中国水稻科学 ›› 2025, Vol. 39 ›› Issue (3): 387-398.DOI: 10.16819/j.1001-7216.2025.240507
张海维, 顾欣怡, 陈明帅, 李福康, 施玥丞, 杨挺, 姜硕琛*()
收稿日期:
2024-05-15
修回日期:
2024-10-08
出版日期:
2025-05-10
发布日期:
2025-05-21
通讯作者:
*email: 18229920540@163.com基金资助:
ZHANG Haiwei, GU Xinyi, CHEN Mingshuai, LI Fukang, SHI Yuecheng, YANG Ting, JIANG Shuochen*()
Received:
2024-05-15
Revised:
2024-10-08
Online:
2025-05-10
Published:
2025-05-21
Contact:
*email: 18229920540@163.com
摘要:
【目的】研究不同基肥氮素类型对再生稻模式下水稻根功能、光合作用能力、氮代谢酶活性、产量和氮素利用效率的影响,为江汉平原再生稻高产高效生产提供理论依据。【方法】于2020年—2021年在湖北省荆州市长江大学农场开展大田试验。试验设有4种基肥处理:未施氮肥(N0)、常规尿素(CK)、50%常规尿素+50%缓释尿素(T1)和50%常规尿素+50%畜牧粪便(T2),其中N0处理在水稻生长季未施用氮肥,3个施氮处理追肥的氮素种类和用量一致。在水稻关键生长时期测定根系干质量和活力,叶面积指数和净光合速率,在头季稻和再生稻抽穗期测定氮代谢酶活性,测定两季水稻产量及氮素利用效率。【结果】总的来说,T2处理具有较高的根干质量、根活力、叶面积指数和净光合速率。3种氮代谢酶活性和两季水稻产量的大小顺序均为T2>T1>CK>N0。与N0相比,水稻总产量在CK、T1和T2处理下分别提高了75.13%、97.37%和137.86%。与CK相比,T1和T2提高了两季水稻的每穗粒数、结实率和千粒重。两季水稻氮素回收利用率、氮素农学利用率和氮素偏生产力的大小顺序均为T2>T1>CK。【结论】50%常规尿素用畜牧粪便替代作基肥施入,提高了水稻根系功能、光合作用能力和氮代谢酶活性,具有最高的水稻产量和氮素利用效率,是江汉平原再生稻模式较为合适的基肥氮素类型。
张海维, 顾欣怡, 陈明帅, 李福康, 施玥丞, 杨挺, 姜硕琛. 基肥氮素类型对再生稻生长、产量和氮素利用率的影响[J]. 中国水稻科学, 2025, 39(3): 387-398.
ZHANG Haiwei, GU Xinyi, CHEN Mingshuai, LI Fukang, SHI Yuecheng, YANG Ting, JIANG Shuochen. Effects of Nitrogen Type of Basal Fertilizer on Growth, Grain Yield and Nitrogen Use Efficiency of Ratooning Rice[J]. Chinese Journal OF Rice Science, 2025, 39(3): 387-398.
年份 Year | 处理 Treatment | pH值 pH value | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline hydrolyzable nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
2020 | 5.83 | 21.15 | 1.86 | 0.55 | 3.58 | 79.42 | 48.24 | 112.23 | |
2021 | N0 | 5.85 | 20.45 | 1.76 | 0.54 | 3.54 | 73.45 | 48.25 | 110.37 |
CK | 5.85 | 21.12 | 1.87 | 0.55 | 3.59 | 78.29 | 48.27 | 112.14 | |
T1 | 5.84 | 21.33 | 1.89 | 0.55 | 3.58 | 80.21 | 48.29 | 113.05 | |
T2 | 6.05 | 23.14 | 2.01 | 0.55 | 3.58 | 79.71 | 48.28 | 113.64 |
表1 头季稻移栽前土壤理化性状
Table 1. Soil properties of main season rice before transplanting
年份 Year | 处理 Treatment | pH值 pH value | 有机质 Organic matter (g/kg) | 全氮 Total nitrogen (g/kg) | 全磷 Total phosphorus (g/kg) | 全钾 Total potassium (g/kg) | 碱解氮 Alkaline hydrolyzable nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
2020 | 5.83 | 21.15 | 1.86 | 0.55 | 3.58 | 79.42 | 48.24 | 112.23 | |
2021 | N0 | 5.85 | 20.45 | 1.76 | 0.54 | 3.54 | 73.45 | 48.25 | 110.37 |
CK | 5.85 | 21.12 | 1.87 | 0.55 | 3.59 | 78.29 | 48.27 | 112.14 | |
T1 | 5.84 | 21.33 | 1.89 | 0.55 | 3.58 | 80.21 | 48.29 | 113.05 | |
T2 | 6.05 | 23.14 | 2.01 | 0.55 | 3.58 | 79.71 | 48.28 | 113.64 |
图2 不同氮素类型对水稻关键生育期根干质量的影响 图中N0、CK、T1、T2分别代表未施氮素、尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。S1~S5分别为头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平上差异显著(Duncan新复极差法)。
Fig. 2. Effects of different nitrogen fertilizer types on root dry weight at key growth stages of rice N0, CK, T1 and T2 in the figure represent zero nitrogen application, urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer, respectively. S1-S5 refer to the tillering stage, heading stage and filling stage of the main season rice, heading stage and filling stage for ratooning rice, respectively. Values are mean ± SD (n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
