中国水稻科学 ›› 2023, Vol. 37 ›› Issue (1): 29-36.DOI: 10.16819/j.1001-7216.2023.220705
王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英()
收稿日期:
2022-07-05
修回日期:
2022-09-05
出版日期:
2023-01-10
发布日期:
2023-01-10
通讯作者:
何秀英
基金资助:
WANG Shiguang, LU Zhanhua, LIU Wei, LU Dongbai, WANG Xiaofei, FANG Zhiqiang, WU Haoxiang, HE Xiuying()
Received:
2022-07-05
Revised:
2022-09-05
Online:
2023-01-10
Published:
2023-01-10
Contact:
HE Xiuying
摘要: 目的 创制优质香型丝苗米水稻新种质,探索水稻育种改良新途径,助力广东丝苗米品牌建设。方法 以广东省农业主导品种粤农丝苗(YNSM)与优质稻粤王丝苗(YWSM)为材料,利用CRISPR/Cas9基因编辑技术定点编辑上述品种的香味基因Badh2,创制香稻新品系,随后通过分子标记辅助选择(MAS)技术定向导入GW7/GL7位点,系谱选育优质香型丝苗米水稻新种质。结果 利用CRISPR/Cas9基因编辑技术成功创制两个香稻新品系yn-kobadh2与yw-kobadh2,其2-AP含量均极显著提高,达到239.39~440.79 μg/kg,而有效穗数、每穗实粒数、糙米外观品质、千粒重与产量等主要农艺性状均未受到显著影响;MAS技术结合系谱选育的方法成功选育两个丰产性好、籽粒长宽比超过4.3的优质香型丝苗米水稻新品系NWbadh2GW7-1与NWbadh2GW7-2,达到广东丝苗米品种关于香味与外观粒型的认定标准。结论利用CRISPR/Cas9基因编辑与分子辅助选择技术相结合可精准、高效地创制新的优异水稻种质,为广东丝苗米品种选育提供重要的种质储备与遗传改良资源。
王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36.
WANG Shiguang, LU Zhanhua, LIU Wei, LU Dongbai, WANG Xiaofei, FANG Zhiqiang, WU Haoxiang, HE Xiuying. Generating Guangdong Simiao Rice Germplasms by Applying CRISPR/Cas9 Gene Editing and Marker-assisted Selection Technology[J]. Chinese Journal OF Rice Science, 2023, 37(1): 29-36.
图1 亲本糙米粒型比较分析 YNSM―粤农丝苗;YWSM―粤王丝苗;XYXZ―象牙香占。数据均为平均值±标准差,n=10;图中大、小写字母分别表示差异达0.01、0.05显著水平(t检验)。
Fig. 1. Comparative analysis of grain size of parental brown rice. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; XYXZ, Xiangyaxiangzhan. Data are shown as means±SD, n=10; The uppercase and lowercase letters above the bars indicate statistical significance at the P=0.01 and P=0.05 level, respectively (t-test).
图2 Badh2基因敲除植株突变位点分析 A?Badh2基因结构及敲除靶点所在位置;B?Badh2基因靶点测序分析;C?粤农丝苗背景Badh2基因两种突变方式的测序峰;D?转基因成分检测,上下图片分别为Cas9与gRNA特异引物检测结果;YNSM―粤农丝苗;YWSM―粤王丝苗;M―DL2000 marker。
Fig. 2. Mutation types of Badh2 in gene knockout plants. A, Badh2 gene structure and location of the gene editing target. B, Sequence analysis of Badh2 gene target; C, Target region sequencing of Badh2 gene in the editing lines of Yuenongsimiao background. D, Detection of transgenic vector framework by specific Cas9 and gRNA primers. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; M, DL2000 DNA marker.
