Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (1): 13-24.DOI: 10.16819/j.1001-7216.2024.230602
• Research Papers • Previous Articles Next Articles
HOU Benfu1,2,3, YANG Chuanming1,2,3, ZHANG Xijuan2,5, YANG Xianli2,5, WANG Lizhi2,5, WANG Jiayu4, LI Hongyu1,*(), JIANG Shukun2,3,5,*(
)
Received:
2023-05-13
Revised:
2023-07-14
Online:
2024-01-10
Published:
2024-01-16
Contact:
* email:
侯本福1,2,3, 杨传铭1,2,3, 张喜娟2,5, 杨贤莉2,5, 王立志2,5, 王嘉宇4, 李红宇1,*(), 姜树坤2,3,5,*(
)
通讯作者:
* email: 基金资助:
HOU Benfu, YANG Chuanming, ZHANG Xijuan, YANG Xianli, WANG Lizhi, WANG Jiayu, LI Hongyu, JIANG Shukun. Mapping of Grain Shape QTLs Using RIL Population from Longdao 5/Zhongyouzao 8[J]. Chinese Journal OF Rice Science, 2024, 38(1): 13-24.
侯本福, 杨传铭, 张喜娟, 杨贤莉, 王立志, 王嘉宇, 李红宇, 姜树坤. 利用龙稻5号/中优早8号RIL群体定位粒形QTL[J]. 中国水稻科学, 2024, 38(1): 13-24.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.230602
年份Year | 性状 Trait | 亲本 Parents | 群体 Population | |||||
---|---|---|---|---|---|---|---|---|
龙稻5号 Longdao 5 | 中优早8号 Zhongyouzao 8 | 平均值 Mean | 群体区间 Range | 偏度 Skewness | 峰度 Kurtosis | |||
2020 | 粒长 Grain length /mm | 6.81±0.33 | 8.98±0.38** | 8.18±0.62 | 6.43~9.65 | 0.11 | −0.45 | |
粒宽 Grain width /mm | 3.43±0.21 | 3.24±0.13** | 3.30±0.25 | 2.65~3.94 | 0.05 | −0.26 | ||
粒厚 Grain thickness/mm | 2.13±0.07 | 1.96±0.18* | 1.98±0.15 | 1.53~2.33 | −0.07 | 0.16 | ||
长宽比 Length to width ratio | 1.99±0.14 | 2.78±0.16** | 2.50±0.26 | 1.91~3.38 | 0.48 | 0.33 | ||
2021 | 粒长 Grain length /mm | 6.53±0.30 | 8.67±0.30** | 7.73±0.59 | 6.24~9.30 | 0.08 | −0.31 | |
粒宽 Grain width/mm | 3.50±0.10 | 3.20±0.13** | 3.28±0.26 | 2.68~3.89 | 0.02 | −0.48 | ||
粒厚 Grain thickness | 2.10±0.04 | 1.93±0.22* | 1.96±0.14 | 1.54~2.36 | −0.11 | 0.03 | ||
长宽比 Length to width ratio | 1.86±0.08 | 2.72±0.13** | 2.37±0.24 | 1.80~3.41 | 0.56 | 1.27 | ||
2022 | 粒长 Grain length/mm | 6.86±0.27 | 9.04±0.24** | 8.08±0.64 | 6.35~9.67 | 0.09 | −0.53 | |
粒宽 Grain width /mm | 3.48±0.15 | 3.22±0.17** | 3.29±0.24 | 2.71~3.88 | 0.00 | −0.53 | ||
粒厚 Grain thickness /mm | 2.08±0.08 | 1.92±0.06** | 1.95±0.14 | 1.60~2.29 | −0.01 | −0.25 | ||
长宽比 Length to width ratio | 1.98±0.12 | 2.82±0.15** | 2.48±0.26 | 1.87~3.48 | 0.53 | 0.94 |
Table 1. Phenotypic analysis of grain shape related traits of parents and RIL population.
