中国水稻科学 ›› 2025, Vol. 39 ›› Issue (1): 33-46.DOI: 10.16819/j.1001-7216.2025.240412
肖无为, 朱辰光, 王飞, 熊栋梁, 黄见良, 彭少兵, 崔克辉*()
收稿日期:
2024-04-15
修回日期:
2024-05-10
出版日期:
2025-01-10
发布日期:
2025-01-14
通讯作者:
*email: cuikehui@mail.hzau.edu.cn基金资助:
XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui*()
Received:
2024-04-15
Revised:
2024-05-10
Online:
2025-01-10
Published:
2025-01-14
Contact:
*email: cuikehui@mail.hzau.edu.cn摘要:
再生稻是一种绿色高效的种植模式,对提高水稻种植效益和保障我国粮食安全具有重要意义,具有广阔发展前景。再生稻头季和再生季生长环境以及栽培管理措施不同,导致头季和再生季稻米品质有显著差异,再生季稻米品质通常优于头季稻米。再生特性、环境温度、水肥管理等都可通过调控源库关系、灌浆过程、籽粒营养物质合成、淀粉粒物理化学特征等影响稻米品质形成。目前虽然已经从再生力和产量角度选育了一批适宜作再生稻种植的优质高产水稻品种,但提高再生稻头季和再生季稻米品质仍然是制约再生稻发展的一个重要因子。本文简要介绍了再生稻头季和再生季稻米品质特征及其差异,结合稻米品质形成的过程及影响因素,分析了影响再生稻稻米品质的因素及栽培调控措施,旨在为再生稻优质高产发展提供理论基础。
肖无为, 朱辰光, 王飞, 熊栋梁, 黄见良, 彭少兵, 崔克辉. 再生稻稻米品质研究进展[J]. 中国水稻科学, 2025, 39(1): 33-46.
XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice[J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46.
控制性状 Trait | 基因名 Gene name | 编码产物 Encoded protein | 参考文献 Reference |
---|---|---|---|
粒型 Grain shape | GS3 | 异三聚体G蛋白γ亚基 Heterotrimeric G-protein γ subunit | [ |
GW2 | E3泛素连接酶 E3 ubiquitin ligase | [ | |
TGW2 | 细胞数目调节因子1 Cell number regulator 1 | [ | |
GL3-1 | 丝氨酸/苏氨酸磷酸酶 Serine/threonine phosphatase | [ | |
GS2 | 生长调节因子4 Growth-regulator factor 4 | [ | |
GL7 | LONGIFOLIA蛋白 LONGIFOLIA protein | [ | |
GW5 | 钙调素结合蛋白 Calmodulin-binding protein | [ | |
GS5 | 丝氨酸羧肽酶 Serine carboxypeptidase | [ | |
GW8/OsSPL16 | Squamosa启动子结合蛋白 Squamosa promoter-binding protein | [ | |
GIF1 | 细胞壁转化酶 Cell wall invertase | [ | |
GE/BG2 | CYP78A13蛋白/细胞色素P450 CYP78A13 protein / Cytochrome P450 | [ | |
垩白Chalkiness | Chalk5 | 液泡膜质子转运焦磷酸酶 Vacuolar membrane proton-transporting pyrophosphatase | [ |
蒸煮食味品质 Eating and cooking quality | Wxa | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ |
Wxb | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ | |
Wxin | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ | |
DU1 | Prp1蛋白 Prp1 protein | [ | |
ALK/OsSSSIIa | 可溶性淀粉合酶Ⅱ Soluble starch synthaseⅡ | [ | |
SSSI | 可溶性淀粉合酶Ⅰ Soluble starch synthaseⅠ | [ | |
SSSIIIa | 可溶性淀粉合酶Ⅲ Soluble starch synthase Ⅲ | [ | |
OsAGPL3 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 ADP-glucose pyrophosphorylase large subunit | [ | |
OsAPS1 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 ADP-glucose pyrophosphorylase small subunit | [ | |
OsAPS2 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 ADP-glucose pyrophosphorylase small subunit | [ | |
OsAGPL1 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 ADP-glucose pyrophosphorylase large subunit | [ | |
BEIIb | 淀粉分支酶Ⅱb Starch branching enzyme Ⅱb | [ | |
营养品质 Nutritional quality | qPC-1/OsAAP6 | 氨基酸通透酶 Amino acid permease | [ |
OsAAP10 | 氨基酸通透酶 Amino acid permease | [ | |
OsBADH2/fgr | 甜菜碱醛脱氢酶 Betaine aldehyde dehydrogenase | [ | |
qGPC-10/OsGluA2 | 谷蛋白A2 Glutelin type-A2 precursor | [ | |
OsAAP3 | 氨基酸转运蛋白 Amino acid transporter | [ | |
OsAAP1 | 氨基酸转运蛋白 Amino acid transporter | [ | |
OsLHT1 | 氨基酸转运蛋白 Amino acid transporter | [ | |
AK2 | 天冬氨酸激酶 Aspartate kinase | [ | |
OsLTPL36 | 植物非特异的脂质转运蛋白 Plant nonspecific lipid transfer protein | [ |
表1 已克隆的水稻品质相关基因
Table 1. Cloned genes related to rice quality
控制性状 Trait | 基因名 Gene name | 编码产物 Encoded protein | 参考文献 Reference |
---|---|---|---|
粒型 Grain shape | GS3 | 异三聚体G蛋白γ亚基 Heterotrimeric G-protein γ subunit | [ |
GW2 | E3泛素连接酶 E3 ubiquitin ligase | [ | |
TGW2 | 细胞数目调节因子1 Cell number regulator 1 | [ | |
GL3-1 | 丝氨酸/苏氨酸磷酸酶 Serine/threonine phosphatase | [ | |
GS2 | 生长调节因子4 Growth-regulator factor 4 | [ | |
GL7 | LONGIFOLIA蛋白 LONGIFOLIA protein | [ | |
GW5 | 钙调素结合蛋白 Calmodulin-binding protein | [ | |
GS5 | 丝氨酸羧肽酶 Serine carboxypeptidase | [ | |
GW8/OsSPL16 | Squamosa启动子结合蛋白 Squamosa promoter-binding protein | [ | |
GIF1 | 细胞壁转化酶 Cell wall invertase | [ | |
GE/BG2 | CYP78A13蛋白/细胞色素P450 CYP78A13 protein / Cytochrome P450 | [ | |
垩白Chalkiness | Chalk5 | 液泡膜质子转运焦磷酸酶 Vacuolar membrane proton-transporting pyrophosphatase | [ |
蒸煮食味品质 Eating and cooking quality | Wxa | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ |
Wxb | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ | |
Wxin | 颗粒结合型淀粉合酶 Granule-bound starch synthase | [ | |
DU1 | Prp1蛋白 Prp1 protein | [ | |
ALK/OsSSSIIa | 可溶性淀粉合酶Ⅱ Soluble starch synthaseⅡ | [ | |
SSSI | 可溶性淀粉合酶Ⅰ Soluble starch synthaseⅠ | [ | |
SSSIIIa | 可溶性淀粉合酶Ⅲ Soluble starch synthase Ⅲ | [ | |
OsAGPL3 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 ADP-glucose pyrophosphorylase large subunit | [ | |
OsAPS1 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 ADP-glucose pyrophosphorylase small subunit | [ | |
OsAPS2 | 腺苷二磷酸葡萄糖焦磷酸化酶小亚基 ADP-glucose pyrophosphorylase small subunit | [ | |
OsAGPL1 | 腺苷二磷酸葡萄糖焦磷酸化酶大亚基 ADP-glucose pyrophosphorylase large subunit | [ | |
BEIIb | 淀粉分支酶Ⅱb Starch branching enzyme Ⅱb | [ | |
营养品质 Nutritional quality | qPC-1/OsAAP6 | 氨基酸通透酶 Amino acid permease | [ |
OsAAP10 | 氨基酸通透酶 Amino acid permease | [ | |