株系 Line | 株高 Plant height / cm | 有效穗数Effective panicle number | 穗长 Panicle length / cm | 每穗实粒数 Grain number per panicle | 谷粒长度 Grain length / mm | 谷粒长宽比 Grain length to width ratio | |||
---|---|---|---|---|---|---|---|---|---|
粤农丝苗YNSM | 94.2±3.6 CDde | 7.00±1.00 Ab | 22.81±0.72 Bc | 120.7±13.0 ABab | 9.34±0.10 De | 3.81±0.04 Cd | |||
yn-kobadh2-1 | 90.2±1.5 Df | 6.67±0.58 Ab | 24.65±0.36 ABab | 120.8±24.0 ABab | 9.79±0.11 BCcd | 3.90±0.10 Cd | |||
yn-kobadh2-2 | 92.6±2.4 CDef | 7.33±1.53 Aab | 23.39±1.44 ABbc | 111.1±24.9 ABabc | 9.56±0.06 CDde | 3.78±0.08 Cd | |||
粤王丝苗YWSM | 105.0±2.5 Aa | 8.00±1.00 Aab | 24.60±0.57 ABab | 99.5±8.9 Bbc | 10.12±0.03 ABab | 4.35±0.04 ABbc | |||
yw-kobadh2-1 | 100.4±1.5 ABbc | 8.33±0.58 Aab | 25.62±0.34 Aa | 91.1±8.8 Bc | 10.28±0.19 Aab | 4.50±0.04 ABab | |||
yw-kobadh2-2 | 103.4±3.2 Aab | 8.33±0.58 Aab | 24.73±0.63 ABab | 94.1±10.0 Bc | 10.38±0.11 Aa | 4.55±0.09 Aa | |||
NWbadh2GW7-1 | 103.0±4.5 Aab | 9.00±1.73 Aa | 24.74±1.53 ABab | 100.6±13.9 ABbc | 10.01±0.05 ABc | 4.31±0.04 Bc | |||
NWbadh2GW7-2 | 97.2±2.9 BCcd | 8.33±0.58 Aab | 25.46±1.11 Aa | 135.7±5.0 Aa | 10.35±0.37 Aa | 4.36±0.21 ABbc | |||
株系 Line | 糙米长度 Grain length of brown rice / mm | 糙米长宽比Grain length to width ratio of brown rice | 千粒重 1000-grain weight / g | 产量 Grain yield / (kg·hm-2) | 2-AP含量 2-AP content / (μg·kg-1) | ||||
粤农丝苗YNSM | 6.92±0.07 Bb | 3.30±0.01 Bc | 21.08±0.38 ABab | 6256.9±247.5 ABab | 0.00±0.00 De | ||||
yn-kobadh2-1 | 7.01±0.13 Bb | 3.32±0.13 Bc | 21.43±0.45 Aa | 6203.6±1356.8 ABb | 440.79±23.69 Aa | ||||
yn-kobadh2-2 | 6.88±0.20 Bb | 3.37±0.11 Bc | 20.82±0.67 ABCabc | 5885.4±782.6 ABb | 306.07±30.18 Bc | ||||
粤王丝苗YWSM | 8.40±0.18 Aa | 4.68±0.09 Aa | 20.30±0.39 ABCDbcd | 5723.5±149.6 ABb | 0.00±0.00 De | ||||
yw-kobadh2-1 | 8.28±0.12 Aa | 4.62±0.10 Aa | 19.94±0.83 BCDcde | 5402.4±694.2 Bb | 239.39±5.51 Cd | ||||
yw-kobadh2-2 | 8.25±0.12 Aa | 4.45±0.14 Aab | 20.07±0.56 BCDcd | 5612.9±740.1 Bb | 276.67±13.68 BCc | ||||
NWbadh2GW7-1 | 8.18±0.30 Aa | 4.36±0.31 Ab | 19.70±0.46 CDde | 6342.1±1480.3 ABab | 439.99±21.78 Aa | ||||
NWbadh2GW7-2 | 8.36±0.21 Aa | 4.58±0.06 Aab | 19.16±0.15 De | 7708.4±298.4 Aa | 402.95±13.97 Ab |
表1 野生型与创制株系的农艺性状
Table 1. Agronomic traits of the wild type and generated lines.