年份Year | 性状 Trait | 亲本 Parents | 群体 Population | |||||
---|---|---|---|---|---|---|---|---|
龙稻5号 Longdao 5 | 中优早8号 Zhongyouzao 8 | 平均值 Mean | 群体区间 Range | 偏度 Skewness | 峰度 Kurtosis | |||
2020 | 粒长 Grain length /mm | 6.81±0.33 | 8.98±0.38** | 8.18±0.62 | 6.43~9.65 | 0.11 | −0.45 | |
粒宽 Grain width /mm | 3.43±0.21 | 3.24±0.13** | 3.30±0.25 | 2.65~3.94 | 0.05 | −0.26 | ||
粒厚 Grain thickness/mm | 2.13±0.07 | 1.96±0.18* | 1.98±0.15 | 1.53~2.33 | −0.07 | 0.16 | ||
长宽比 Length to width ratio | 1.99±0.14 | 2.78±0.16** | 2.50±0.26 | 1.91~3.38 | 0.48 | 0.33 | ||
2021 | 粒长 Grain length /mm | 6.53±0.30 | 8.67±0.30** | 7.73±0.59 | 6.24~9.30 | 0.08 | −0.31 | |
粒宽 Grain width/mm | 3.50±0.10 | 3.20±0.13** | 3.28±0.26 | 2.68~3.89 | 0.02 | −0.48 | ||
粒厚 Grain thickness | 2.10±0.04 | 1.93±0.22* | 1.96±0.14 | 1.54~2.36 | −0.11 | 0.03 | ||
长宽比 Length to width ratio | 1.86±0.08 | 2.72±0.13** | 2.37±0.24 | 1.80~3.41 | 0.56 | 1.27 | ||
2022 | 粒长 Grain length/mm | 6.86±0.27 | 9.04±0.24** | 8.08±0.64 | 6.35~9.67 | 0.09 | −0.53 | |
粒宽 Grain width /mm | 3.48±0.15 | 3.22±0.17** | 3.29±0.24 | 2.71~3.88 | 0.00 | −0.53 | ||
粒厚 Grain thickness /mm | 2.08±0.08 | 1.92±0.06** | 1.95±0.14 | 1.60~2.29 | −0.01 | −0.25 | ||
长宽比 Length to width ratio | 1.98±0.12 | 2.82±0.15** | 2.48±0.26 | 1.87~3.48 | 0.53 | 0.94 |
Fig. 2. Comparison of grain shape traits between two parents. LD5, Longdao 5; ZYZ8, Zhongyouzao 8. * and ** represent significant difference between two parents at the 0.05 and 0.01 levels, respectively.
QTL | Chr. | 标记区间 Marker interval | 2020 | 2021 | 2022 | 增效等位 基因来源 Positive allele | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 表型 贡献率Var./% | 加性 效应Add. | LOD | 表型 贡献率Var./% | 加性 效应 Add. | LOD | 表型 贡献率Var./% | 加性 效应 Add. | |||||||||
qGL3 | 3 | R3M30−RM3513 | 8.05 | 18.52 | 0.28 | 7.69 | 16.52 | 0.28 | 8.74 | 18.89 | 0.31 | ZYZ8 | |||||
qGL7 | 7 | RM3404−RM11 | 2.90 | 5.37 | 0.16 | 3.33 | 5.73 | 0.16 | 2.90 | 5.30 | 0.16 | ZYZ8 | |||||
qGL11 | 11 | RM1124−STS11.1 | 2.52 | 4.69 | 0.14 | ZYZ8 | |||||||||||
qGW3 | 3 | STS3.10−RM3684 | 4.46 | 9.53 | −0.09 | 4.44 | 9.13 | −0.09 | 4.03 | 8.54 | −0.08 | LD5 | |||||
qGW5 | 5 | R5M13−RM3476 | 3.20 | 7.48 | −0.08 | 3.94 | 9.22 | −0.09 | 3.21 | 7.8 | −0.08 | LD5 | |||||
qGT3 | 3 | RM503−RM700 | 3.21 | 8.05 | −0.05 | 3.70 | 9.34 | −0.04 | 2.76 | 6.36 | −0.04 | LD5 | |||||
qGT6 | 6 | RM3827−RM1340 | 2.53 | 6.09 | 0.04 | ZYZ8 | |||||||||||
qLWR3a | 3 | R3M30−RM3513 | 5.34 | 12.46 | 0.10 | 5.76 | 13.33 | 0.10 | 6.10 | 14.33 | 0.11 | ZYZ8 |
Table 2. BIP-QTL mapping of grain shape traits in rice RIL population.