图3 不同氮素类型对水稻关键生育期根活力的影响 图中N0、CK、T1、T2分别代表未施氮素、尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。S1~S5分别为头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平上差异显著(Duncan新复极差法)。
Fig. 3. Effects of different nitrogen fertilizer types on root activity at key growth stages of rice N0, CK, T1 and T2 in the figure represent zero nitrogen application, urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer, respectively. S1-S5 referto the tillering stage, heading stage and filling stage of the main season rice, heading stage and filling stage for ratooning rice, respectively. Values are mean ± SD (n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
图4 不同氮素类型对水稻关键生育期叶面积指数的影响 图中N0、CK、T1、T2分别代表未施氮素、尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。S1~S5分别为头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平上差异显著(Duncan新复极差法)。
Fig. 4. Effects of different nitrogen fertilizer types on leaf area index at key growth stages of rice N0, CK, T1 and T2 in the figure represent zero nitrogen application, urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer, respectively. S1-S5 referto the tillering stage, heading stage and filling stage of the main season rice, heading stage and filling stage for ratooning rice, respectively. Values are mean ± SD (n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
图5 不同氮素类型对水稻关键生育期净光合速率的影响 图中N0、CK、T1、T2分别代表未施氮素、尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。S1~S5分别为头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平上差异显著(Duncan新复极差法)。
Fig. 5. Effects of different nitrogen fertilizer types on net photosynthetic rate at key growth stages of rice N0, CK, T1 and T2 in the figure represent zero nitrogen application, urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer, respectively. S1-S5 referto the tillering stage, heading stage and filling stage of the main season rice, heading stage and filling stage for ratooning rice, respectively. Values are mean ± SD (n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
图6 不同氮素类型对水稻氮代谢相关酶活性的影响 图中N0、CK、T1、T2分别代表未施氮素、尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。S2和S4分别为头季稻抽穗期和再生稻抽穗期。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平上差异显著(Duncan新复极差法)。
Fig. 6. Effects of different nitrogen fertilizer types on nitrogen metabolizing enzyme of rice N0, CK, T1 and T2 in the figure represent zero nitrogen application, urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer, respectively. S2 and S4 referto the heading stage of main season rice and heading stage of ratooning rice, respectively. Values are mean±SD(n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
年份 Year | 处理 Treatment | 有效穗数 Effective panicles number (No.·m-2) | 每穗粒数 Spikelets per panicle | 结实率 Grain-filling rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t/hm2) |
---|---|---|---|---|---|---|
2020 | N0 | 206.45±13.56 b | 161.83±2.75 c | 75.20±2.51 b | 21.96±0.36 c | 5.34±0.28 c |