OsBADH2/fgr | 甜菜碱醛脱氢酶 Betaine aldehyde dehydrogenase | [ | |
qGPC-10/OsGluA2 | 谷蛋白A2 Glutelin type-A2 precursor | [ | |
OsAAP3 | 氨基酸转运蛋白 Amino acid transporter | [ | |
OsAAP1 | 氨基酸转运蛋白 Amino acid transporter | [ | |
OsLHT1 | 氨基酸转运蛋白 Amino acid transporter | [ | |
AK2 | 天冬氨酸激酶 Aspartate kinase | [ | |
OsLTPL36 | 植物非特异的脂质转运蛋白 Plant nonspecific lipid transfer protein | [ |
图1 再生稻稻米品质影响因素与可能途径 图中实线表示正向效应,点线表示负向效应。
Fig. 1. Influencing factors and possible pathways for regulation of ratoon rice quality The solid lines in the figure indicate positive effects, and the dotted lines indicate negative effects.
[1] | 彭少兵. 对转型时期水稻生产的战略思考[J]. 中国科学: 生命科学, 2014, 44(8): 845-850. |
Peng S B. Reflection on China’s rice production strategies during the transition period[J]. Scientia Sinica: Vitae, 2014, 44(8): 845-850. (in Chinese with English abstract) | |
[2] | Yang J Y, Hu Q, You L Z, Cai Z W, Chen Y P, Wei H D, Xu Z L, He Z, Yin G F, Xu B D. Mapping the potential northern limits and promotion extent of ratoon rice in China[J]. Applied Geography, 2023, 150: 102822. |
[3] | 林文雄, 翁佩莹, 林文芳, 邵彩虹, 郭春林, 李忠, 陈鸿飞, 陈婷. 中国机收再生稻研究现状与展望[J]. 应用生态学报, 2024, 35(3): 827-836. |
Lin W X, Weng P Y, Lin W F, Shao C H, Guo C L, Li Z, Chen H F, Chen T. Research status and prospect of ratoon rice in China under mechanically harvested condition[J]. Chinese Journal of Applied Ecology, 2024, 35(3): 827-836. (in Chinese with English abstract) | |
[4] | Peng S B, Zheng C, Yu X. Progress and challenges of rice ratooning technology in China[J]. Crop and Environment, 2023, 2(1): 5-11. |
[5] | 李虎, 黄秋要, 陈传华, 刘广林, 吴子帅, 罗群昌, 朱其南, 李秋雯. 种植密度和施氮量对桂育8号产量及稻米外观和加工品质的影响[J]. 西南农业学报, 2020, 33(4): 718-724. |
Li H, Huang Q Y, Chen C H, Liu G L, Wu Z S, Luo Q C, Zhu Q N, Li Q W. Effects of density and nitrogen fertilizer rate on yield, appearance and processing quality of high quality rice Guiyu 8[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(4): 718-724. (in Chinese with English abstract) | |
[6] | 金军, 徐大勇, 蔡一霞, 胡署云, 葛敏, 朱庆森. 施氮量对水稻主要米质性状及RVA谱特征参数的影响[J]. 作物学报, 2004(2): 154-158. |
Jin J, Xu D Y, Cai Y X, Hu S Y, Ge M, Zhu Q S. Effect of N-fertilizer on main quality characters of rice and RVA profile parameters[J]. Acta Agronomica Sinica, 2004(2): 154-158. (in Chinese with English abstract) | |
[7] | 何文杰. 主季再生季丰产稳产优质品种筛选及钾肥对再生季稻米品质的影响[D]. 武汉: 华中农业大学, 2017. |
He W J. Screening of high, stable yield and high quality varieties and effects on potassium on rice quality in ratoon rice[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[8] | Huang J, Pan Y, Chen H, Zhang Z, Fang C, Shao C, Amjad H, Lin W, Lin W. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system[J]. Field Crop Research, 2020, 258: 107962. |
[9] | 刘国华, 邓化冰, 陈立云, 肖应辉, 唐文邦. 中稻头季稻与再生稻的品质比较研究[J]. 杂交水稻, 2002(1): 47-49. |
Liu G H, Deng H B, Chen L Y, Xiao Y H, Tang W B. Comparison of grain quality between main and ratooning crops of middle-season rice[J]. Hybrid Rice, 2002(1): 47-49. (in Chinese with English abstract) | |
[10] | Yuan S, Yang C, Yu X, Zheng C, Xiao S, Xu L, Cui K, Huang J, Peng S. On-farm comparison in grain quality between main and ratoon crops of ratoon rice in Hubei Province, Central China[J]. Journal of the Science of Food and Agriculture, 2022, 102(15): 7259-7267. |
[11] | Alizadeh M R, Habibi F. A comparative study on the quality of the main and ratoon rice crops[J]. Journal of Food Quality, 2016, 39(6): 669-674. |
[12] | Bao J S. Toward understanding the genetic and molecular bases of the eating and cooking qualities of rice[J]. Cereal Foods World, 2012, 57(4): 148-156. |
[13] | Deng F, Yang F, Li Q, Zeng Y, Li B, Zhong X, Hui L, Wang L, Chen H, Chen Y, Ren W. Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice[J]. Food Hydrocolloids, 2021, 116: 106643. |
[14] | Lin F, Huang J, Lin S, Letuma P, Xie D, Rensing C, Lin W. Physiological and transcriptomic analysis reveal the regulatory mechanism underlying grain quality improvement induced by rice ratooning[J]. Journal of the Science of Food and Agriculture, 2023, 103(7): 3569-3578. |
[15] | 徐庆国, 童浩, 胡晋豪, 刘红梅, 李先喆. 稻米蛋白组分含量的品种差异及其与米质的关系[J]. 湖南农业大学学报: 自然科学版, 2015, 41(1): 7-11+41. |
Xu Q G, Tong H, Hu J H, Liu H M, Li X Z. Cultivar difference of rice protein components and their relationship with rice quality[J]. Journal of Hunan Agricultural University: Natural Sciences, 2015, 41(1): 7-11+41. (in Chinese with English abstract) | |
[16] | 牟新宇. 不同穗型粳稻品种产量及品质性状的比较分析[D]. 沈阳: 沈阳农业大学, 2021. |
Mu X Y. Comparative analysis of yield and quality characters of japonica rice cultivars with different panicle types[D]. Shenyang: Shenyang Agricultural University, 2021. (in Chinese with English abstract) | |
[17] | 王云. 籽粒氮素浓度不同的水稻品种产量、氮素利用效率和稻米品质差异研究[D]. 武汉: 华中农业大学, 2023. |
Wang Y. Differences in yield, nitrogen use efficiency and rice quality among rice varieties with different grain nitrogen concentration[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese with English abstract) | |
