Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (2): 167-175.DOI: 10.16819/j.1001-7216.2019.8059 168
• Research Papers • Previous Articles Next Articles
Chen CHEN, Haiqing GONG, Mengcan JIN, Hongjian GAO*()
Received:
2018-05-07
Revised:
2018-11-26
Online:
2019-03-10
Published:
2019-03-10
Contact:
Hongjian GAO
通讯作者:
郜红建
基金资助:
CLC Number:
Chen CHEN, Haiqing GONG, Mengcan JIN, Hongjian GAO. Correlation Between Root Morphology and Accumulation of Phosphorus in Rice Seedlings under Different N Forms[J]. Chinese Journal OF Rice Science, 2019, 33(2): 167-175.
陈晨, 龚海青, 金梦灿, 郜红建. 不同供氮形态下水稻苗期磷吸收累积与根系形态的关系[J]. 中国水稻科学, 2019, 33(2): 167-175.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8059 168
编号 Number | 品种 Variety | 编号 Number | 品种 Variety | 编号 Number | 品种 Variety |
---|---|---|---|---|---|
1 | 农香25 Nongxiang 25 | 35 | 武运粳23 Wuyunjing 23 | 69 | 辐照1号 Fuzhao 1 |
2 | 玉针香 Yuzhenxiang | 36 | WJ112 | 70 | 淮稻18 Huaidao 18 |
3 | 株两优819 Zhuliangyou 819 | 37 | 镇稻11 Zhendao 11 | 71 | 泗稻12 Sidao 12 |
4 | 湘晚籼17 Xiangwanxian 17 | 38 | Y两优646 Y liangyou 646 | 72 | 镇稻18 Zhendao 18 |
5 | 黄华占 Huanghuazhan | 39 | 新两优343 Xinliangyou 343 | 73 | 武运粳19 Wuyunjing 19 |
6 | 陆两优997 Luliangyou 997 | 40 | Y两优2号Y liangyou 2 | 74 | 武运粳21 Wuyunjing 21 |
7 | 湘晚籼12 Xiangwanxian 12 | 41 | 广两优3905 Guangliangyou 3905 | 75 | 连粳9号 Liangjing 9 |
8 | 丰两优1号 Fengliangyou 1 | 42 | 甬优9号 Yongyou 9 | 76 | 连粳7号 Lianjing 7 |
9 | 湘早籼32 Xiangzaoxian 32 | 43 | 晚稻119 Wandao 119 | 77 | 镇稻8号Zhendao 8 |
10 | 湘早籼45 Xiangzaoxian 45 | 44 | 苏稻5号 Sudao 5 | 78 | 武运粳24 Wuyunjing 24 |
11 | 丰源优2997 Fengyuanyou 2997 | 45 | 中籼2503 Zhongxian 2503 | 79 | 宁粳5号 Ningjing 5 |
12 | C两优608 C liangyou 608 | 46 | 两优766 Liangyou 766 | 80 | 新两优6号 Xinliangyou 6 |
13 | 丰源优2297 Fengyuanyou 2297 | 47 | 新两优223 Xinliangyou 223 | 81 | 皖稻153 Wandao 153 |
14 | 湘早籼24 Xiangzaoxian 24 | 48 | Ⅱ优602 ⅡYou 602 | 82 | 丰两优9号 Fengliangyou 9 |
15 | 湘早籼6号 Xiangzaoxian 6 | 49 | 新两优106 Xinliangyou 106 | 83 | 两优383 Liangyou 383 |
16 | 隆香优130 Longxiangyou 130 | 50 | 航香18 Hangxiang 18 | 84 | 两优378 Liangyou 378 |
17 | 湘早籼42 Xiangzaoxian 42 | 51 | 春优84 Chunyou 84 | 85 | Y两优1号 Y liangyou 1 |
18 | 湘晚籼22 Xiangwanxian 22 | 52 | 徽两优6号 Huiliangyou 6 | 86 | 南粳94140 Nanjing 94140 |