QTL | Chr. | 标记区间 Marker interval | 2020 | 2021 | 2022 | 增效等位 基因来源 Positive allele | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOD | 表型 贡献率Var./% | 加性 效应Add. | LOD | 表型 贡献率Var./% | 加性 效应 Add. | LOD | 表型 贡献率Var./% | 加性 效应 Add. | |||||||||
qGL3 | 3 | R3M30−RM3513 | 8.05 | 18.52 | 0.28 | 7.69 | 16.52 | 0.28 | 8.74 | 18.89 | 0.31 | ZYZ8 | |||||
qGL7 | 7 | RM3404−RM11 | 2.90 | 5.37 | 0.16 | 3.33 | 5.73 | 0.16 | 2.90 | 5.30 | 0.16 | ZYZ8 | |||||
qGL11 | 11 | RM1124−STS11.1 | 2.52 | 4.69 | 0.14 | ZYZ8 | |||||||||||
qGW3 | 3 | STS3.10−RM3684 | 4.46 | 9.53 | −0.09 | 4.44 | 9.13 | −0.09 | 4.03 | 8.54 | −0.08 | LD5 | |||||
qGW5 | 5 | R5M13−RM3476 | 3.20 | 7.48 | −0.08 | 3.94 | 9.22 | −0.09 | 3.21 | 7.8 | −0.08 | LD5 | |||||
qGT3 | 3 | RM503−RM700 | 3.21 | 8.05 | −0.05 | 3.70 | 9.34 | −0.04 | 2.76 | 6.36 | −0.04 | LD5 | |||||
qGT6 | 6 | RM3827−RM1340 | 2.53 | 6.09 | 0.04 | ZYZ8 | |||||||||||
qLWR3a | 3 | R3M30−RM3513 | 5.34 | 12.46 | 0.10 | 5.76 | 13.33 | 0.10 | 6.10 | 14.33 | 0.11 | ZYZ8 |
数量性状基因 | 染色体 | 标记区间 | LOD值 | 表型贡献率 | 加性效应 |
---|---|---|---|---|---|
QTL | Chr. | Marker interval | LOD value | Var./% | Add. |
qGL2 | 2 | RM6933―ID2 | 4.20 | 3.14 | 0.12 |
qGL3 | 3 | R3M30―RM3513 | 20.90 | 15.78 | 0.26 |
qGL7 | 7 | RM3404―RM11 | 8.26 | 5.02 | 0.15 |
qGL11 | 11 | RM1124―STS11.1 | 8.51 | 5.85 | 0.16 |
qGW3 | 3 | STS3.10―RM3684 | 6.20 | 4.55 | ―0.06 |
qGW5 | 5 | STS5.2―RM3476 | 10.85 | 9.43 | ―0.08 |
qGT3 | 3 | RM503―RM7000 | 6.83 | 5.26 | ―0.34 |
qGT5 | 5 | R5M13―RM3476 | 4.84 | 4.37 | ―0.31 |
qGT6 | 6 | RM3827―RM1340 | 5.07 | 3.85 | 0.29 |
qLWR3a | 3 | R3M30―RM3513 | 16.61 | 8.71 | 0.10 |
qLWR3b | 3 | STS3.10―RM3684 | 14.77 | 9.96 | 0.11 |
qLWR5 | 5 | STS5.2―RM3476 | 4.64 | 2.01 | 0.05 |
qLWR7 | 7 | RM3404―RM11 | 6.97 | 3.40 | 0.06 |
qLWR11 | 11 | RM1124―STS11.1 | 4.99 | 2.28 | 0.05 |
Table 3. MET-QTL mapping of grain shape traits in rice RIL population.