[18] | 林强, 蔡秋华, 崔丽丽, 姜照伟, 蒋家焕, 吴方喜, 罗曦, 肖宴嘉, 谢华安, 张建福. 强再生力水稻品种筛选与选育研究进展[J]. 中国稻米, 2022, 28(5): 1-6. |
Lin Q, Cai Q H, Cui L L, Jiang Z W, Jiang J H, Wu F X, Luo X, Xiao Y J, Xie H A, Zhang J F. Research progress on screening and breeding of ratoon rice varieties[J]. China Rice, 2022, 28(5): 1-6. (in Chinese with English abstract) | |
[19] | 武茹, 王姣梅, 夏胜明, 凌霄霞, 谢国生. 长江中下游地区杂交中稻再生稻品种适应性的综合评价与筛选[J]. 华中农业大学学报, 2020, 39(3): 19-27. |
Wu R, Wang J M, Xia S M, Ling X X, Xie G S. Comprehensive evaluation and screening of adaptability of mid-season hybrid rice ratooning varieties in the middle-lower reaches of Yangtze River[J]. Journal of Huazhong Agricultural University, 2020, 39(3): 19-27. (in Chinese with English abstract) | |
[20] | Zhang Q, Liu X, Yu G, Wang H, Feng D, Zhao H, Liu L. Agronomic and physiological characteristics of high-yielding ratoon rice varieties[J]. Agronomy Journal, 2021, 113(6): 5063-5075. |
[21] | Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209. |
[22] | Ruan B, Shang L, Zhang B, Hu J, Wang Y, Lin H, Zhang A, Liu C, Peng Y, Zhu L. Natural variation in the promoter of TGW2 determines grain width and weight in rice[J]. The New Phytologist, 2020, 227(2): 629-40. |
[23] | Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[24] | Ayres N M, McClung A M, Larkin P D, Bligh H F J, Jones C A, Park W D. Microsatellites and a single-nucleotide polymorphism differentiate apparent amylose classes in an extended pedigree of US rice germ plasm[J]. Theoretical and Applied Genetics, 1997, 94: 773-781. |
[25] | Hirano HY, Eiguchi M, Sano Y. A single base change altered the regulation of the Waxy gene at the posttranscriptional level during the domestication of rice[J]. Molecular Biology and Evolution, 1998, 15(8): 978-87. |
[26] | Mikami I, Uwatoko N, Ikeda Y, Yamaguchi J, Hirano HY, Suzuki Y, Sano Y. Allelic diversification at the wx locus in landraces of Asian rice[J]. Theoretical and Applied Genetics, 2008, 116(7): 979-89. |
[27] | Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, Gao G J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5: 4847. |
[28] | Fan C H, Xing Y Z, Mao HL, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[29] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[30] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12): 1666-1680. |
[31] | Hu J, Wang Y X, Fang Y X, Zeng L G, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. |
[32] | Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[33] | Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3(5): 17043. |
[34] | Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269. |
[35] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[36] | Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X, Ma H, Zhang G Q, He Z H. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11): 1370-1374. |
[37] | Xu F, Fang J, Ou S J, Gao S P, Zhang F X, Du L, Xiao Y H, Wang H R, Sun X H, Chu J F, Wang G D, Chu C C. Variations in CYP78A13 coding region influence grain size and yield in rice[J]. Plant Cell Environment, 2015, 38(4): 800-811. |
[38] | Zeng D L, Yan M X, Wang Y H, Liu X F, Qian Q, Li J Y. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice(Oryza sativa L.)[J]. Plant Molecular Biology, 2007, 65(4): 501-509. |
[39] | Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765. |
[40] | Fujita N, Yoshida M, Asakura N, Ohdan T, Miyao A, Hirochika H, Nakamura Y. Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiology, 2006, 140(3): 1070-1084. |
[41] | Fujita N, Yoshida M, Kondo T, Saito K, Utsumi Y, Tokunaga T, Nishi A, Satoh H, Park J H, Jane J L, Miyao A, Hirochika H, Nakamura Y. Characterization of SSIIIa deficient mutants of rice: The function of SSIIIa and pleiotropic effects by SSIIIa deficiency in the rice endosperm[J]. Plant Physiology, 2007, 144(4): 2009-2023. |
[42] | Akihiro T, Mizuno K, Fujimura T. Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA[J]. Plant and Cell Physiology, 2005, 46(6): 937-946. |
[43] | Meng Q, Zhang W Q, Hu X, Shi X Y, Chen L L, Dai X L, Qu H Y, Xia Y W, Liu W, Gu M, Xu G H. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice[J]. Plant Journal, 2020, 104(5): 1269-1284. |
[44] | Lee S K, Hwang S K, Han M, Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S H, An G. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice(Oryza sativa L.)[J]. Plant Molecular Biology, 2007, 65(4): 531-546. |
[45] | Rösti S, Fahy B, Denyer K. A mutant of rice lacking the leaf large subunit of ADP-glucose pyrophosphorylase has drastically reduced leaf starch content but grows normally[J]. Functional Plant Biology, 2007, 34(6): 480-489. |
[46] | Tanaka N, Fujita N, Nishi A, Satoh H, Hosaka Y, Ugaki M, Kawasaki S, Nakamura Y. The structure of starch can be manipulated by changing the expression levels of starch branching enzyme IIb in rice endosperm[J]. Plant Biotechnology Journal, 2004, 2(6): 507-516. |