19 | 陆两优996 Luliangyou 996 | 53 | 新两优香42 Xinliangyouxiang 42 | 87 | 丰两优80 Fengliangyou 80 |
20 | 镇16 Zhen 16 | 54 | 两优8106 Liangyou 8106 | 88 | 嘉优2号 Jiayou 2 |
21 | WJ93 | 55 | 深两优1813 Shenliangyou 1813 | 89 | 镇稻12 Zhendao 12 |
22 | 镇15 Zhen 15 | 56 | 德香4103 Dexiang 4103 | 90 | 新稻25 Xindao 25 |
23 | WJ46 | 57 | 皖稻68 Wandao 68 | 91 | 深两优3117 Shenliangyou 3117 |
24 | 镇稻14 Zhendao 14 | 58 | 粤优1128 Yueyou 1128 | 92 | 新稻18号 Xindao 18 |
25 | 宁粳1号 Ningjing 1 | 59 | 苏秀9号 Suxiu 9 | 93 | 丰两优6348 Fengliangyou 6348 |
26 | WJ109 | 60 | 华粳5号 Huajing 5 | 94 | 甬优2640 Yongyou 2640 |
27 | WO30 | 61 | 盐粳7号 Yanjing 7 | 95 | 两优3905 Liangyou 3905 |
28 | 镇9424 Zhen 9424 | 62 | ANW | 96 | 南粳49 Nanjing 49 |
29 | 镇稻17 Zhendao 17 | 63 | 扬粳4037 Yangjing 4037 | 97 | 宁粳2号 Ningjing 2 |
30 | 镇稻19 Zhendao 19 | 64 | 淮稻6号 Huaidao 6 | 98 | WO32 |
31 | 宁粳3号 Ningjing 3 | 65 | 华瑞稻 Huaruidao | 99 | 中旱3号 Zhonghan 3 |
32 | WJ104 | 66 | 盐粳11 Yanjing 11 | 100 | 连粳11 Lianjing 11 |
33 | 镇稻10号 Zhendao 10 | 67 | 金粳18 Jinjing 18 | 101 | 圣稻16 Shengdao 16 |
34 | 镇稻88 Zhendao 88 | 68 | 扬辐粳8号 Yangfujing 8 | 102 | 2845 |
Table 1 Varieties and numbers of selected rice.
编号 Number | 品种 Variety | 编号 Number | 品种 Variety | 编号 Number | 品种 Variety |
---|---|---|---|---|---|
1 | 农香25 Nongxiang 25 | 35 | 武运粳23 Wuyunjing 23 | 69 | 辐照1号 Fuzhao 1 |
2 | 玉针香 Yuzhenxiang | 36 | WJ112 | 70 | 淮稻18 Huaidao 18 |
3 | 株两优819 Zhuliangyou 819 | 37 | 镇稻11 Zhendao 11 | 71 | 泗稻12 Sidao 12 |
4 | 湘晚籼17 Xiangwanxian 17 | 38 | Y两优646 Y liangyou 646 | 72 | 镇稻18 Zhendao 18 |
5 | 黄华占 Huanghuazhan | 39 | 新两优343 Xinliangyou 343 | 73 | 武运粳19 Wuyunjing 19 |
6 | 陆两优997 Luliangyou 997 | 40 | Y两优2号Y liangyou 2 | 74 | 武运粳21 Wuyunjing 21 |
7 | 湘晚籼12 Xiangwanxian 12 | 41 | 广两优3905 Guangliangyou 3905 | 75 | 连粳9号 Liangjing 9 |
8 | 丰两优1号 Fengliangyou 1 | 42 | 甬优9号 Yongyou 9 | 76 | 连粳7号 Lianjing 7 |
9 | 湘早籼32 Xiangzaoxian 32 | 43 | 晚稻119 Wandao 119 | 77 | 镇稻8号Zhendao 8 |
10 | 湘早籼45 Xiangzaoxian 45 | 44 | 苏稻5号 Sudao 5 | 78 | 武运粳24 Wuyunjing 24 |
11 | 丰源优2997 Fengyuanyou 2997 | 45 | 中籼2503 Zhongxian 2503 | 79 | 宁粳5号 Ningjing 5 |
12 | C两优608 C liangyou 608 | 46 | 两优766 Liangyou 766 | 80 | 新两优6号 Xinliangyou 6 |
13 | 丰源优2297 Fengyuanyou 2297 | 47 | 新两优223 Xinliangyou 223 | 81 | 皖稻153 Wandao 153 |