CK | 230.64±13.71 a | 216.74±14.36 b | 80.55±4.00 ab | 24.70±0.23 b | 9.44±0.47 b | |
T1 | 242.62±13.94 a | 231.64±10.77 ab | 84.24±1.21 a | 24.90±0.54 b | 11.29±1.10 a | |
T2 | 237.39±3.90 a | 247.17±5.65 a | 82.38±1.60 ab | 26.13±0.25 a | 12.23±0.11 a | |
2021 | N0 | 207.02±10.64 b | 175.41±17.69 c | 76.62±0.92 b | 22.04±0.67 c | 6.00±0.38 d |
CK | 236.05±2.53 a | 224.84±7.98 b | 76.27±1.58 b | 25.36±0.35 b | 9.81±0.65 c | |
T1 | 230.45±12.78 a | 253.72±7.95 a | 77.06±5.06 b | 25.88±0.59 ab | 11.22±0.52 b | |
T2 | 238.06±18.59 a | 261.61±8.84 a | 82.60±2.75 a | 26.48±0.48 a | 13.15±0.63 a |
表2 头季稻产量及产量构成因子
Table 2. Grain yield and yield components of main season rice
年份 Year | 处理 Treatment | 有效穗数 Effective panicles number (No.·m-2) | 每穗粒数 Spikelets per panicle | 结实率 Grain-filling rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t/hm2) |
---|---|---|---|---|---|---|
2020 | N0 | 206.45±13.56 b | 161.83±2.75 c | 75.20±2.51 b | 21.96±0.36 c | 5.34±0.28 c |
CK | 230.64±13.71 a | 216.74±14.36 b | 80.55±4.00 ab | 24.70±0.23 b | 9.44±0.47 b | |
T1 | 242.62±13.94 a | 231.64±10.77 ab | 84.24±1.21 a | 24.90±0.54 b | 11.29±1.10 a | |
T2 | 237.39±3.90 a | 247.17±5.65 a | 82.38±1.60 ab | 26.13±0.25 a | 12.23±0.11 a | |
2021 | N0 | 207.02±10.64 b | 175.41±17.69 c | 76.62±0.92 b | 22.04±0.67 c | 6.00±0.38 d |
CK | 236.05±2.53 a | 224.84±7.98 b | 76.27±1.58 b | 25.36±0.35 b | 9.81±0.65 c | |
T1 | 230.45±12.78 a | 253.72±7.95 a | 77.06±5.06 b | 25.88±0.59 ab | 11.22±0.52 b | |
T2 | 238.06±18.59 a | 261.61±8.84 a | 82.60±2.75 a | 26.48±0.48 a | 13.15±0.63 a |
年份 Year | 处理 Treatment | 有效穗数 Effective panicles number spike (No.·m-2) | 每穗粒数 Spikelets per panicle | 结实率 Grain-filling rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t/hm2) |
---|---|---|---|---|---|---|
2020 | N0 | 214.54±13.38 b | 72.52±2.67 d | 54.66±2.80 b | 19.76±0.49 b | 1.66±0.27 c |
CK | 256.20±9.97 a | 100.01±7.69 bc | 58.23±3.73 b | 21.99±0.25 a | 3.15±0.39 b | |
T1 | 270.59±3.63 a | 98.60±5.55 c | 56.34±5.61 b | 22.18±0.56 a | 3.17±0.20 b | |
T2 | 266.86±12.17 a | 120.34±4.94 a | 70.42±2.24 a | 22.48±0.55 a | 4.91±0.14 a | |
2021 | N0 | 203.32±9.58 b | 66.52±0.61 c | 59.23±3.30 bc | 20.25±0.52 b | 1.60±0.22 d |
CK | 266.48±11.61 a | 93.22±4.87 b | 59.75±4.55 bc | 22.59±0.90 a | 3.17±0.03 c | |
T1 | 259.81±9.54 a | 98.36±3.10 b | 57.34±2.27 c | 22.66±0.66 a | 3.13±0.08 b | |
T2 | 268.29±5.36 a | 110.58±0.50 a | 67.96±2.11 a | 22.82±0.54 a | 4.42±0.02 b |
表3 再生稻产量及产量构成因子
Table 3. Grain yield and yield components of ratooning rice
年份 Year | 处理 Treatment | 有效穗数 Effective panicles number spike (No.·m-2) | 每穗粒数 Spikelets per panicle | 结实率 Grain-filling rate (%) | 千粒重 1000-grain weight (g) | 产量 Yield (t/hm2) |
---|---|---|---|---|---|---|
2020 | N0 | 214.54±13.38 b | 72.52±2.67 d | 54.66±2.80 b | 19.76±0.49 b | 1.66±0.27 c |
CK | 256.20±9.97 a | 100.01±7.69 bc | 58.23±3.73 b | 21.99±0.25 a | 3.15±0.39 b | |
T1 | 270.59±3.63 a | 98.60±5.55 c | 56.34±5.61 b | 22.18±0.56 a | 3.17±0.20 b | |
T2 | 266.86±12.17 a | 120.34±4.94 a | 70.42±2.24 a | 22.48±0.55 a | 4.91±0.14 a | |