[47] | Wang S Y, Yang Y H, Guo M, Zhong C Y, Yan C J, Sun S Y. Targeted mutagenesis of amino acid transporter genes for rice quality improvement using the CRISPR/Cas9 system[J]. Crop Journal, 2020, 8(3): 457-464. |
[48] | Chen S H, Yang Y, Shi W W, Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1 pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1850-1861. |
[49] | Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10(1): 1949. |
[50] | Lu K, Wu B W, Wang J, Zhu W, Nie H P, Qian J J, Huang W T, Fang Z M. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice[J]. Plant Biotechnology Journal, 2018, 16(10): 1710-1722. |
[51] | Ji Y Y, Huang W T, Wu B W, Fang Z M, Wang X L. The amino acid transporter AAP1 mediates growth and grain yield by regulating neutral amino acid uptake and reallocation in Oryza sativa[J]. Journal of Experimental Botany, 2020, 71(16): 4763-4777. |
[52] | Long QZ, Zhang WW, Wang P, Shen W B, Zhou T, Liu N N, Wang R, Jiang L, Huang J X, Wang Y H, Liu Y Q, Wan J M. Molecular genetic characterization of rice seed lipoxygenase 3 and assessment of its effects on seed longevity[J]. Journal of Plant Biology, 2013, 56(4): 232 242. |
[53] | Yang Q Q, Yu W H, Wu H Y, Zhang C Q, Sun S, Liu Q Q. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase[J]. Plant Biotechnology Journal, 2021, 19(3): 490-501. |
[54] | Wang X, Zhou W, Lu ZH, Ouyang Y D, Chols O, Yao J L. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice[J]. Plant Sci, 2015, 239 : 200-208. |
[55] | 程新杰, 施伟, 张梦龙, 岳红亮, 代金英, 胡蕾, 朱国永. 水稻垩白形成机制的研究进展[J]. 中国农学通报, 2024, 40(2): 1-7. |
Cheng X J, Shi W, Zhang M L, Yue H L, Dai J Y, Hu L, Zhu G Y. Research Progress on Chalkiness Formation Mechanism in Rice[J]. Chinese Agricultural Science Bulletin, 2024, 40(2): 1-7. (in Chinese with English abstract) | |
[56] | 易镇邪, 周文新, 秦鹏, 屠乃美. 再生稻与同期抽穗主季稻源库流特性差异研究[J]. 作物学报, 2009, 35(1): 140-148. |
Yi Z X, Zhou W X, Qin P, Tu N M. Differences in characteristics of source, sink, and flow between ratooning rice and Its same-term heading main-crop rice[J]. Acta Agronomica Sinica, 2009, 35(1): 140-148. (in Chinese with English abstract) | |
[57] | 刘爱中, 邹冬生, 屠乃美, 周文新, 易镇邪, 梁养贤. 再生稻与同期抽穗主季稻源库特性比较[J]. 湖北农业科学, 2007(4): 526-529. |
Liu A Z, Zou D S, Tu N M, Zhou W X, Yi Z X, Liang Y X. Source- sink characteristics of ratooning rice and its same-term earring main crop[J]. Hubei Agricultural Sciences, 2007(4): 526-529. (in Chinese with English abstract) | |
[58] | Hu Z, Lu S, Wang M, He H, Sun L, Wang H, Liu X, Jiang L, Sun J, Xin X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11(5): 736-749. |
[59] | Wang L, Xu Y, Zhang C, Ma Q, Joo S H, Kin S K, Xu Z, Chong K. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling[J]. PLOS ONE, 2008, 3(10): e3521. |
[60] | Zhang X, Tong J, Bai A, Guo H, Zhang X, Shen Y, Liu W, Ding Y, Tang S. Phytohormone dynamics in developing endosperm influence rice grain shape and quality[J]. Journal of Integrative Plant Biology, 2020, 62(10): 1625-1637. |
[61] | Lin F, Rensing C, Pang Z, Zou J, Lin S, Letuma P, Zhang Z, Lin W. Metabolomics analysis reveals differential metabolites and pathways involved in grain chalkiness improvement under rice ratooning[J]. Field Crops Research, 2022, 283: 108521. |
[62] | Yu L, Liu Y, Lu L, Zhang Q, Chen Y, Zhou L, Chen H, Peng C. Ascorbic acid deficiency leads to increased grain chalkiness in transgenic rice for suppressed of L-GalLDH[J]. Journal of Plant Physiology, 2017, 211, 13-26. |
[63] | 周诚, 曾鑫, 章岩, 黄涵语, 徐继伟, 朱昌进, 蒲天宇, 李国辉, 许轲. 稻米脂质与稻米品质间关系及其影响因素[J]. 中国粮油学报, 2024(4): 188-196. |
Zhou C, Zeng X, Zhang Y, Huang H Y, Xu J W, Zhu C J, Pu T Y, Li G H, Xu K. Relationship between rice lipid and rice quality and its influencing factors[J]. Journal of the Chinese Cereals and Oils Association, 2024(4): 188-196. (in Chinese with English abstract) | |
[64] | 许光利. 稻米脂类对品质的影响及脂类代谢对高温弱光的响应[D]. 成都: 四川农业大学, 2018. |
Xu G L. Studies on the effect of lipid on rice quality and lipid metabolism in response to high temperature and weak light stresses[D]. Chengdu: Sichuan Agricultural University, 2018. (in Chinese with English abstract) | |
[65] | Zhang Z, Zhao H, Huang F, Long J, Song G, Lin W. The 14-3-3 protein GF14f negatively affects grain filling of inferior spikelets of rice (Oryza sativa L.)[J]. Plant Journal, 2019, 99(2): 344-358. |
[66] | Lin F, Lin S, Zhang Z, Lin W, Rensing C, Xie D. GF14f gene is negatively associated with yield and grain chalkiness under rice ratooning[J]. Frontiers in Plant Science, 2023, 14: 1112146. |
[67] | 沈泓, 姚栋萍, 吴俊, 罗秋红, 吴志鹏, 雷东阳, 邓启云, 柏斌. 灌浆期不同时段高温对稻米淀粉理化特性的影响[J]. 中国水稻科学, 2022, 36(4): 377-387. |
Shen H, Yao D P, Wu J, Luo Q H, Wu Z P, Lei D Y, Deng Q Y, Bai B. Effects of high temperature in various phases of grain filling on rice starch physicochemical properties[J]. Chinese Journal of Rice Science, 2022, 36(4): 377-387. (in Chinese with English abstract) | |
[68] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