14 | 湘早籼24 Xiangzaoxian 24 | 48 | Ⅱ优602 ⅡYou 602 | 82 | 丰两优9号 Fengliangyou 9 |
15 | 湘早籼6号 Xiangzaoxian 6 | 49 | 新两优106 Xinliangyou 106 | 83 | 两优383 Liangyou 383 |
16 | 隆香优130 Longxiangyou 130 | 50 | 航香18 Hangxiang 18 | 84 | 两优378 Liangyou 378 |
17 | 湘早籼42 Xiangzaoxian 42 | 51 | 春优84 Chunyou 84 | 85 | Y两优1号 Y liangyou 1 |
18 | 湘晚籼22 Xiangwanxian 22 | 52 | 徽两优6号 Huiliangyou 6 | 86 | 南粳94140 Nanjing 94140 |
19 | 陆两优996 Luliangyou 996 | 53 | 新两优香42 Xinliangyouxiang 42 | 87 | 丰两优80 Fengliangyou 80 |
20 | 镇16 Zhen 16 | 54 | 两优8106 Liangyou 8106 | 88 | 嘉优2号 Jiayou 2 |
21 | WJ93 | 55 | 深两优1813 Shenliangyou 1813 | 89 | 镇稻12 Zhendao 12 |
22 | 镇15 Zhen 15 | 56 | 德香4103 Dexiang 4103 | 90 | 新稻25 Xindao 25 |
23 | WJ46 | 57 | 皖稻68 Wandao 68 | 91 | 深两优3117 Shenliangyou 3117 |
24 | 镇稻14 Zhendao 14 | 58 | 粤优1128 Yueyou 1128 | 92 | 新稻18号 Xindao 18 |
25 | 宁粳1号 Ningjing 1 | 59 | 苏秀9号 Suxiu 9 | 93 | 丰两优6348 Fengliangyou 6348 |
26 | WJ109 | 60 | 华粳5号 Huajing 5 | 94 | 甬优2640 Yongyou 2640 |
27 | WO30 | 61 | 盐粳7号 Yanjing 7 | 95 | 两优3905 Liangyou 3905 |
28 | 镇9424 Zhen 9424 | 62 | ANW | 96 | 南粳49 Nanjing 49 |
29 | 镇稻17 Zhendao 17 | 63 | 扬粳4037 Yangjing 4037 | 97 | 宁粳2号 Ningjing 2 |
30 | 镇稻19 Zhendao 19 | 64 | 淮稻6号 Huaidao 6 | 98 | WO32 |
31 | 宁粳3号 Ningjing 3 | 65 | 华瑞稻 Huaruidao | 99 | 中旱3号 Zhonghan 3 |
32 | WJ104 | 66 | 盐粳11 Yanjing 11 | 100 | 连粳11 Lianjing 11 |
33 | 镇稻10号 Zhendao 10 | 67 | 金粳18 Jinjing 18 | 101 | 圣稻16 Shengdao 16 |
34 | 镇稻88 Zhendao 88 | 68 | 扬辐粳8号 Yangfujing 8 | 102 | 2845 |
Fig. 1. Biomass(A), phosphorus content(B), phosphorus accumulation(C) of rice plants at the seedling stage cultured in NH4+-N and NO3--N solutions. 1,2……102 represent variety numbers of selected rice varieties; the unit in the A is mg/plant; the unit in the B is %; and the unit in the C is mg/plant.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
变幅 Range | 均值 Mean | 变异系数 CV/% | 变幅 Range | 均值 Mean | 变异系数 CV/% | |
总根长 Total root length/cm | 153.84-2947.86 | 1195.88 aA | 56.63 | 103.58-2165.30 | 979.38 bB | 53.93 |
总根面积 Total root area/cm2 | 9.46-180.77 | 82.56 aA | 46.16 | 13.15-156.89 | 54.77 bB | 54.91 |
平均直径 Average diameter/mm | 0.20-0.46 | 0.30 aA | 19.28 | 0.18-0.42 | 0.29 aA | 21.25 |