株系 Line | 株高 Plant height / cm | 有效穗数Effective panicle number | 穗长 Panicle length / cm | 每穗实粒数 Grain number per panicle | 谷粒长度 Grain length / mm | 谷粒长宽比 Grain length to width ratio | |||
---|---|---|---|---|---|---|---|---|---|
粤农丝苗YNSM | 94.2±3.6 CDde | 7.00±1.00 Ab | 22.81±0.72 Bc | 120.7±13.0 ABab | 9.34±0.10 De | 3.81±0.04 Cd | |||
yn-kobadh2-1 | 90.2±1.5 Df | 6.67±0.58 Ab | 24.65±0.36 ABab | 120.8±24.0 ABab | 9.79±0.11 BCcd | 3.90±0.10 Cd | |||
yn-kobadh2-2 | 92.6±2.4 CDef | 7.33±1.53 Aab | 23.39±1.44 ABbc | 111.1±24.9 ABabc | 9.56±0.06 CDde | 3.78±0.08 Cd | |||
粤王丝苗YWSM | 105.0±2.5 Aa | 8.00±1.00 Aab | 24.60±0.57 ABab | 99.5±8.9 Bbc | 10.12±0.03 ABab | 4.35±0.04 ABbc | |||
yw-kobadh2-1 | 100.4±1.5 ABbc | 8.33±0.58 Aab | 25.62±0.34 Aa | 91.1±8.8 Bc | 10.28±0.19 Aab | 4.50±0.04 ABab | |||
yw-kobadh2-2 | 103.4±3.2 Aab | 8.33±0.58 Aab | 24.73±0.63 ABab | 94.1±10.0 Bc | 10.38±0.11 Aa | 4.55±0.09 Aa | |||
NWbadh2GW7-1 | 103.0±4.5 Aab | 9.00±1.73 Aa | 24.74±1.53 ABab | 100.6±13.9 ABbc | 10.01±0.05 ABc | 4.31±0.04 Bc | |||
NWbadh2GW7-2 | 97.2±2.9 BCcd | 8.33±0.58 Aab | 25.46±1.11 Aa | 135.7±5.0 Aa | 10.35±0.37 Aa | 4.36±0.21 ABbc | |||
株系 Line | 糙米长度 Grain length of brown rice / mm | 糙米长宽比Grain length to width ratio of brown rice | 千粒重 1000-grain weight / g | 产量 Grain yield / (kg·hm-2) | 2-AP含量 2-AP content / (μg·kg-1) | ||||
粤农丝苗YNSM | 6.92±0.07 Bb | 3.30±0.01 Bc | 21.08±0.38 ABab | 6256.9±247.5 ABab | 0.00±0.00 De | ||||
yn-kobadh2-1 | 7.01±0.13 Bb | 3.32±0.13 Bc | 21.43±0.45 Aa | 6203.6±1356.8 ABb | 440.79±23.69 Aa | ||||
yn-kobadh2-2 | 6.88±0.20 Bb | 3.37±0.11 Bc | 20.82±0.67 ABCabc | 5885.4±782.6 ABb | 306.07±30.18 Bc | ||||
粤王丝苗YWSM | 8.40±0.18 Aa | 4.68±0.09 Aa | 20.30±0.39 ABCDbcd | 5723.5±149.6 ABb | 0.00±0.00 De | ||||
yw-kobadh2-1 | 8.28±0.12 Aa | 4.62±0.10 Aa | 19.94±0.83 BCDcde | 5402.4±694.2 Bb | 239.39±5.51 Cd | ||||
yw-kobadh2-2 | 8.25±0.12 Aa | 4.45±0.14 Aab | 20.07±0.56 BCDcd | 5612.9±740.1 Bb | 276.67±13.68 BCc | ||||
NWbadh2GW7-1 | 8.18±0.30 Aa | 4.36±0.31 Ab | 19.70±0.46 CDde | 6342.1±1480.3 ABab | 439.99±21.78 Aa | ||||
NWbadh2GW7-2 | 8.36±0.21 Aa | 4.58±0.06 Aab | 19.16±0.15 De | 7708.4±298.4 Aa | 402.95±13.97 Ab |
图3 Badh2基因编辑香稻新种质的农艺性状比较分析 A?粤农丝苗与粤王丝苗背景编辑新品系的植株形态比较,标尺为20 cm;B?粤农丝苗与粤王丝苗背景编辑新品系的糙米粒型比较,标尺为1 cm;C~G分别为有效穗数、每穗实粒数、千粒重、产量与2-AP含量的统计分析。数据为平均数±标准差,n=3;图中大小写字母分别表示差异达0.01、0.05显著水平(t检验);N.D表示未检测到。YNSM―粤农丝苗;YWSM―粤王丝苗。
Fig. 3. Agronomic traits of new fragrant rice germplasms through Badh2 gene editing. A, Plant morphology of new edited lines of Yuenongsimiao and Yuewangsimiao background, respectively. Scale bar: 20 cm. B, Brown rice grain size of new edited lines of Yuenongsimiao and Yuewangsimiao background, respectively. Scale bar, 1 cm. C-G, Statistical analysis of effective panicle number, grain number per panicle, 1000-grain weight, grain yield and 2-AP content, respectively. Data are shown as means ± SD, n=3. The uppercase and lowercase letters above the bars indicate significance at 0.01 and 0.05 level, respectively (t-test). N.D, Not detected. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao.