2021 | N0 | 203.32±9.58 b | 66.52±0.61 c | 59.23±3.30 bc | 20.25±0.52 b | 1.60±0.22 d |
CK | 266.48±11.61 a | 93.22±4.87 b | 59.75±4.55 bc | 22.59±0.90 a | 3.17±0.03 c | |
T1 | 259.81±9.54 a | 98.36±3.10 b | 57.34±2.27 c | 22.66±0.66 a | 3.13±0.08 b | |
T2 | 268.29±5.36 a | 110.58±0.50 a | 67.96±2.11 a | 22.82±0.54 a | 4.42±0.02 b |
图7 不同氮素类型对氮素利用率的影响 图中CK、T1、T2分别代表尿素、50%尿素+50%缓释尿素、50%尿素+50%畜牧粪便。NER代表氮素回收利用率,AEN代表氮素农学利用率,PEN代表氮素生理利用率,NP代表氮素偏生产力。图中数据为平均值±标准差(n=3),柱上不同字母表示处理间在0.05水平差异显著(Duncan新复极差法)。
Fig. 7. Effect of different nitrogen fertilizer types on nitrogen utilization efficiency CK, T1 and T2 in the figure represent urea, 50% urea+50% controlled release urea and 50% urea+50% livestock manure organic fertilizer. NER represents nitrogen recovery efficiency, AEN represents agronomic nitrogen use efficiency, PEN represents physiological nitrogen efficiency, and NP represents nitrogen partial productivity. Values are mean±SD(n=3); Different letters above the bars indicate significant difference among treatments at the 0.05 level (Duncan's new multiple range test).
图8 产量与各项指标间相关性分析热图 RW: 根干质量; RA: 根活力; LAI: 叶面积指数; Pn: 净光合速率; NR: 硝酸还原酶活性; GS: 谷氨酰胺合成酶活性; GOGAT: 谷氨酸合酶活性; EP: 有效穗数; SPP: 每穗粒数; GFR: 结实率; GW: 千粒重。_S1~_S5分别代表头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期,_M和_R分别代表头季稻和再生稻,Yield_T代表两季水稻的总产量。
Fig. 8. Heat map of correlation analysis between grain yield and various indicators RW, Root dry weight; RA, Root activity; LAI, Leaf area index; Pn, Net photosynthetic rate; NR, Nitrate reductase activity; GS, Glutamine synthetase activity; GOGAT, Glutamate synthase activity; EP, Effective panicle number; SPP, Spikelets per panicle; GFR, Grain filling rate; GW, 1000-grain weight. _S1 to _S5 represent the tillering stage, heading stage and filling stage of main season rice, heading stage and filling stage of ratooning rice, respectively. _M and _R represent main season rice and ratooning rice, respectively, while Yield_T represents the total yield of two-season rice.
[1] | Wang Y C, Li X F, Lee T, Peng S B, Dou F G. Effects of nitrogen management on the ratoon crop yield and head rice yield in South USA[J]. Journal of Integrative Agriculture, 2021, 20(6): 1457-1464. |
[2] | 费震江, 董华林, 武晓智, 周鹏. 湖北省再生稻发展的现状及潜力[J]. 湖北农业科学, 2013, 52(24): 5977-5978. |
Fei Z J, Dong H L, Wu X Z, Zhou P. The development status and potential of ratoon rice in Hubei Province[J], Hubei Agricultural Sciences, 2013, 52(24): 5977-5978. (in Chinese) | |
[3] | 丁紫娟, 胡仁, 李锦涛, 曹玉贤, 田应兵, 侯俊. 一次性根区施氮促进再生稻生长及增产的研究[J]. 江苏农业科学, 2023, 51(9): 112-119. |
Ding Z J, Hu R, Li J T, Cao Y X, Tian Y B, Hou J. Study on promoting growth and increasing yield of ratooning rice by one-off nitrogen application in root zone[J]. Jiangsu Agricultural Science, 2023, 51(9): 112-119. (in Chinese) | |
[4] | Wang W Q, He A, Jiang G L, Sun H J, Jiang M, Man J G, Ling X X, Cui K H, Huang J L, Peng S B. Ratoon rice technology: A green and resource-efficient way for rice production[J]. Advances in Agronomy, 2020, 159: 135-167. |