Yi X X, Liu W Q, Zeng G, Luo L H, Xiao Y H. Effect of high temperature stress at grain filling stage on early indica rice quality traits[J]. Chinese Journal of Rice Science, 2024, 38(1): 72-80. (in Chinese with English abstract) | |
[69] | Tang S, Zhang H, Liu W, Dou Z, Zhou Q, Chen W, Wang S, Ding Y. Nitrogen fertilizer at heading stage effectively compensates for the deterioration of rice quality by affecting the starch-related properties under elevated temperatures[J]. Food Chemistry, 2019, 277: 455-462. |
[70] | Chun A, Lee H J, Hamaker B R, Janaswamy S. Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa)[J]. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3085-3093 |
[71] | Fan X, Sun X, Yang R, Chen S, Li R, Bian X, Xiao L, Zhang C. Comparative analyses of grain quality in response to high temperature during the grain-filling stage between Wxa and Wxb under indica and japonica backgrounds[J]. Agronomy, 2022, 13(1): 17. |
[72] | Hakata M, Kuroda M, Miyashita T, Yamaguchi T, Kojima M, Sakakibara H, Mitsui T, Yamakawa H. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature[J]. Plant Biotechnology Journal, 2012, 10(9): 1110-1117. |
[73] | Fan X, Li Y, Lu Y, Zhang C, Li E, Li Q, Tao K, Yu W, Wang J, Chen Z, Zhu Y, Liu Q. The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature[J]. Food Chemistry, 2019, 301: 125258. |
[74] | Chen Y, Wang M, Ouwerkerk P B F. Molecular and environmental factors determining grain quality in rice[J]. Food Energy Security, 2012, 1(2): 111-132. |
[75] | Fan X, Li Y, Zhu Y, Wang J, Zhao J, Sun X, Pan Y, Bian X, Zhang C, Zhao D. Characterization of physicochemical qualities and starch structures of two indica rice varieties tolerant to high temperature during grain filling[J]. Journal of Cereal Science, 2020, 93: 102966. |
[76] | 何丽萍. 利用双向导入系解析再生稻外观与蒸煮食味品质的遗传基础[D]. 荆州: 长江大学, 2022. |
He L P. Genetic dissection of appearance and cooking quality of ratooning rice by two sets of reciprocal introgression lines[D]. Jingzhou: Yangtze University, 2022. (in Chinese with English abstract) | |
[77] | 曹云英, 段骅, 杨立年, 王志勤, 刘立军, 杨建昌. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3): 512-521. |
Cao Y Y, Duan H, Yang L N, Wang Z Q, Liu L J, Yang J C. Effect of high temperature during heading and early grain filling on grain yield of indica rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2009, 35(3): 512-521. (in Chinese with English abstract) | |
[78] | 孙晓松. 高温影响Wx等位基因表达的分子机制研究和育种设计[D]. 扬州: 扬州大学, 2024. |
Sun X S. Molecular mechanism of wx alleles’ expression in response to high temperature and its breeding design[D]. Yangzhou: Yangzhou University, 2024. (in Chinese with English abstract) | |
[79] | 旷娜. 再生季稻米品质与淀粉特性的关系及其对温度的响应[D]. 长沙: 湖南农业大学, 2021. |
Kuang N. Relationship between rice quality and starch characteristics and its response to temperature in ratoon rice crops[D]. Changsha: Hunan Agricultural University, 2021. (in Chinese with English abstract) | |
[80] | Zhang C, Zhou L, Zhu Z, Lu H, Zhou X, Qian Y, Li Q, Lu Y, Gu M, Liu Q. Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057 |
[81] | 张磊, 吴冬云, 朱碧岩, 张铭光, 黎杰强. 灌浆期不同温光对水稻叶、籽粒可溶性蛋白质及可溶性糖动态变化的影响[J]. 华南师范大学学报: 自然科学版, 2002(2): 98-101. |
Zhang L, Wu D Y, Zhu B Y, Zhang M G, Li J Q. Effect of temperature and light on the dynamic change in soluble protein and sugar in rice leaves and grains during the milk-filling stage[J]. Journal of South China Normal University: Natural Science Edition, 2002(2): 98-101. (in Chinese with English abstract) | |
[82] | Liu Q, Wu X, Ma J, Li T, Guo T. Effects of high air temperature on rice grain quality and yield under field condition[J]. Agronomy Journal, 2013, 105: 446-454 |
[83] | Cao Z, Zhao Q, Pan G, Wei K, Zhou L, Cheng F. Comprehensive expression of various genes involved in storage protein synthesis in filling rice grain as affected by high temperature[J]. Plant Growth Regulation, 2017, 81: 477-488 |
[84] | 马启林, 李阳生, 鄢圣之, 雷慰慈. 高温及穗肥对水稻子粒蛋白质积累动态的影响[J]. 湖北农业科学, 2008, 47(11): 1228-1231. |
Ma Q L, Li Y S, Yan S Z, Lei W C. Influence of high temperature stress on dynamic accumulation of rice grain protein under different earing fertilization[J]. Hubei Agricultural Sciences, 2008, 47(11): 1228-1231. (in Chinese with English abstract) | |
[85] | Ohdaira Y, Takeda H, Sadaki R. Effects of temperature on the digestible protein content of grains during ripening in a seed-protein mutant rice cultivar LGC soft[J]. Plant Production Science, 2010, 13(2): 132-140. |
[86] | Liao J L, Zhou H W, Peng Q, Zhong P A, Zhang H Y, He C, Huang Y J. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage[J]. BMC Genomics, 2015, 16: 18 |
[87] | Timabud T, Yin X, Pongdontri P, Komatsu S. Gel-free/ label-free proteomic analysis of developing rice grains under heat stress[J]. Journal of Proteomics, 2016, 133: 1-19 |
[88] | Lin C J, Li C Y, Lin S K, Yang F H, Huang J J, Liu Y H, Lur H. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2010, 58(19): 10545-52. |
