菌转化水稻频率的研究[J]. 遗传学报, 2001, 28(4): 352-358. |
Yi Z L, Cao S Y, Wang L, Chu C C, Li X, He S J, Tang Z S, Zhou P H, Tian W Z. Improvement of transformation frequency of rice mediated by Agrobacterium[J]. Journal of Genetics and Genomics, 2001, 28(4): 352-358. (in Chinese with English abstract) | |
[45] | 李双成, 王世全, 尹福强, 邹良平, 起登风, 江洪, 李平. 提高农杆菌介导转化水稻效率的因素[J]. 中国水稻科学, 2005, 19(3): 231-237. |
Li S C, Wang S Q, Yin F Q, Zou L P, Qi D F, Jiang H, Li P. Some factors affecting Agrobacterium-mediated transformation frequencyin rice[J]. Chinese Journal of Rice Science, 2005, 19(3): 231-237. (in Chinese with English abstract) | |
[46] | Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J. Morphogenic regulators baby boom and wuschel improve monocot transformation[J]. Plant Cell, 2016, 28(9): 1998-2015. |
[47] | Wang K, Shi L, Liang X, Zhao P, Guo Y. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J]. Nature Plants, 2022. https://doi.org/10.1038/s41477-021-01085-8. |
[48] | Debernardi J M, Tricoli D M, Ercoli M F, Hayta S, Dubcovsky J. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nature Biotechnology, 2020, 38(11): 1-6. |
[49] | Xiao K Z, Mao X H, Wang Y H, Wang J L, Wei Y D, Cai Q H, Xie H, Zhang J F. Transcript profiling reveals abscisic acid, salicylic acid and jasmonic-isoleucine pathways involved in high regenerative capacities of immature embryos compared with mature seeds in japonica rice[J]. Rice Science, 2018, 25(4): 57-64. |
[1] | ZHANG Yafang, CHEN Zongxiang, ZUO Shimin, LOU Lijuan, YU Yongqi, PAN Xuebiao. Effect of Overexpressing OsIP1, a Rice Inorganic Pyrophosphatase Gene, Specifically in Mesophyll Tissue of Different Sourcesink Type Rice Cultivars [J]. Chinese Journal of Rice Science, 2013, 27(2): 129-136. |
[2] | XIANG Dian-jun ,ZHANG Yu ,YIN Kui-de. Transformation of ICE1 Gene Mediated by Agrobacterium Improves Cold Tolerance in Transgenic Rice [J]. Chinese Journal of Rice Science, 2007, 21(5): 482-486 . |
[3] | WANG Xiu-hong ,SHI Xiang-yuan ,WU Xian-jun. Effects of Tissue Culture with Different Explants and Their Relationship in Rice [J]. Chinese Journal of Rice Science, 2005, 19(2): 187-189 . |
[4] | Luo Qiong,Hu Yanyu,Zhou Kaida. Role of Endogenous Hormones in Tissue Culture of Mature Rice Embryo [J]. Chinese Journal of Rice Science, 1998, 12(4): 238-240 . |
[5] | Yang Changdeng,Wu Lianbin,Zhao Chengzhang. In vitro Regulation of Haploid Somaclonal Micro-Buds in Indica Rice [J]. Chinese Journal of Rice Science, 1998, 12(4): 219-222 . |
[6] | Yang Changdeng,Tang Kexuan,Wu Lianbin,Li Yao,Zhao Chengzhang,Liu Guangjie,Shen Daleng. Transformation of Haploid Indica Rice Shoots with Snowdrop Lectin Gene(GNA) by Agrobacterium-Mediated [J]. Chinese Journal of Rice Science, 1998, 12(3): 129-133 . |
[7] | Zheng Lou,Xi Yong'an,Lin Yizi. Effect of wx Gene on Mature Embryo Culture Ability in Waxy and Non-waxy Isogenic Rice Lines [J]. Chinese Journal of Rice Science, 1993, 7(1): 7-10 . |
[8] | Zhao Chengzhang,Qi Xiufang,Zheng Kangle,Xu Xingming. Study of Regulation Technique of Rice Plantlet in vitro with Multi-Effect Triazole [J]. Chinese Journal of Rice Science, 1990, 4(4): 169-174 . |
[9] | Ling Dinghou,Liang Chengye,Ma Zhenrong,Chen Meifang,He Bingsen. Somaclonal Male-Sterile Mutants and Their Expressions in Indica Rice (in English) [J]. Chinese Journal of Rice Science, 1990, 4(1): 15-21 . |
[10] | Zhao Chengzhang. Study of Uplifting the Culture Capacity of Mature Rice Seed [J]. Chinese Journal of Rice Science, 1987, 1(3): 171-176 . |
[11] | Zhao Chengzhang,Sun Zongxiu,Qi xiufang,Zheng Kangle,Liu Hongzheng,Fu Yaping. A Study On Increasing Frequencies of Somatic Tissue-Derived Plants in Rice [J]. Chinese Journal of Rice Science, 1986, 1(1): 19-25 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||