[5] | Wang Y C, Zheng C, Xiao S, Sun Y T, Huang J L, Peng S B. Agronomic responses of ratoon rice to nitrogen management in Central China[J]. Field Crops Research, 2019, 241: 107569. |
[6] | 赵灿, 刘光明, 戴其根, 许轲, 高辉, 霍中洋. 氮肥对水稻产量, 品质和氮利用效率的影响研究进展[J]. 中国稻米, 2022, 28(1): 48. |
Zhao C, Liu G M, Dai Q G, Xu K, Gao H, Huo Z Y. Research progress on the effects of nitrogen fertilizer on rice yield, quality and nitrogen use efficiency[J]. China Rice, 2022, 28(1): 48. (in Chinese with English abstract) | |
[7] | 杨德生, 黄冠军, 李勇, 黄见良, 王飞. 水稻氮高效栽培技术、品种改良和生理机制研究进展[J]. 华中农业大学学报, 2022, 41(1): 62-75. |
Yang D S, Huang G J, Li Y, Huang J L, Wang F. Progress on cultivation technologies, variety improvements and physiological mechanisms of rice with high nitrogen utilization efficiency[J]. Journal of Huazhong Agricultural University, 2022, 41(1): 62-75. (in Chinese with English abstract) | |
[8] | Ata-Ul-Karim S T, Liu X J, Lu Z Z, Zheng H B, Cao W X, Zhu Y. Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve[J]. Field Crops Research, 2017, 201: 32-40. |
[9] | Tayefeh M, Sadeghi S M, Ali Noorhosseini S, Bacenetti J, Damalas C A. Environmental impact of rice production based on nitrogen fertilizer use[J]. Environmental Science and Pollution Research International, 2018, 25(16): 15885-15895. |
[10] | Vejan P, Khadiran T, Abdullah R, Ahmad N. Controlled release fertilizer: A review on developments, applications and potential in agriculture[J]. Journal of Controlled Release, 2021, 339: 321-334. |
[11] | Pan F X, Li Y Y, Chapman S J, Khan S, Yao H Y. Microbial utilization of rice straw and its derived biochar in a paddy soil[J]. Science of the Total Environment, 2016, 559: 15-23. |
[12] | Dinesh K B, Kiranvir B, Amardeep S T, Shivani S. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system[J]. Pedosphere, 2015, 25(4): 534-545. |
[13] | Jiang Z W, Yang S H, Chen X, Pang Q Q, Xu Y, Qi S T, Yu W Q, Dai H D. Controlled release urea improves rice production and reduces environmental pollution: A research based on meta-analysis and machine learning[J]. Environmental Science and Pollution Research International, 2022, 29(3): 3587-3599. |
[14] | Ding W C, Xu X P, He P, Ullah S, Zhang J J, Cui Z L, Zhou W. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis[J]. Field Crops Research, 2018, 227: 11-18. |
[15] | Ali I, Ullah S, He L, Zhao Q, Iqbal A, Wei S, Shah T, Ali N, Bo Y, Adnan M, Amanullah, Jiang L. Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment[J]. PeerJ, 2020, 8: e10311. |
[16] | AL Aasmi A, Li J, Hamoud Y A, Lan Y, Alordzinu K E, Appiah S A, Shaghaleh H, Sheteiwy M, Wang H, Qiao S. Impacts of slow-release nitrogen fertilizer rates on the morpho-physiological traits, yield, and nitrogen use efficiency of rice under different water regimes[J]. Agriculture, 2022, 12(1): 86. |
[17] | Yang L X, Wang Y L, Kobayashi K, Zhu J G, Huang J Y, Yang H J, Wang Y X, Dong G C, Liu G, Han Y, Shan Y, Hu J, Zhou J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization[J]. Global Change Biology, 2008, 14(8): 1844-1853. |
[18] | Ramasamy S ten Berge, Hein F M, Purushothaman S. Yield formation in rice in response to drainage and nitrogen application[J]. Field Crops Research, 1997, 51(1/2): 65-82. |