[89] | Zhou T, Zhou Q, Li E, Yuan L, Wang W, Zhang H, Liu L, Wang Z, Yang J, Gu J. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch[J]. Carbohydrate Polymers, 2020, 239: 116237. |
[90] | 宁慧峰. 氮素对稻米品质的影响及其理化基础研究[D]. 南京: 南京农业大学, 2012. |
Ning H F. The effect of nitrogen on rice quality and its physicochemical foundation[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract) | |
[91] | 熊飞, 王忠, 顾蕴洁, 陈刚, 周鹏. 施氮时期对扬稻6号颖果发育及稻米品质的影响[J]. 中国水稻科学, 2007(6): 637-642. |
Xiong F, Wang Z, Gu Y J, Chen G, Zhou P. Effects of nitrogen application time on caryopsis development and grain quality of rice variety Yangdao 6[J]. Chinese Journal of Rice Science, 2007(6): 637-642. (in Chinese with English abstract) | |
[92] | Fei L, Yang S, Ma A, Lunzhu C, Wang M, Wang G, Guo S. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization[J]. Field Crops Research, 2023, 302: 109098. |
[93] | Shi S, Zhang G, Chen L, Zhang W, Wang X, Pan K, Li L, Wang J, Liu J, Cao C. Different nitrogen fertilizer application in the field affects the morphology and structure of protein and starch in rice during cooking[J]. Food Research International, 2023, 163: 112193. |
[94] | Zhao Y, Ran X, Yin T, Guo H, Zhang X, Shen Y. Nitrogen alleviated the deterioration of rice quality by affecting the accumulation of grain storage protein under elevated temperature[J]. Journal of Plant Growth Regulation, 2022, 42(6): 3388-3404. |
[95] | Wang X, Wang K, Yin T, Zhao Y, Liu W, Shen Y, Ding Y, Tang S. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming[J]. Frontiers in Plant Science, 2021, 12: 715436. |
[96] | 陈鸿飞, 张志兴, 林文雄. 促芽肥对头季稻灌浆后期叶片蛋白质表达的影响[J]. 华北农学报, 2016, 31(3): 127-134. |
Chen H F, Zhang Z X, Lin W X. Effects of nitrogen application for bud development on protein expression of flag leaf at late grain filling stage in the first cropping rice[J]. Acta Agricultural Boreali-sinica, 2016, 31(3): 127-134. (in Chinese with English abstract) | |
[97] | 苏素苗, 戴志刚, 王敏羽, 王森, 王志宾, 余德芳, 李旭春, 李小坤. 氮肥运筹方式及催芽氮肥用量对再生稻产量及品质的影响[J]. 植物营养与肥料学报, 2022, 28(12): 2172-2184. |
Su S M, Dai Z G, Wang M Y, Wang S, Wang Z B, Yu D F, Li X C, Li X K. Effects of nitrogen application method and bud-promoting nitrogen fertilizer rate on yield and quality of ratoon rice[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(12): 2172-2184. (in Chinese with English abstract) | |
[98] | 叶廷红. 钾肥施用量对水稻产量、钾素吸收利用及稻米品质的影响[D]. 武汉: 华中农业大学, 2021. |
Ye T H. Effects of potassium application rate on grain yield, potassium absorption and utilization, and quality of rice[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[99] | 王留行, 彭廷, 熊加豹, 王海彬, 刘晔, 张静, 王代长, 腾永忠, 赵全志. 氮肥对超级杂交稻穗颈节间维管束结构的影响[J]. 河南农业科学, 2019, 48(9): 14-22. |
Wang L H, Peng T, Xiong J B, Wang H B, Liu Y, Zhang J, Wang D Z, Teng Y Z, Zhao Q Z. Effects of nitrogen fertilizer on vascular bundle structure in first internode of super hybrid rice[J]. Journal of Henan Agricultural Sciences, 2019, 48(9): 14-22. (in Chinese with English abstract) | |
[100] | 孙骏威, 李素芳, 付贤树, 奚辉, 王腾浩. 低钾对水稻不同叶位叶片光合特性及抗氧化系统的影响[J]. 核农学报, 2007(4): 404-408+356. |
Sun J W, Li S F, Fu X S, Xi H, Wang TH. Effects of potassium stress on photosynthetic characteristics and antioxidant systems in different position leaves of rice plants[J]. Journal of Nuclear Agricultural Sciences, 2007(4): 404-408+356. (in Chinese with English abstract) | |
[101] | Hou W, Yan J, Jákli B, Lu J, Ren T, Cong R, Li X. Synergistic effects of nitrogen and potassium on quantitative limitations to photosynthesis in rice (Oryza sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2018, 66(20): 5125-5132. |
[102] | Hou W, Tränkner M, Lu J, Yan J, Huang S, Ren T, Cong R, Li X. Diagnosis of nitrogen nutrition in rice leaves influenced by potassium levels[J]. Frontiers in Plant Science, 2020, 11: 165. |
[103] | 王旭东, 于振文, 王东. 钾对小麦旗叶蔗糖和籽粒淀粉积累的影响[J]. 植物生态学报, 2003, 27(2): 196-201. |
Wang X D, Yu Z W, Wang D. Effect of potassium on sucrose content of flag leaves and starch accumulation of kernels in wheat[J]. Acta Phytoecologica Sinica, 2003, 27(2): 196-201. (in Chinese with English abstract) | |
[104] | Hou W, Xue X, Li X, Khan M R, Yan J, Ren T, Cong R, Lu J. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China[J]. Field Crops Research, 2019, 236: 14-23. |
[105] | 戴廷波, 邹铁祥, 荆奇, 姜东, 曹卫星. 氮、钾水平对小麦籽粒蛋白质合成关键酶活性的影响[J]. 生态学报, 2009, 29(9): 4976-4982. |
Dai T B, Zou T X, Jing Q, Jiang D, Cao W X. Effects of nitrogen and potassium fertilization on key regulation enzyme activities involved in grain protein formation in winter wheat[J]. Acta Ecologica Sinica, 2009, 29(9): 4976-4982. (in Chinese with English abstract) | |
[106] | 刘子琛, 尚李岩, 叶佳雨, 盛添, 李瑞杰, 邓俊, 田小海, 张运波, 黄礼英. 增密减氮栽培对杂交籼稻稻米品质的影响[J]. 作物杂志, 2024(5): 194-203. |
Liu Z C, Shang L Y, Ye J Y, Sheng T, Li R J, Deng J, Tian X H, Zhang Y B, Huang L Y. Effects of dense planting with reduced nitrogen input cultivation on the grain quality of hybrid rice[J]. Crops, 2024(5): 194-203. (in Chinese with English abstract) | |