数量性状基因 | 染色体 | 标记区间 | LOD值 | 表型贡献率 | 加性效应 |
---|---|---|---|---|---|
QTL | Chr. | Marker interval | LOD value | Var./% | Add. |
qGL2 | 2 | RM6933―ID2 | 4.20 | 3.14 | 0.12 |
qGL3 | 3 | R3M30―RM3513 | 20.90 | 15.78 | 0.26 |
qGL7 | 7 | RM3404―RM11 | 8.26 | 5.02 | 0.15 |
qGL11 | 11 | RM1124―STS11.1 | 8.51 | 5.85 | 0.16 |
qGW3 | 3 | STS3.10―RM3684 | 6.20 | 4.55 | ―0.06 |
qGW5 | 5 | STS5.2―RM3476 | 10.85 | 9.43 | ―0.08 |
qGT3 | 3 | RM503―RM7000 | 6.83 | 5.26 | ―0.34 |
qGT5 | 5 | R5M13―RM3476 | 4.84 | 4.37 | ―0.31 |
qGT6 | 6 | RM3827―RM1340 | 5.07 | 3.85 | 0.29 |
qLWR3a | 3 | R3M30―RM3513 | 16.61 | 8.71 | 0.10 |
qLWR3b | 3 | STS3.10―RM3684 | 14.77 | 9.96 | 0.11 |
qLWR5 | 5 | STS5.2―RM3476 | 4.64 | 2.01 | 0.05 |
qLWR7 | 7 | RM3404―RM11 | 6.97 | 3.40 | 0.06 |
qLWR11 | 11 | RM1124―STS11.1 | 4.99 | 2.28 | 0.05 |
[1] | 陈燕红, 胡标林, 张帆涛. 稻米品质遗传分析研究现状[J]. 中国稻米, 2023, 29(1): 44-54. |
Cheng Y H, Hu B L, Zhang F T. Research status of genetic analysis of rice quality[J]. China Rice, 2023, 29(1): 44-54. (in Chinese with English abstract) | |
[2] | 李苗苗, 李儒香, 秦鱼河, 余金琎, 徐光益, 向思茜, 杨正林, 桑贤春, 凌英华, 何光华, 赵芳明. 基于水稻矮秆长粒CSSL-Z688的QTL鉴定及SSSLs培育[J]. 西南大学学报: 自然科学版, 2023, 45(1): 33-44. |
Li M M, Li R X, Qin Y H, Yu J J, Xu G Y, Xiang S Q, Yang Z L, Sang X C, Ling Y H, He G H, Zhao F M. Identification of QTL based on a dwarf and long-large grain rice CSSL-Z688 and development of SSSLs[J]. Journal of Southwest University: Natural Science Edition, 2023, 45(1): 33-44. (in Chinese with English abstract) | |
[3] | 李金吉, 张银霞, 赵娜, 田蕾, 杨淑琴, 李培富. 水稻粒形与千粒质量的QTL分析[J]. 西北农林科技大学学报: 自然科学版, 2021, 49(2): 54-60. |
Li J J, Zhang Y X, Zhao N, Tian L, Yang S Q, Li P F. QTL analysis of rice grain shape and thousand-grain weight[J]. Journal of Northwest A & F University: Natural Science Edition, 2021, 49(2): 54-60. (in Chinese with English abstract) | |
[4] | 郑跃滨, 李智, 赵海燕, 朱光枫, 廖芷依, 竺正航, 王兰. 水稻粒长QTL定位与主效基因的遗传分析[J]. 西北植物学报, 2020, 40(4): 598-604. |
Zheng Y B, Li Z, Zhao H Y, Zhu G F, Liao Z Y, Zhu Z H, Wang L. Mapping quantitative trait loci associated with grain length and genetic analysis of major quantitative loci in rice[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(4): 598-604. (in Chinese with English abstract) | |
[5] | Zhou Y, Hou J, Li P B, Yang H Y, Xia D, Zhou H, Alam M, Gao G J, Zhang Q L, He Y Q. Genetic dissection and validation of QTLs for grain shape and weight in rice and fine mapping of qGL1.3, a major QTL for grain length and weight[J]. Molecular Breeding, 2019, 39(12): 1-11. |
[6] | 向思茜, 李儒香, 徐光益, 邓岢莉, 余金琎, 李苗苗, 杨正林, 凌英华, 桑贤春, 何光华, 赵芳明. 基于水稻长大粒染色体片段代换系Z66的粒形QTL的鉴定及其聚合分析[J]. 作物学报, 2023, 49(3): 731-743. |
Xiang S Q, Li R X, Xu Gu Y, Deng K L, Yu J J, Li M M, Yang Z L, Ling Y H, Sang X C, He G H, Zhao F M. Identification and pyramid analysis of QTLs for grain size based on rice long-large-grain chromosome segment substitution line Z66[J]. Acta Agronomica Sinica, 2023, 49(3): 731-743. (in Chinese with English abstract) | |
[7] | 梁文化, 陈涛, 姚姝, 赵凌, 朱镇, 赵庆勇, 周丽慧, 赵春芳, 路凯, 赫磊, 王才林, 张亚东. 基于高密度遗传图谱定位水稻籽粒长宽比QTL[J]. 江苏农业科学, 2021, 49(23): 47-52. |
Liang W H, Chen T, Yao Z, Zhao L, Zhu Z, Zhao Q Y, Zhou L H, Zhao C F, Lu K, Hao L, Wang C L, Zhang Y D. QTL mapping for grain length-width ratio based on high-density genetic map in rice[J]. Jiangsu Agricultural Sciences, 2021, 49(23): 47-52. (in Chinese with English abstract) | |
[8] | 周梦玉, 宋昕蔚, 徐静, 付雪, 李婷, 朱雨晨, 肖幸运, 毛一剑, 曾大力, 胡江, 朱丽, 任德勇, 高振宇, 郭龙彪, 钱前, 吴明国, 林建荣, 张光恒. 籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证[J]. 中国水稻科学, 2018, 32(3): 207-218. |