总根体积 Total root volume/cm3 | 0.13-0.92 | 0.42 aA | 44.53 | 0.08-0.94 | 0.40 aA | 50.43 |
根尖数 Root tip No. | 879.00-30 975.00 | 11 323.75 aA | 65.96 | 805.67-26 277.67 | 9 459.69 bB | 63.17 |
分枝数 Root branch No. | 2188.33-36 903.67 | 13 386.56 aA | 56.67 | 2013.67-36 333.67 | 11 754.37 bB | 60.53 |
交叉数 Root crossing No. | 1663.00-26 835.00 | 11 449.16 aA | 45.54 | 1098.67-28 036.33 | 11 692.79 aA | 53.35 |
Table 2 Variation characteristics of root morphology of rice cultured in NH4+-N and NO3--N solutions.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
变幅 Range | 均值 Mean | 变异系数 CV/% | 变幅 Range | 均值 Mean | 变异系数 CV/% | |
总根长 Total root length/cm | 153.84-2947.86 | 1195.88 aA | 56.63 | 103.58-2165.30 | 979.38 bB | 53.93 |
总根面积 Total root area/cm2 | 9.46-180.77 | 82.56 aA | 46.16 | 13.15-156.89 | 54.77 bB | 54.91 |
平均直径 Average diameter/mm | 0.20-0.46 | 0.30 aA | 19.28 | 0.18-0.42 | 0.29 aA | 21.25 |
总根体积 Total root volume/cm3 | 0.13-0.92 | 0.42 aA | 44.53 | 0.08-0.94 | 0.40 aA | 50.43 |
根尖数 Root tip No. | 879.00-30 975.00 | 11 323.75 aA | 65.96 | 805.67-26 277.67 | 9 459.69 bB | 63.17 |
分枝数 Root branch No. | 2188.33-36 903.67 | 13 386.56 aA | 56.67 | 2013.67-36 333.67 | 11 754.37 bB | 60.53 |
交叉数 Root crossing No. | 1663.00-26 835.00 | 11 449.16 aA | 45.54 | 1098.67-28 036.33 | 11 692.79 aA | 53.35 |
氮供应 Nitrogen form | 参数 Parameter | 总根长 Total root length | 总根面积 Total root area | 平均根系直径Average diameter | 总根体积 Total root volume | 根尖数 Root tip No. | 分枝数 Root branch No. | 交叉数 Root crossing No. |
---|---|---|---|---|---|---|---|---|
NH4+-N | 整株生物量 Whole plant biomass | 0.93** | 0.91** | -0.22* | 0.81** | 0.90** | 0.86** | 0.89** |
整株P含量 Whole plant P content | 0.61** | 0.60** | -0.15 | 0.54** | 0.54** | 0.63** | 0.65** | |
整株P累积量 Whole plant P accumulation | 0.88** | 0.85** | -0.21* | 0.77** | 0.84** | 0.85** | 0.86** | |
NO3--N | 整株生物量 Whole plant biomass | 0.97** | 0.87** | -0.24* | 0.77** | 0.91** | 0.86** | 0.93** |
整株P含量 Whole plant P content | 0.55** | 0.43** | -0.17 | 0.33** | 0.45** | 0.37** | 0.56** | |
整株P累积量 Whole plant P accumulation | 0.89** | 0.78** | -0.22* | 0.63** | 0.79** | 0.73** | 0.87** |
Table 3 Correlations between biomass, phosphorus indices and root morphological indices under different N forms.