[107] | Wang W, Lu J, Ren T, Li X, Su W, Lu M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production[J]. Field Crops Research, 2012, 137: 37-48. |
[108] | 徐富贤, 熊洪, 张林, 朱永川, 蒋鹏, 郭晓艺, 刘茂. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702-1717. |
Xu F X, Xiong H, Zhang L, Zhu Y C, Jiang P, Guo X Y, Liu M. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702-1717. (in Chinese with English abstract) | |
[109] | Yang D, Peng S, Zheng C, Xiang H, Huang J, Cui K, Wang F. Effects of nitrogen fertilization for bud initiation and tiller growth on yield and quality of rice ratoon crop in central China[J]. Field Crops Research, 2021, 272: 108286. |
[110] | 余延丰, 张富林, 刘冬碧, 吴茂前, 张志毅, 夏颖, 范先鹏, 王玲, 肖依波, 肖国平. 氮肥用量和运筹方式对再生稻产量品质和氮肥利用率的影响[J]. 中国土壤与肥料, 2022(12): 133-140. |
Yu Y F, Zhang F L, Liu D B, Wu M Q, Zhang Z Y, Xia Y, Fan X P, Wang L, Xiao Y B, Xiao G P. Effect of nitrogen fertilizer application rate and strategy on yield, quality and nitrogen utilization of ratoon rice[J]. Soil and Fertilizer Sciences in China, 2022(12): 133-140. (in Chinese with English abstract) | |
[111] | Wood R M, Dunn B W, Balindong J L, Waters DLE, Blanchard C L, Mawson A J, Oli P. Effect of agronomic management on rice grain quality Part: II. Nitrogen rate and timing[J]. Cereal Chemistry Journal, 2020, 98(2): 234-248. |
[112] | 杨晨, 郑常, 袁珅, 徐乐, 彭少兵. 再生稻肥料管理对不同品种产量和品质的影响[J]. 中国水稻科学, 2022, 36(1): 65-76. |
Yang C, Zheng C, Yuang S, Xu L, Peng S B. Effect of fertilizer management on the yield and quality of different rice varieties in ratoon rice[J]. Chinese Journal of Rice Science, 2022, 36(1): 65-76. (in Chinese with English abstract) | |
[113] | 罗一鸣, 肖立中, 潘圣刚, 聂俊, 李媛, 唐湘如. 钾肥对香稻香气及稻米品质的影响[J]. 西南农业学报, 2014, 27(3): 1147-1153. |
Luo Y M, Xiao L Z, Pan S G, Nie J, Li Y, Tang X R. Effects of potassium fertilizer on aroma and quality of aromatic rice[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(3): 1147-1153. (in Chinese with English abstract) | |
[114] | 刘嫒桦, 李小坤. 不同肥料施用与稻米品质关系的整合分析[J]. 中国水稻科学, 2023, 37(3): 276-284. |
Liu A H, Li X K. Meta-analysis of relationship between fertilizer application and rice quality[J]. Chinese Journal of Rice Science, 2023, 37(3): 276-284. (in Chinese with English abstract) | |
[115] | 费立伟, 季煜, 普正仙, 王芳, 柳展, 王敏, 郭俊杰, 郭世伟. 香稻产量和品质对化肥施用及气候因素的响应[J]. 植物营养与肥料学报, 2022, 28(9): 1545-1557. |
Fei L W, Ji Y, Pu Z X, Wang F, Liu Z, Wang M, Guo J J, Guo S W. Responses of fragrant rice yield and quality to fertilization and climatic factors[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1545-1557. (in Chinese with English abstract) | |
[116] | 熊明彪, 雷孝章, 田应兵, 宋光煜, 曹叔尤. 紫色土稻田生态系统钾素平衡研究[J]. 西南农业学报, 2004(4): 472-476. |
Xiong M B, Lei X Z, Tian Y B, Song G Y, Cao S Y. Studies on Potassium balance in purple soil rice field ecosystem[J]. Southwest China Journal of Agricultural Sciences, 2004(4): 472-476. (in Chinese with English abstract) | |
[117] | Ullah A, Manghwar H, Shaban M, Khan AH, Akbar A, Ali U. Phytohormones enhanced drought tolerance in plants: A coping strategy[J]. Environmental Science and Pollution Research, 2018, 25(33): 33103-33118. |
[118] | Liu Y, Zhang M, Meng Z, Wang B, Chen M. Research progress on the roles of cytokinin in plant response to stress[J]. International Journal of Molecular Sciences, 2020, 21(18): 6574. |
[119] | Xing P, Luo H, He Z, He L, Zhao H, Tang X, Duan M. Trans-Zeatin induce regulation of the biosynthesis of 2-acetyl-1-pyrroline in fragrant rice (Oryza sativa L.) seedlings[J]. BMC Plant Biology, 2023, 23(1): 88. |
[120] | 谈桂露, 杨建昌. 根系化学信号与稻米品质的关系[J]. 中国农学通报, 2009, 25(24): 171-178. |
Tan G L, Yang J C. Relationship between root chemical signals and grain quality of rice[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 171-178. (in Chinese with English abstract) | |
[121] | 杨建昌, 常二华, 张文杰, 王志琴, 刘立军. 根系化学讯号与稻米品质的关系[J]. 中国农业科学, 2006, 39(1): 38-47. |
Yang J C, Chang E H, Zhang W J, Wang Z Q, Liu L J. Relationship between root chemical signals and grain quality of rice[J]. Scientia Agricultura Sinica, 2006, 39(1): 38-47. (in Chinese with English abstract) | |
[122] | 常二华. 根系化学讯号与稻米品质的关系及其调控技术[D]. 扬州大学, 2009. |
Chang E H. Relationship between root chemical signals and grain quality of rice and its regulation techniques[D]. Yangzhou: Yangzhou University, 2009. (in Chinese with English abstract) | |
[123] | 李博, 杨帆, 秦琴, 钟晓媛, 李秋萍, 曾玉玲, 卢慧, 陈勇, 王丽, 陶有凤, 李娟, 冯炳亮, 任万军, 邓飞. 播期对再生稻次适宜区杂交籼稻食味品质的影响[J]. 中国农业科学, 2022, 55(1): 36-50. |
Li B, Yang F, Qin Q, Zhong X Y, Li Q P, Zeng Y L, Lu H, Chen Y, Wang L, Tao Y F, Li J, Feng B L, Ren W J, Deng F. Effects of sowing dates on eating quality of different indica hybrid rice in the sub-suitable region of ratoon rice[J]. Scientia Agricultura Sinica, 2022, 55(1): 36-50. (in Chinese with English abstract) | |
[124] | 邹丹, 王慰亲, 郑华斌, 陈元伟, 唐启源, 张相, 刘功义. 播期对再生稻生长影响的研究进展[J]. 杂交水稻, 2021, 36(4): 6-10. |
Zou D, Wang W Q, Zheng H B, Chen Y W, Tang Q Y, Zhang X, Liu GY. Research progress of the influence of seeding time on growth of ratooning rice[J]. Hybrid Rice, 2021, 36(4): 6-10. (in Chinese with English abstract) | |