[19] | Jiang S C, Du B, Wu Q X, Zhang H W, Zhu J Q. Increasing pit-planting density of rice varieties with different panicle types to improves sink characteristics and rice yield under alternate wetting and drying irrigation[J]. Food and Energy Security, 2023, 12(1): e335. |
[20] | Iqbal A, He L, Ali I, Ullah S, Khan A, Akhtar K, Wei S, Fahad S, Khan R, Jiang L. Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field[J]. Scientific Reports, 2021, 11(1): 10048. |
[21] | 张思懿, 崔博文, 王佳玲, 蔺吉祥, 杨青杰. 非生物胁迫下植物根系的生理与分子响应研究进展[J]. 浙江农业学报, 2024, 36(10):2391-2401. |
Zhang S Y, Cui B W, Wang J L, Lin J X, Yang Q J. Research progress on physiogical and molecular responses of plant roots under abiotic stress[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2391-2401. (in Chinese with English abstract). | |
[22] | Iqbal A, He L, Khan A, Wei S, Akhtar K, Ali I, Ullah S, Munsif F, Zhao Q, Jiang L. Organic manure coupled with inorganic fertilizer: An approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency[J]. Agronomy, 2019, 9(10): 651. |
[23] | Liu L Y, Li H Y, Zhu S H, Gao Y, Zheng X Q, Xu Y. The response of agronomic characters and rice yield to organic fertilization in subtropical China: A three-level meta-analysis[J]. Field Crops Research, 2021, 263: 108049. |
[24] | Yuan G Y, Huan W W, Song H, Lu D J, Chen X Q, Wang H Y, Zhou J M. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice-wheat system[J]. Soil and Tillage Research, 2021, 209: 104958. |
[25] | Wang Y D, Hu N, Xu M G, Li Z F, Lou Y L, Chen Y, Wu C Y, Wang Z L. 23-year manure and fertilizer application increases soil organic carbon sequestration of a rice-barley cropping system[J]. Biology and Fertility of Soils, 2015, 51(5): 583-591. |
[26] | Liu B T, Li H L, Li H B, Zhang A P, Rengel Z. Long-term biochar application promotes rice productivity by regulating root dynamic development and reducing nitrogen leaching[J]. GCB Bioenergy, 2021, 13(1): 257-268. |
[27] | Iqbal A, He L, Ali I, Ullah S, Ahmad K, Aziz K, Akhtar K, Wei S, Zhao Q, Zhang J, Jiang L. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism[J]. PLoS One, 2020, 15(10): e0238934. |
[28] | Huang M, Fan L, Jiang L G, Yang S Y, Zou Y B, Uphoff N. Continuous applications of biochar to rice: Effects on grain yield and yield attributes[J]. Journal of Integrative Agriculture, 2019, 18(3): 563-570. |
[29] | Xu D, Zhu Y, Zhu H B, Hu Q, Liu G D, Wei H Y, Zhang H C. Effects of a one-time application of controlled-release nitrogen fertilizer on yield and nitrogen accumulation and utilization of late japonica rice in China[J]. Agriculture, 2021, 11(11): 1041. |
[30] | Kishorekumar R, Bulle M, Wany A, Gupta K J. An overview of important enzymes involved in nitrogen assimilation of plants[J]. Methods in Molecular Biology, 2020, 2057: 1-13. |
[31] | Dong D, Feng Q B, Mcgrouther K, Yang M, Wang H L, Wu W X. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field[J]. Journal of Soils and Sediments, 2015, 15(1): 153-162. |