氮供应 Nitrogen form | 参数 Parameter | 总根长 Total root length | 总根面积 Total root area | 平均根系直径Average diameter | 总根体积 Total root volume | 根尖数 Root tip No. | 分枝数 Root branch No. | 交叉数 Root crossing No. |
---|---|---|---|---|---|---|---|---|
NH4+-N | 整株生物量 Whole plant biomass | 0.93** | 0.91** | -0.22* | 0.81** | 0.90** | 0.86** | 0.89** |
整株P含量 Whole plant P content | 0.61** | 0.60** | -0.15 | 0.54** | 0.54** | 0.63** | 0.65** | |
整株P累积量 Whole plant P accumulation | 0.88** | 0.85** | -0.21* | 0.77** | 0.84** | 0.85** | 0.86** | |
NO3--N | 整株生物量 Whole plant biomass | 0.97** | 0.87** | -0.24* | 0.77** | 0.91** | 0.86** | 0.93** |
整株P含量 Whole plant P content | 0.55** | 0.43** | -0.17 | 0.33** | 0.45** | 0.37** | 0.56** | |
整株P累积量 Whole plant P accumulation | 0.89** | 0.78** | -0.22* | 0.63** | 0.79** | 0.73** | 0.87** |
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | 因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | |
植株生物量 Whole plant biomass/g | Y1 | Y1=-2.37+2×10-3X1+0.19X2+10-3 X6+10-3X7 | 0.92** | Y4 | Y8=-0.30+5.60×10-2 X1+0.17X2 | 0.94** |
植株P含量 Whole plant P content/% | Y2 | Y2=0.01-4.09×10-7X7 | 0.27* | Y5 | Y11=0.27-1.03×10-5 X6+2.03×10-5 X7 | 0.40* |
植株P累积量 Whole plant P accumulation/g | Y3 | Y3=-22.75+8×10-3 X6 + 4×10-3 X7 | 0.82** | Y6 | Y12=-4.49+4×10-2 X1+1×10-3 X6 | 0.81** |
Table 4 Multiple linear regression of rice nutritional indices and morphological indices under different nitrogen conditions.
参数 Index | NH4+-N | NO3--N | ||||
---|---|---|---|---|---|---|
因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | 因变量 Dependent variable | 回归方程 Regression equation | 决定系数 R2 | |
植株生物量 Whole plant biomass/g | Y1 | Y1=-2.37+2×10-3X1+0.19X2+10-3 X6+10-3X7 | 0.92** | Y4 | Y8=-0.30+5.60×10-2 X1+0.17X2 | 0.94** |
植株P含量 Whole plant P content/% | Y2 | Y2=0.01-4.09×10-7X7 | 0.27* | Y5 | Y11=0.27-1.03×10-5 X6+2.03×10-5 X7 | 0.40* |
植株P累积量 Whole plant P accumulation/g | Y3 | Y3=-22.75+8×10-3 X6 + 4×10-3 X7 | 0.82** | Y6 | Y12=-4.49+4×10-2 X1+1×10-3 X6 | 0.81** |
[1] | Liedgens M, Soldati A, Stamp P.Root development of maize (Zea mays L.) as observed with minirhizotrons in lysimeters. Crop Sci, 2000, 40(6): 1665-1672. |
[2] | Yan X, Liao H, Beebe S E, Blair M W, Lynch J P.QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean.Plant & Soil, 2004, 265(1/2): 17-29. |
[3] | Bates T R, Lynch J P.Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability.Plant Cell & Environ, 1996, 19(5): 529-538. |
[4] | Jungk A.Root hairs and the acquisition of plant nutrients from soil.J Plant Nutr Soil Sci, 2015, 164(2):121-129 |
[5] | Bonser A M, Lynch J, Snapp S.Effect of phosphorus deficiency on growth angle of basal roots in phaseolus Vulgaris.New Phytol, 1996, 132(2): 281-288. |
[6] | Liao H, Rubio G, Yan X, Cao A Q, Brown K M, Lynch J P.Effect of phosphorus availability on basal root shallowness in common bean.Plant & Soil, 2001, 232(1/2): 69-79 |
[7] | 沈宏, 严小龙. 根系分泌作用及其诱导机制. 生态环境学报, 2001, 10(4): 339-342. |