图4 丝苗型香稻新株系的农艺性状比较分析 A?丝苗型香稻新株系的植株形态比较,标尺为20 cm;B?丝苗型香稻新株系的糙米粒型比较,标尺为1 cm;C?GW7位点电泳检测,从上到下依次为GL7_Dup、GL7_InDel1与GL7_InDel2引物检测结果。D~G分别为糙米粒长、粒宽、长宽比与产量的统计分析。YNSM?粤农丝苗;YWSM?粤王丝苗;XYXZ?象牙香占;R498?蜀恢498。数据为平均数±标准差,n=3;图中的大小写字母分别表示差异达0.01、0.05显著水平(t检验)。
Fig. 4. Agronomic traits of new fragrant Simiao rice lines. A, Plant morphology of new fragrant Simiao Rice lines. Scale bar, 20 cm. B, Brown rice grain size of new fragrant Simiao Rice lines. Scale bar, 1 cm. C, Genotype identification of the GW7 gene using the functional markers GL7_Dup, GL7_InDel1与GL7_InDel2, respectively. D-G, Statistical analysis of brown rice grain length, width, and length to width ratio, and grain yield, respectively. YNSM, Yuenongsimiao; YWSM, Yuewangsimiao; XYXZ, Xiangyaxiangzhan; R498, Shuhui 498. Data are shown as means ± SD, n=3. The uppercase and lowercase letters above the bars indicate statistical significance at the P=0.01 and P=0.05 level, respectively (t-test).
[1] | 王丰, 柳武革, 刘迪林, 廖亦龙, 付崇允, 朱满山, 李金华, 曾学勤, 马晓智, 霍兴. 广东优质稻发展及稻米品牌建设与展望[J]. 中国稻米, 2021, 27(4): 107-116. |
Wang F, Liu W G, Liu D L, Liao Y L, Fu C Y, Zhu M S, Li J H, Zeng X Q, Ma X Z, Huo X. Development of high quality rice, construction and prospects of rice brand in Guangdong Province[J]. China Rice, 2021, 27(4): 107-116. (in Chinese with English abstract) | |
[2] | Chen R Z, Deng Y W, Ding Y L, Guo J X, Qiu J, Wang B, Wang C S, Xie Y Y, Zhang Z H, Chen J X. Rice functional genomics: Decades’ efforts and roads ahead[J]. Science China Life Sciences, 2022, 65(1): 33-92. |
[3] |
Chen S H, Yang Y, Shi W W Ji Q, He F, Zhang Z D, Cheng Z K, Liu X N, Xu M L. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance[J]. Plant Cell, 2008, 20(7): 1850-1861.
PMID |
[4] |
Bradbury L M, Fitzgerald T L, Henry R J, Jin Q, Waters D L. The gene for fragrance in rice[J]. Plant Biotechnology Journal, 2005, 3(3): 363-370.
PMID |
[5] |
Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954.