[32] | Wany A, Gupta A K, Kumari A, Mishra S, Singh N, Pandey S, Vanvari R, Igamberdiev A U, Fernie A R, Gupta K J. Nitrate nutrition influences multiple factors in order to increase energy efficiency under hypoxia in Arabidopsis[J]. Annals of Botany, 2019, 123(4): 691-705. |
[33] | Planchet E, Gupta K J, Sonoda M, Kaiser W M. Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport[J]. The Plant Journal, 2005, 41(5): 732-743. |
[34] | Yi Q Q, Liang B Q, Nan Q, Wang H, Zhang W, Wu W X. Temporal physicochemical changes and transformation of biochar in a rice paddy: Insights from a 9-year field experiment[J]. Science of the Total Environment, 2020, 721: 137670. |
[35] | Ke J, Xing X M, Li G H, Ding Y F, Dou F G, Wang S H, Liu Z H, Tang S, Ding C Q, Chen L. Effects of different controlled-release nitrogen fertilisers on ammonia volatilisation, nitrogen use efficiency and yield of blanket-seedling machine-transplanted rice[J]. Field Crops Research, 2017, 205: 147-156. |
[36] | 丁紫娟, 李锦涛, 胡仁, 徐洲, 张丁月, 曹玉贤, 田应兵, 侯俊. 一次性根区施控释尿素对再生稻生长及产量的影响[J]. 中国土壤与肥料, 2022(2): 106-115. |
Ding Z J, Li J T, Hu R, Xu Z, Zhang D Y, Cao Y X, Tian Y B, Hou J. Effect of one-time root zone application of controlled release urea on the growth and yield of ratoon rice[J]. Soil and Fertilizer Sciences in China, 2022(2): 106-115. (in Chinese with English abstract) | |
[37] | Li S C, Zhang Y L, Guo L H, Li X F. Impact of tillage and straw treatment methods on rice growth and yields in a rice-ratoon rice cropping system[J]. Sustainability, 2022, 14(15): 9290. |
[1] | 肖无为, 朱辰光, 王飞, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 再生稻稻米品质研究进展[J]. 中国水稻科学, 2025, 39(1): 33-46. |
[2] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因[J]. 中国水稻科学, 2024, 38(5): 516-524. |
[3] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点[J]. 中国水稻科学, 2024, 38(5): 544-554. |
[4] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[5] | 王敏羽, 戴志刚, 余德芳, 王向平, 关绍华, 邵远刚, 张家学, 李小坤. “水稻-再生稻”种植模式专用肥轻简施用对产量、肥料利用率及经济效益的影响[J]. 中国水稻科学, 2022, 36(5): 531-542. |
[6] | 蒋艳方, 陈基旺, 崔璨, 王晓玉, 陈平平, 周文新, 易镇邪. 杂交稻头季与再生季镉积累分配特性差异研究[J]. 中国水稻科学, 2022, 36(1): 55-64. |
[7] | 杨晨, 郑常, 袁珅, 徐乐, 彭少兵. 再生稻肥料管理对不同品种产量和品质的影响[J]. 中国水稻科学, 2022, 36(1): 65-76. |
[8] | 黄锦文, 吴珈谊, 陈鸿飞, 张志兴, 方长旬, 邵彩虹, 林伟伟, 翁佩莹, 林文雄. 头季稻氮肥运筹对再生稻根际机能及产量的影响[J]. 中国水稻科学, 2021, 35(4): 383-395. |
[9] | 汪浩, 刘祥臣, 张强, 余贵龙, 张文地, 黄健, 朱安, 刘立军. 豫南地区头季和再生季水稻产量与品质差异分析[J]. 中国水稻科学, 2020, 34(5): 425-434. |
[10] | 汪浩, 张强, 张文地, 李思宇, 黄健, 朱安, 刘立军. 腋芽萌发能力对再生稻产量影响的研究进展[J]. 中国水稻科学, 2020, 34(3): 205-216. |
[11] | 彭志芸, 向开宏, 杨志远, 唐源, 谌洁, 张宇杰, 何艳, 严田蓉, 孙永健, 马均. 麦/油-稻轮作下秸秆还田与氮肥管理对直播杂交稻氮素利用特征的影响[J]. 中国水稻科学, 2020, 34(1): 57-68. |
[12] | 解振兴, 张居念, 林祁, 刘锋, 张初长, 卓芳梅, 姜照伟, 卓传营. 植物生长调节剂对再生稻头季抗倒伏能力和两季产量的影响[J]. 中国水稻科学, 2019, 33(2): 158-166. |
[13] | 何爱斌, 于朋超, 陈乾, 姜广磊, 王慰亲, 聂立孝. 甬优4949和超优1000在华中地区再生稻种植的氮肥运筹研究[J]. 中国水稻科学, 2019, 33(1): 47-56. |
[14] | 王森, 莫菁华, 汪洋, 游秋香, 任涛, 丛日环, 李小坤. 水稻-再生稻体系干物质积累及氮磷钾养分的吸收利用[J]. 中国水稻科学, 2018, 32(1): 67-77. |
[15] | 段门俊, 田玉聪, 吴芸紫, 金涛, 陈阜, 刘章勇. 叶面喷施亚硒酸钠对再生稻产量及品质的影响[J]. 中国水稻科学, 2018, 32(1): 96-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||