Sheng H, Yan X L.Root exudation and their induced mechanism.Ecol Environ Sci, 2001, 10(4): 339-342 (in Chinese with English abstract) | |
[8] | 张平. 氮形态对低磷胁迫下苗期玉米磷素吸收的影响及其机理. 南京: 南京农业大学, 2012. |
Zhang P.Mechanisms and effects of nitrogen forms on phosphorus absorption of maize (Zea mays L.) under phosphorus stress at seedling stage. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[9] | 邹春琴, 杨志福. 氮素形态对春小麦根际pH与磷素营养状况的影响. 土壤通报, 1994(4): 175-177. |
Zhou C Q, Yang Z F. Effects of different form nitrogen on pH and phosphorus content of spring wheat rhizosphere. Chin J Soil Sci, 1994(4): 175-177. (in Chinese with English abstract) | |
[10] | 李朝霞. 磷匮乏影响玉米根系发育机制的研究. 济南: 山东大学, 2011. |
Li C X.Study on the mechanism of root developmental changes to phosphate deficiency in maize. Jinan: Shandong University, 2011. (in Chinese with English abstract) | |
[11] | Chen X P, Cui Z L, Vitousek P M, Cassman K G, Matson P A, Bai J S.Integrated soil-crop system management for food security.PNAS, 2011, 108(16): 6399-6404. |
[12] | 严小龙, 廖红, 戈振扬. 植物根构型特性与磷吸收效率. 植物学报, 2000, 17(6): 511-519. |
Yan X L, Liao H, Ge Z Y. root architectural characteristics and phosphorus acquisition efficiency in plants.Chin Bull Bot, 2000, 17(6): 511-519. (in Chinese) | |
[13] | 赵静, 付家兵, 廖红,罗锡文. 大豆磷效率应用核心种质的根构型性状评价. 科学通报, 2004, 49(13): 1249-1257. |
Zhao J, Fu J B, Liao H, Luo X W.Properties evaluation of phosphorus efficiency on roots structure of soybean.Chin Sci Bull, 2004, 49(13): 1249-1257. (in Chinese) | |
[14] | Forde B, Lorenzo H.The nutritional control of root development. Interactions in the root environment: An Integrated Approach. 2002: 51-68. |
[15] | 刘灵, 廖红, 王秀荣, 严小龙. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系. 中国农业科学, 2008, 41(4): 1089-1099. |
Liu L, Liao H, Wang X R, Yan X L.Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency.Sci Agric Sin, 2008, 41(4): 1089-1099. (in Chinese with English abstract) | |
[16] | 李佳. 水稻根系应答根际水分与磷素环境变化的研究. 扬州: 扬州大学, 2015. |
Li J.Study on rhizosphere moisture and phosphorus environment change of rice root response. Yangzhou: Yangzhou University, 2015. (in Chinese with English abstract) | |
[17] | 陈晨, 龚海青, 张敬智, 郜红建. 水稻根系形态与氮素吸收累积的相关性分析. 植物营养与肥料学报, 2017, 23(2): 333-341. |
Chen C, Gong H Q, Zhang J Z, Gao H J.Correlation between root morphology and nitrogen uptake of rice.J Plant Nutr Fert, 2017, 23(2): 333-341. (in Chinese with English abstract) | |
[18] | Lynch J.Root Architecture and Plant Productivity.Plant Physiol, 1995, 109(1): 7-13. |
[19] | 李宝珍, 王松伟, 冯慧敏, 徐国华. 氮素供应形态对水稻根系形态和磷吸收的影响. 中国水稻科学, 2008, 22(6): 665-668. |
Li B Z, Wang S W, Feng H M, Xu G H.Effects of nitrogen forms on root morphology and phosphate uptake in rice.Chin J Rice Sci, 2008, 22(6): 665-668 (in Chinese with English abstract) | |
[20] | Ladha J K, Kirk G J, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U.Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm.Field Crops Res, 1998, 56(1/2): 41-71. |
[21] | 廖红, 戈振扬, 戈振场, 严小龙. 水磷耦合胁迫下植物磷吸收的理想根构型:模拟与应用. 科学通报, 2001, 46(8): 641-646. |