Zhou M Y, Song X W, Xu J, Fu X, Li T, Zhu Y H, Xiao X Y, Mao Y J, Zeng D L, Hu J, Zhu L, Ren D Y, Gao Z Y, Guo L B, Qian Q, Wu M G, Lin J R, Zhang G H. Construction of genetic map and mapping and verification of grain traits QTLs using recombinant inbred lines derived from a cross between indica C84 and japonica CJI6B[J]. Chinese Journal of Rice Science, 2018, 32(3): 207-218. (in Chinese with English abstract) | |
[9] | 宋博文, 王朝欢, 赵哲, 陈淳, 黄明, 陈伟雄, 梁克勤, 肖武名. 基于高密度遗传图谱对水稻粒形QTL定位及分析[J]. 作物学报, 2022, 48(11): 2813-2829. |
Song B W, Wang C H, Zhao Z, Chen C, Huang M, Chen W X, Liang K Q, Xiao W M. Mapping and analysis of QTLs for grain size in rice based on high density genetic map[J]. Acta Agronomica Sinica, 2022, 48(11): 2813-2829. (in Chinese with English abstract) | |
[10] | 姚晓云, 陈春莲, 熊运华, 黄永萍, 彭志勤, 刘进, 尹建华. 水稻加工和外观品质性状QTL鉴定[J]. 中国水稻科学, 2023, 37 (5): 507-517. |
Yao X Y, Chen C L, Xiong Y H, Huang Y P, Peng Z Q, Liu J, Yin J H. Identification of QTL for milling and appearance quality traits in rice(Oryza sativa L.)[J]. Acta Agronomica Sinica, 2023, 37(5): 507-517. (in Chinese with English abstract) | |
[11] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q. GS3, a major OTL for grain length and weight and minor OTL for grain width and thickness in rice encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[12] | Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[13] | Wu W G, Liu X Y, Wang M H, Meyer R S, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3: 17064. |
[14] | Xia D, Zhou N, Liu R J, Dan W H, Li P B, Wu B. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to Produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[15] | Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Lin X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Lou X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[16] | Si L Z, Chen J Y, Huang X H, Gong H, Lou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, Han B. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48: 447-456. |
[17] | Zhan P L, Ma S P, Xiao Z L, Li F P, Wei X, Lin S J, Wang X L, Ji Z, Fu Y, Pan J H, Zhou M, Liu Y, Chang Z Y, Li L, Bu S H, Liu Z P, Zhu H T, Liu G F, Zhang G Q, Wang S K. Natural variations in grain length 10(GL10) regulate rice grain size[J]. Journal of Genetics and Genomics, 2022, 49(5): 405-413. |
[18] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9(1): 1240. |
[19] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1666-1680. |
[20] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39: 623-630. |
[21] | Duan P G, Xu J S, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H. Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10(5): 685-694. |
[22] | Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5[J]. Genetics, 2008, 179(4): 2239-2252. |
[23] | Shomura A, Izawa T, Ebana K, Takeshi E, Hiromi K, Saeko K, Masahiro Y. Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8): 1023-1028. |
[24] | Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269. |
[25] | Wang S K, Wu K, Yuan Q B, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[26] | Liu D P, Zhao H, Xiao Y H, Zhang G X, Cao S Y, Yin W C, Qian Y W, Yin Y H, Zhang J S, Chen S Y, Chu C C. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size[J]. Molecular Plant, 2022, 15(2): 293-307. |
[27] | Liu D P, Yu Z K, Zhang G X, Yin W C, Li L L, Niu M, Meng W J, Zhang X X, Dong N N, Liu J H, Yang Y Z, Wang S M, Chu C C, Tong H N. Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice[J]. Plant Physiology, 2021, 187(4): 2563-2576. |
[28] | Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(52): 21534-21539. |