PMID |
[6] | Wang Y X, Xiong G S, Hu J, Jiang L. Copy number variation at gl7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[7] | 卢东柏, 廖耀平, 何秀英, 陈钊明, 程永盛, 凌鸿如. 水稻新品种粤王丝苗[J]. 中国种业, 2015(3): 81. |
Lu D B, Liao Y P, He X Y, Chen Z M, Cheng Y S, Ling H R. New rice variety Yuewangsimiao[J]. China Seed Industry, 2015(3): 81. (in Chinese) | |
[8] | 何秀英, 廖耀平, 陈钊明, 程永盛, 陈粤汉, 刘维. 优质抗病水稻新品种粤农丝苗的选育及应用[J]. 中国稻米, 2014, 20(2): 69-70. |
He X Y, Liao Y P, Chen Z M, Cheng Y S, Chen Y H, Liu W. Breeding and application of a new rice variety Yuenongsimao with good quality and disease resistance[J]. China Rice, 2014, 20(2): 69-70. (in Chinese with English abstract) | |
[9] | 何秀英, 陈粤汉, 廖耀平, 王玲, 陈钊明, 林菲, 程永盛. 优质稻主导品种粤晶丝苗2号的选育过程与应用情况[J]. 作物杂志, 2011(5): 131-133. |
He X Y, Chen Y H, Liao Y P, Wang L, Chen Z M, Lin F, Cheng Y S. Breeding and application of the leading variety of agriculture Yuejingsimiao 2 with good quality[J]. Crops, 2011(5): 131-133. (in Chinese) | |
[10] | 薛皦, 卢东柏, 刘维, 陆展华, 王石光, 王晓飞, 方志强, 何秀英. 优质稻粤农丝苗白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位[J]. 作物学报, 2022, 48(9): 2210-2220. |
Xue J, Lu D B, Liu W, Lu Z H, Wang S G, Wang X F, Fang Z Q, He X Y. Genetic analysis and fine mapping of a bacterial blight resistance major QTL qBB-11-1 in high- quality rice Yuenong Simiao[J]. Acta Agronomica Sinica, 2022, 48(9): 2210-2220. (in Chinese with English abstract) | |
[11] | 陆展华, 王晓飞, 刘维, 卢东柏, 王石光, 薛皦, 何秀英. 优质稻粤农丝苗抗倒伏影响因素和遗传分析[J]. 植物遗传资源学报, 2021, 22(3): 638-645. |
Lu Z H, Wang X F, Liu W, Lu D B, Wang S G, Xue J, He X Y. Influencing factors and genetic analysis of lodging resistance of high-quality rice Yuenong Simiao[J]. Journal of Plant Genetic Resources, 2021, 22(3): 638-645. (in Chinese with English abstract) | |
[12] | 何秀英, 刘维, 陆展华, 卢东柏, 王晓飞, 王石光, 廖耀平, 陈钊明. 华南优质稻主栽品种粤农丝苗的选育与应用[J]. 广东农业科学, 2021, 48(10): 52-59. |
He X Y, Liu W, Lu Z H, Lu D B, Wang X F, Wang S G, Liao Y P, Chen Z M. Breeding and application of the main rice variety Yuenongsimiao with good quality in South China[J]. Guangdong Agricultural Sciences, 2021, 48(10): 52-59. (in Chinese with English abstract) | |
[13] | 陆展华, 刘维, 卢东柏, 王晓飞, 王石光, 何秀英. 优质稻品种粤农丝苗稻瘟病广谱抗性遗传及基因组成分析[J]. 植物遗传资源学报, 2020, 21(4): 827-833. |
Lu Z H, Liu W, Lu D B, Wang X F, Wang S G, He X Y. Genetic analysis and gene identification of high-quality rice Yuenong Simiao with broad spectrum resistance against rice blast[J]. Journal of Plant Genetic Resources, 2020, 21(4): 827-833. (in Chinese with English abstract) | |
[14] |
Gao C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
PMID |
[15] | Wang S G, Ma B T, Gao Q, Jiang G J, Zhou L, Tu B, Qin P, Tan X Q, Liu P X, Kang Y H, Liang C Z, Li S G. Dissecting the genetic basis of heavy panicle hybrid rice uncovered Gn1a and GS3 as key genes[J]. Theoretical and Applied Genetics, 2018, 131(6): 1391-1403. |
[16] |
Zhang L, Ma B, Bian Z, Li X Y, Zhang C Q, Liu J Y, Li Q, Liu Q Q, He Z H. Grain size selection using novel functional markers targeting 14 genes in rice[J]. Rice, 2020, 13(1): 63.