Liao H, Ge Z Y, Yan X L, Yan X L,.Optimized root architecture for phosphorus acquisition under water and phosphorus stress: Simulation and application.Chin Sci Bull, 2001, 46(8): 641-646. (in Chinese with English abstract) | |
[22] | Muchhal U S, Pardo J M, Raghothama K G.Phosphate transporters from the higher plant Arabidopsis thaliana. PNAS, 1996, 93(19): 10519. |
[23] | 李宝珍, 辛伟杰, 徐国华. 氮饥饿水稻利用不同形态氮素的差异及其生理机制. 土壤学报, 2007, 44(2): 273-279. |
Li B Z, Xin W J, Xu G H.Physiological mechanisms in uptake and use of different forms of nitrogen by nitrogen starved rice crop.Acta Pedol Sin, 2007, 44(2):273-279. (in Chinese with English abstract) | |
[24] | 范志强. 氮磷营养及氮形态对水曲柳幼苗生长和生理的影响机制. 沈阳: 东北林业大学, 2004. |
Fan Z Q.Effects of nitrogen, phosphorus and nitrogen forms on growth and physiological traits of fraxinus mandshurica seedlings. Shenyang: Northeast Forestry University, 2004 (in Chinese with English abstract) | |
[25] | 张彦东, 范志强, 王庆成, 王政权. 不同形态N素对水曲柳幼苗生长的影响. 应用生态学报, 2000, 11(5): 665-667. |
Zhou Y D, Fan Z Q, Wang Q C, Wang Z Q.Effects of different nitrogen forms on growth of Fraxinus mandshurica seedlings. Chin J Appl Ecol, 2000, 11(5): 665-667.(in Chinese with English abstract) | |
[26] | Miller M H.Effects of nitrogen on phosphorus absorption by plants.Proc Plant Root Environ, 1974. |
[27] | Thien S J, Mcfee W W.Effect of Nitrogen on phosphorus transport systems in Zea Mays L. Soil Sci Soc Amer J, 1972, 36(4): 617-620. |
[28] | Smith F W, Jackson W A.Nitrogen enhancement of phosphate transport in roots of Zea mays L.: I. Effects of ammonium and nitrate pretreatment. Plant Physiol, 1987, 84(4): 1314-1318. |
[29] | Hirel B, Limami A M.Prospects for improving nitrogen use efficiency: Insights given by 15 N-labelling experiments.Phytochem Rev, 2002, 2(1/2): 133-144. |
[30] | Radin J W.Differential regulation of nitrate reductase induction in roots and shoots of cotton plants.Plant Physiol, 1975, 55(2): 178-182. |
[31] | Zhang H, Xue YG, Wang ZQ, Yang J, Zhang J.Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice.Field Crops Res, 2009, 113(1): 31-40. |
[32] | Mackown C T, Jackson W A, Volk R J.Restricted nitrate influx and reduction in corn seedlings exposed to nitrate and ammonium nutrition.Plant Physiol, 1982, 62(9): 353-359. |
[33] | Bonser A M, Lynch J, Snapp S.Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris.New Phytol, 1996, 132(2): 281-288. |
[34] | Ingestad T, Agren G I.The Influence of plant nutrition on biomass allocation.Ecol Appl A Publ Ecol Soc America, 1991, 1(2): 168. |
[35] | Serna M D, Borras R, Legaz F, Primo-Millo E.The influence of nitrogen concentration and ammonium /nitrate ratio on N-uptake, mineral composition and yield of citrus.Plant & Soil, 1992, 147(1): 13-23. |
[36] | Muchhal U S, Pardo J M, Raghothama K G.Phosphate transporters from the higher plant Arabidopsis thaliana. PNAS, 1996, 93(19): 10519. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||