[29] | 胡慧, 高若愚, 李志新, 徐俊英, 杨隆维, 田雨, 邱先进, 徐建龙. 利用双向导入系定位再生稻外观品质的QTL[J]. 核农学报, 2023, 37(2): 262-273. |
Hu H, Gao R Y, Li Z X, Xu J Y, Yang L W, Tian Y, Qiu X J, Xu J L. QTL identification of appearance quality of ratoon rice using two sets of reciprocal introgression lines[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(2): 262-273. (in Chinese with English abstract) | |
[30] | Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. SmartGrain: High-throughput phenotyping software for measuring seed shape through image analysis[J]. Plant Physiology, 2012, 160(4): 1871-1880. |
[31] | Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325. |
[32] | 刘进, 姚晓云, 刘丹, 余丽琴, 李慧, 王棋, 王嘉宇, 黎毛毛. 不同生态环境下水稻穗部性状QTL鉴定[J]. 中国水稻科学, 2019, 33(2): 124-134. |
Liu J, Yao X Y, Liu D, Xu L Q, Li H, Wang Q, Wang J Y, Li M M. Identification of QTL for panicle traits under multiple environments in rice(Oryza sativa L.)[J]. Acta Agronomica Sinica, 2019, 33(2): 124-134. (in Chinese with English abstract) | |
[33] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[34] | 丁膺宾, 张莉珍, 许睿, 王艳艳, 郑晓明, 张丽芳, 程云连, 吴凡, 杨庆文, 乔卫华, 兰进好. 基于染色体片段置换系的野生稻粒长QTL——qGL12的精细定位[J]. 中国农业科学, 2018, 51(18): 3435-3444. |
Ding Y B, Zhang L Z, Xu R, Wang Y Y, Zheng X M, Zhang L F, Cheng Y L, Wu F, Yang Q W, Qiao W H, Lan J H. Fine mapping of grain length associated QTL, qGL12 in wild rice using a chromosome segment substitution line[J]. Scientia Agricultura Sinica, 2018, 51(18): 3435-3444. (in Chinese with English abstract) | |
[35] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒形基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
Zhang B, Pei R Q, Yang W F, Zhu H T, Liu G F, Zhang G Q, Wang S K. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9[J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480. (in Chinese with English abstract) | |
[36] | Ponce K, Zhang Y, Guo L B, Leng Y J, Ye G Y. Genome-wide association study of grain size traits in indica rice multiparent advanced generation intercross (MAGIC) population[J]. Frontiers in Plant Science, 2020, 11(24): 395. |
[37] | 张亚东, 梁文化, 赫磊, 赵春芳, 朱镇, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 王才林. 水稻RIL群体高密度遗传图谱构建及粒形QTL定位[J]. 中国农业科学, 2021, 54(24): 5163-5176. |
Zhang Y D, Liang W H, He L, Zhao C F, Zhu Z, Chen T, Zhao Q Y, Zhao L, Yao S, Zhou L H, Lu K, Wang C L. Construction of high-density genetic map and QTL analysis of grain shape in rice RIL population[J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176. (in Chinese with English abstract) | |
[38] | 黄涛, 王燕宁, 钟奇, 程琴, 杨朦朦, 王鹏, 吴光亮, 黄诗颖, 李才敬, 余剑峰, 贺浩华, 边建民. 利用染色体片段置换系群体定位和分析水稻粒重和粒形QTL[J]. 中国水稻科学, 2022, 36(2): 159-170. |
Huang T, Wang Y N, Zhong Q, Cheng Q, Yang M M, Wang P, Wu G L, Huang S Y, Li C J, Yu J F, He H H, Bian J M. Mapping and analysis of QTLs for rice grain weight and grain shape using chromosome segment substitution line population. Chinese Journal of Rice Science, 2022, 36(2): 159-170. (in Chinese with English abstract) | |
[39] | Chan A N, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y, Zhang Z H. Identification through fine mapping and verification using CRISPR/Cas9-targeted mutagenesis for a minor QTL controlling grain weight in rice[J]. Theoretical and Applied Genetics, 2021, 134(1): 327-337. |
[40] | Ying J Z, Ma M, Bai C, Huang X, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11(5): 750-753. |
[41] | Ma M, Shen S Y, Bai C, Wang W Q, Feng X H, Ying J Z, Song X J. Control of grain size in rice by TGW3 phosphorylation of OsIAA10 through potentiation of OsIAA10-OsARF4-mediated auxin signaling[J]. Cell Reports, 2023, 42(3): 112187. |