PMID |
[17] | Wang S G, Liu W Lu D B, Lu Z H, Wang X F, Xue J, He X Y. Distribution of bacterial blight resistance genes in the main cultivars and application of Xa23 in breeding[J]. Frontiers in Plant Science, 2020, 11: 555228. |
[18] | Niu X L, Tang W, Huang W Z, Ren G J, Wang Q L, Luo D, Xiao Y Y, Yang S M, Wang F, Lu B R. RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.)[J]. BMC Plant Biology, 2008, 8(1): 1-10. |
[19] | Khandagale K S, Chavhan R, Nadaf A B. RNAi-mediated down regulation of BADH2 gene for expression of 2-acetyl-1-pyrroline in non-scented indica rice IR-64 (Oryza sativa L.)[J]. 3 Biotech, 2020, 10(4): 1-9. |
[20] | Chen M L, Wei X J, Shao G N, Tang S Q, Luo J, Hu P S. fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2[J]. Plant Breeding, 2012, 131(5): 584-590. |
[21] |
Shan Q W, Zhang Y, Chen K L, Zhang K, Gao C X. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology[J]. Plant Biotechnology Journal, 2015, 13(6): 791-800.
PMID |
[22] | 邵高能, 谢黎虹, 焦桂爱, 魏祥进, 圣忠华, 唐绍清, 胡培松. 利用 CRISPR/CAS9 技术编辑水稻香味基因 Badh2[J]. 中国水稻科学, 2017, 31(2): 216-222. |
Shao G N, Xie L H, Jiao G A, Wei X J, Sheng Z H, Tang S Q, Hu P S. CRISPR/CAS9-mediated editing of the fragrant gene Badh2[J]. Chinese Journal of Rice Science, 2017, 31(2): 216-222. (in Chinese with English abstract) | |
[23] | Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, Muthurajan R. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PloS ONE, 2020, 15(8): e0237018. |
[24] | Usman B, Nawaz G, Zhao N, Liu Y G, Li R B. Generation of high yielding and fragrant rice lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2and transcriptome and proteome profiling of revealed changes triggered by mutations[J]. Plants, 2020, 9(6): 788. |
[25] |
Tang Y C, Abdelrahman M, Li J B, Wang F J, Ji Z Y, Qi H X, Wang C L, Zhao K J. CRISPR/Cas9 induces exon skipping that facilitates development of fragrant rice[J]. Plant Biotechnology Journal, 2021, 19(4): 642.
PMID |
[26] | Hui S Z, Li H J, Mawia A M, Zhou L, Cai J Y, Ahmad S, Lai C K, Shao G N, Sheng Z H, Tang S Q, Wang J L, Wei X J, Hu S K, Hu P S. Production of aromatic three-line hybrid rice using novel alleles of BADH2[J]. Plant Biotechnology Journal, 2022, 20(1): 59-74. |
[27] | Kovach M J, Calingacion M N, Fitzgerald M A, McCouch S R. The origin and evolution of fragrance in rice (Oryza sativa L.)[J]. Proceedings of the National Academy of Sciences, 2009, 106(34): 14444-14449. |
[28] | 刘维, 何秀英, 廖耀平, 程永盛, 卢东柏, 陆展华, 陈钊明, 陈粤汉. 利用分子标记辅助选择育种(MAS)技术改良水稻恢复系粤恢826[J]. 南方农业学报, 2017, 48(10): 1748-1754. |
Liu W, He X Y, Liao Y P, Cheng Y S, Lu D B, Lu Z H, Chen Z M, Chen Y H. Improving rice restorer line Yuehui 826 by marker-assisted selection (MAS) breeding technology[J]. Journal of Southern Agriculture, 2017, 48(10): 1748-1754. (in Chinese with English abstract) | |
[29] | 刘维, 廖耀平, 卢东柏, 陆展华, 程永盛, 陈粤汉, 陈钊明, 王晓飞, 王石光, 何秀英. 分子标记技术聚合Wx基因改良水稻早熟不育系品质[J]. 分子植物育种, 2022, 20(14): 4691-4699. |
Liu W, Liao Y P, Lu D B, Lu Z H, Cheng Y S, Chen Y H, Chen Z M, Wang X F, Wang S G, He X Y. Molecular marker technology polymerizes Wx genes to improve the quality of rice early-maturing sterile lines[J]. Molecular Plant Breeding, 2022, 20(14): 4691-4699. (in Chinese with English abstract) | |
[30] |
Song X G, Meng X B, Guo H Y, Cheng Q, Jing Y H, Chen M J, Liu G F, Wang B, Wang Y H, Li J Y. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nature Biotechnology, 2022, 40: 1403-1411.