[125] | 姚晓云, 彭志勤, 陈春莲, 张志英, 文春燕, 尹建华. 头季与再生季稻米品质比较及留桩高度对品质性状的影响[J]. 杂交水稻, 2021, 36(6): 70-76. |
Yao X Y, Peng Z Q, Chen C L, Zhang Z Y, Wen C Y, Yin J H. Comparison of rice quality between main crop and ratoon crop and effects of stubble height on quality traits[J]. Hybrid Rice, 2021, 36(6): 70-76. (in Chinese with English abstract) | |
[126] | 徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 周兴兵, 刘茂. 杂交中稻留桩高度对再生稻米质的影响及其与头季稻米质的关系[J]. 中国稻米, 2014, 20(1): 86-87+89. |
Xu F X, Xiong H, Zhang L, Guo X Y, Zhu Y C, Zhou X B, Liu M. Effects of stubble height on ratoon rice quality and its relationship to the first season rice quality[J]. China Rice, 2014; 20(1): 86-87+89. (in Chinese with English abstract) | |
[127] | 王肖凤, 汪吴凯, 夏方招, 孙亚婷, 戴泽彰, 郑祥波, 杨特武, 姚璇. 水分管理对再生稻稻米品质的影响[J]. 华中农业大学学报, 2021, 40(2): 103-111. |
Wang X F, Wang W K, Xia F Z, Sun Y T, Dai Z Z, Zheng Y B, Yang T W, Yao X. Effects of water management on grain quality of ratooning rice[J]. Journal of Huazhong Agricultural University, 2021, 40(2): 103-111. (in Chinese with English abstract) | |
[128] | Zhang L, Tang Q, Li L, Zheng H, Wang J, Hua Y, Ren L, Tang J. Ratoon rice with direct seeding improves soil carbon sequestration in rice fields and increases grain quality[J]. Journal of Environmental Management, 2022, 317: 115374. |
[129] | Zheng C, Wang Y, Yuan S, Yu X, Yang G, Yang C, Yang D, Wang F, Huang J, Peng S. Effects of skip-row planting on grain yield and quality of mechanized ratoon rice[J]. Field Crops Research, 2022, 285: 108584. |
[130] | 张巫军, 段秀建, 姚雄, 刘强明, 肖人鹏, 张现伟, 唐永群, 李经勇. 头季稻刈割时间对饲草产量、品质和再生稻产量的影响[J]. 作物研究, 2023, 37(2): 110-115. |
Zhang W J, Duan X J, Yao X, Liu Q M, Xiao R P, Zhang X W, Tang Y Q, Li J Y. Effects of mowing time of first season on silage yield quality and ratoon rice yield[J]. Crop Research, 2023, 37(2): 110-115. (in Chinese with English abstract) | |
[131] | 刘利民. 刈割处理对优质稻农艺性状、产量及稻米品质的影响[D]. 武汉: 华中农业大学, 2017. |
Liu L M. Effects of rice ratooning treatment on agronomic traits, grain yield and grain quality in quality rice[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[132] | 黄伟东, 苗雪雪, 刘泽民, 周昆, 阳标仁, 李成钢, 陶曙华. 碾米加工技术对长粒型优质籼稻整精米率的影响[J]. 湖南农业科学, 2021(11): 71-74. |
Huang W D, Miao X X, Liu Z M, Zhou K, Yang B R, Li C G, Tao S H. Effect of rice milling technology on head rice rate of long-grain high-quality indica rice[J]. Hunan Agricultural Sciences, 2021(11): 71-74. (in Chinese with English abstract) | |
[133] | 尹晓峰, 杨玲. 稻谷薄层红外干燥特性及数学模型[J]. 中国粮油学报, 2024, 39(2): 11-19. |
Yin X F, Yang L. Characteristics and mathematical models for infrared-dried rough rice[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(2): 11-19. (in Chinese with English abstract) | |
[134] | 尹晓峰, 杨明金, 李光林, 张先锋, 周玉华, 杨玲. 稻谷薄层热风干燥工艺优化及数学模型拟合[J]. 食品科学, 2017, 38(8): 198-205. |
Yin X F, Yang M J, Li G L, Zhang X F, Zhou Y H, Yang L. Optimization and mathematical modeling of thin layer hot-air drying of rough rice[J]. Food Science, 2017, 38(8): 198-205. (in Chinese with English abstract) | |
[135] | 杨国峰, 夏宝林, Kingsly A R P, 周雯, 仇红娟, 刘强, 陈江. 间歇干燥及缓苏对高水分稻谷干燥品质的影响[J]. 中国粮油学报, 2015, 30(1): 102-106+111. |
Yang G F, Xia B L, Kingsly A R P, Zhou W, Qiu H J, Liu Q, Chen J. Effect of intermittent drying and tempering on quality of higher moisture rice[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(1): 102-106+111. (in Chinese with English abstract). |
[1] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展 [J]. 中国水稻科学, 2025, 39(2): 156-170. |
[2] | 舒傲, 解嘉鑫, 曹威, 周传名, 李蓓蕾, 陈嘉馨, 李莉, 曹放波, 陈佳娜, 黄敏. 氮肥运筹对优质杂交中稻产量和品质的影响 [J]. 中国水稻科学, 2025, 39(2): 255-263. |
[3] | 王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127. |
[4] | 蒋鹏, 张林, 周兴兵, 郭晓艺, 朱永川, 刘茂, 郭长春, 熊洪, 徐富贤. 冬水田轻简化栽培杂交稻蓄留再生稻产量形成特点[J]. 中国水稻科学, 2024, 38(5): 544-554. |
[5] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
[6] | 王军, 周晶, 陶亚军, 李文奇, 朱建平, 范方军, 王芳权, 许扬, 陈智慧, 蒋彦婕, 李霞, 杨杰. 基于HRM技术开发水稻糊化温度基因ALK功能标记[J]. 中国水稻科学, 2024, 38(1): 106-110. |
[7] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[8] | 高欠清, 任孝俭, 翟中兵, 郑普兵, 吴源芬, 崔克辉. 头季穗肥和促芽肥对再生稻再生芽生长及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 405-414. |
[9] | 段敏, 谢留杰, 高秀莹, 唐海娟, 黄善军, 潘晓飚. 利用CRISPR/Cas9技术创制广亲和水稻温敏雄性不育系[J]. 中国水稻科学, 2023, 37(3): 233-243. |
[10] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
[11] | 杨陶陶, 邹积祥, 伍龙梅, 包晓哲, 江瑜, 张楠, 张彬. 开放式增温对华南双季稻稻米品质的影响[J]. 中国水稻科学, 2023, 37(1): 66-77. |
[12] | 曹跃炫, 严绘景, 王克剑, 刘朝雷. 苗期快速分选水稻人工无融合生殖克隆种子[J]. 中国水稻科学, 2022, 36(6): 656-662. |
[13] | 景文疆, 顾汉柱, 张小祥, 吴昊, 张伟杨, 顾骏飞, 刘立军, 王志琴, 杨建昌, 张耗. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学, 2022, 36(5): 505-519. |
[14] | 王敏羽, 戴志刚, 余德芳, 王向平, 关绍华, 邵远刚, 张家学, 李小坤. “水稻-再生稻”种植模式专用肥轻简施用对产量、肥料利用率及经济效益的影响[J]. 中国水稻科学, 2022, 36(5): 531-542. |
[15] | 何佳春, 何雨婷, 万品俊, 魏琪, 赖凤香, 陈祥盛, 傅强. 温度对褐飞虱天敌黄腿双距螯蜂生物学特性的影响[J]. 中国水稻科学, 2022, 36(3): 318-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||