[42] | Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3,a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11(5): 754-756. |
[43] | Tian P, Liu J F, Mou C L, Shi C L, Zhang H, Zhao Z C, Lin Q B, Wang J, Wang J L, Zhang X, Guo X Z, Cheng Z J, Zhu S S, Ren Y L, Lei C L, Wang H Y, Wan J M. GW5-like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice[J]. Journal of Integrative Plant Biology, 2019, 61(11): 1171-1185. |
[44] | Li N, Xu R, Li Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology, 2019, 70: 435-463. |
[45] | 刘进, 姚晓云, 王棋, 李慧, 王嘉宇, 黎毛毛. 不同生态环境下籽粒大小相关性状QTL定位[J]. 华北农学报, 2018, 33(2): 133-138. |
Liu J, Yao X Y, Wang Q, Li H, Wang J Y, Li M M. QTL mapping of seed size traits under different environment in rice[J]. Acta Agriculture Boerali-Sinica, 2018, 33(2): 133-138. (in Chinese with English abstract) |
[1] |
WANG Yichen, ZHU Benshun, ZHOU Lei, ZHU Jun, YANG Zhongnan.
Sterility Mechanism of Photoperiod/Thermo-sensitive Genic Male Sterile Lines and Development and Prospects of Two-line Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 463-474. |
[2] |
XU Yongqiang XU Jun, FENG Baohua, XIAO Jingjing, WANG Danying, ZENG Yuxiang, FU Guanfu.
Research Progress of Pollen Tube Growth in Pistil of Rice and Its Response to Abiotic stress [J]. Chinese Journal OF Rice Science, 2024, 38(5): 495-506. |
[3] |
HE Yong, LIU Yaowei, XIONG Xiang, ZHU Danchen, WANG Aiqun, MA Lana, WANG Tingbao, ZHANG Jian, LI Jianxiong, TIAN Zhihong.
Creation of Rice Grain Size Mutants by Editing OsOFP30 via CRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2024, 38(5): 507-515. |
[4] |
LÜ Yang, LIU Congcong, YANG Longbo, CAO Xinglan, WANG Yueying, TONG Yi, Mohamed Hazman, QIAN Qian, SHANG Lianguang, GUO Longbiao.
Identification of Candidate Genes for Rice Nitrogen Use Efficiency by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(5): 516-524. |
[5] |
YANG Hao, HUANG Yanyan, WANG Jian, YI Chunlin, SHI Jun, TAN Chutian, REN Wenrui, WANG Wenming.
Development and Application of Specific Molecular Markers for Eight Rice Blast Resistance Genes in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(5): 525-534. |
[6] |
JIANG Peng, ZHANG Lin, ZHOU Xingbing, GUO Xiaoyi, ZHU Yongchuan, LIU Mao, GUO Chanchun, XIONG Hong, XU Fuxian.
Yield Formation Characteristics of Ratooning Hybrid Rice Under Simplified Cultivation Practices in Winter Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 544-554. |
[7] |
YANG Mingyu, CHEN Zhicheng, PAN Meiqing, ZHANG Bianhong, PAN Ruixin, YOU Lindong, CHEN Xiaoyan, TANG Lina, HUANG Jinwen.
Effects of Nitrogen Reduction Combined with Biochar Application on Stem and Sheath Assimilate Translocation and Yield Formation in Rice Under Tobacco-rice Rotation [J]. Chinese Journal OF Rice Science, 2024, 38(5): 555-566. |
[8] |
XIONG Jiahuan, ZHANG Yikai, XIANG Jing, CHEN Huizhe, XU Yicheng, WANG Yaliang, WANG Zhigang, YAO Jian, ZHANG Yuping .
Effect of Biochar-based Fertilizer Application on Rice Yield and Nitrogen Utilization in Film- mulched PaddyFields [J]. Chinese Journal OF Rice Science, 2024, 38(5): 567-576. |
[9] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[10] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[11] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[12] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[13] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[14] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[15] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||