PMID |
[31] |
Yu H, Lin T, Meng X B, Du H L, Zhang J K, Liu G F, Chen M J, Jing Y H, Kou L Q, Li X X, Gao Q, Liang Y, Liu X D, Fan Z L, Liang Y T, Cheng Z K, Chen M S, Tian Z X, Wang Y H, Chu C C, Zuo J R, Wan J M, Qian Q, Han B, Zuccolo A, Wing R A, Gao C X, Liang C Z, Li J Y. A route to de novo domestication of wild allotetraploid rice[J]. Cell, 2021, 184(5): 1156-1170.
PMID |
[32] |
Wei Z, Abdelrahman M, Gao Y, Ji Z Y, Mishra R, Sun H D, Sui Y, Wu C Y, Wang C L, Zhao K J. Engineering broad-spectrum resistance to bacterial blight by CRISPR/Cas9-mediated precise homology directed repair in rice[J]. Molecular Plant, 2021, 14(8): 1215-1218.
PMID |
[33] | 刘文静, 胡文彬, 周政, 刘烨, 赵正洪, 徐庆国. 一种新的水稻香味基因功能标记的开发与应用[J]. 热带作物学报, 2022, 43(4): 675-683. |
Liu W J, Hu W B, Zhou Z, Liu Y, Zhao Z H, Xu Q G. Development and application of a new functional marker of fragrant gene in rice (Oryza sativa L.)[J]. Chinese Journal of Tropical Crops, 2022, 43(4): 675-683. (in Chinese with English abstract) |
[1] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[2] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[3] | 侯本福, 杨传铭, 张喜娟, 杨贤莉, 王立志, 王嘉宇, 李红宇, 姜树坤. 利用龙稻5号/中优早8号RIL群体定位粒形QTL[J]. 中国水稻科学, 2024, 38(1): 13-24. |
[4] | 冯爱卿, 汪聪颖, 苏菁, 封金奇, 陈凯玲, 林晓鹏, 陈炳, 梁美玲, 杨健源, 朱小源, 陈深. 水稻细菌性条斑病抗性新品系的创制及其农艺性状分析[J]. 中国水稻科学, 2023, 37(6): 587-596. |
[5] | 李景芳, 温舒越, 赵利君, 陈庭木, 周振玲, 孙志广, 刘艳, 陈海元, 张云辉, 迟铭, 邢运高, 徐波, 徐大勇, 王宝祥. 基于CRISPR/Cas9技术创制耐盐香稻[J]. 中国水稻科学, 2023, 37(5): 478-485. |
[6] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
[7] | 段敏, 谢留杰, 高秀莹, 唐海娟, 黄善军, 潘晓飚. 利用CRISPR/Cas9技术创制广亲和水稻温敏雄性不育系[J]. 中国水稻科学, 2023, 37(3): 233-243. |
[8] | 马兆惠, 石一涵, 程海涛, 宋文雯, 路连吉, 刘仁广, 吕文彦. 水稻种子胚形态与胚乳组成对稻米留胚特性的影响[J]. 中国水稻科学, 2023, 37(3): 265-275. |
[9] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
[10] | 张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578. |
[11] | 尹丽颖, 张元野, 李荣田, 何明良, 王芳权, 许扬, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制高效抗除草剂水稻[J]. 中国水稻科学, 2022, 36(5): 459-466. |
[12] | 周永林, 申小磊, 周立帅, 林巧霞, 王朝露, 陈静, 冯慧捷, 张振文, 陈晓婷, 鲁国东. OsLOX10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2022, 36(4): 348-356. |
[13] | 李兆伟, 孙聪颖, 零东兰, 曾慧玲, 张晓妹, 范凯, 林文雄. 利用CRISPR/Cas9创建osarf7突变体及其农艺性状调查[J]. 中国水稻科学, 2022, 36(3): 237-247. |
[14] | 梁敏敏, 张华丽, 陈俊宇, 戴冬青, 杜成兴, 王惠梅, 马良勇. 利用CRISPR/Cas9技术创制抗稻瘟病香型早籼温敏核不育系[J]. 中国水稻科学, 2022, 36(3): 248-258. |
[15] | 魏晓东, 张亚东, 赵凌, 路凯, 宋雪梅, 王才林. 稻米香味物质2-乙酰-1-吡咯啉的形成及其影响因素[J]. 中国水稻科学, 2022, 36(2): 131-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||