中国水稻科学 ›› 2021, Vol. 35 ›› Issue (4): 396-406.DOI: 10.16819/j.1001-7216.2021.210304
乔胜锋, 邓亚萍*(), 瞿寒冰, 张伟杨, 顾骏飞, 张耗, 刘立军, 王志琴, 杨建昌
收稿日期:
2021-03-05
修回日期:
2021-05-11
出版日期:
2021-07-10
发布日期:
2021-07-10
通讯作者:
邓亚萍
基金资助:
Shengfeng QIAO, Yaping DENG*(), Hanbing QU, Weiyang ZHANG, Junfei GU, Hao ZHANG, Lijun LIU, Zhiqin WANG, Jianchang YANG
Received:
2021-03-05
Revised:
2021-05-11
Online:
2021-07-10
Published:
2021-07-10
Contact:
Yaping DENG
摘要:
【目的】研究不同籼稻品种对低磷响应的差异及其农艺生理性状。【方法】以12个江苏省近80年来各阶段在生产上应用的具有代表性的中熟籼稻品种为材料,进行全生育期水培种植,设置低磷(磷浓度为标准营养液中磷浓度的1/20)处理,以正常磷处理(标准培养液配方)为对照。【结果】将耐低磷指数作为评价籼稻品种耐低磷性的指标,并将供试品种分为3类:强耐低磷品种(耐低磷指数≥0.9)、中耐低磷品种(0.5<耐低磷指数<0.9)、弱耐低磷品种(耐低磷指数≤0.5)。选择耐低磷性差异明显的强耐低磷品种2个以及弱耐低磷品种2个进行农艺与生理特征分析。与对照相比,低磷处理降低了各品种产量。与对照相比,低磷处理增加了水稻的磷素运转率(PTE)、磷产谷利用率(IPE)和磷收获指数(PHI),强耐低磷品种在低磷处理下的PTE和IPE高于弱耐低磷品种。与弱耐低磷品种相比,强耐低磷品种在低磷处理下具有较大的地上部干物质、根干质量和茎鞘中非结构性碳水化合物(NSC)积累和转运,根系氧化力降幅小,根系酸性磷酸酶活性增幅高,分蘖受抑制程度小,并能保持较大的叶面积指数以及孕穗灌浆期较高的光合速率。【结论】与弱耐低磷品种相比,在低磷处理下保持较高的干物质、NSC积累和运转、根系氧化力、根系酸性磷酸酶活性、光合速率以及磷素利用效率是强耐低磷品种重要的农艺与生理特征。
乔胜锋, 邓亚萍, 瞿寒冰, 张伟杨, 顾骏飞, 张耗, 刘立军, 王志琴, 杨建昌. 不同籼稻品种对低磷响应的差异及其农艺生理性状[J]. 中国水稻科学, 2021, 35(4): 396-406.
Shengfeng QIAO, Yaping DENG, Hanbing QU, Weiyang ZHANG, Junfei GU, Hao ZHANG, Lijun LIU, Zhiqin WANG, Jianchang YANG. Differences in Response to Low Phosphorus Stress Among indica Rice Varieties and Their Agronomic and Physiological Characteristics[J]. Chinese Journal OF Rice Science, 2021, 35(4): 396-406.
应用年代 Age of application | 品种 Variety | 株高类型 Plant height type | 生长期 Growth duration/d |
---|---|---|---|
1940–1950 | 黄瓜籼 Huangguaxian | 高秆 High stalk | 118 |
1940–1950 | 银条籼 Yintiaoxian | 高秆 High stalk | 117 |
1940–1950 | 南京1号 Nanjing 1 | 高秆 High stalk | 117 |
1960–1970 | 台中籼 Taizhongxian | 矮秆 Dwarf | 130 |
1960–1970 | 南京11 Nanjing 11 | 矮秆 Dwarf | 122 |
1960–1970 | 珍珠矮 Zhenzhuai | 矮秆 Dwarf | 127 |
1970–1980 | IR24 | 半矮秆 Semi dwarf | 122 |
1980–1990 | 扬稻2号 Yangdao 2 | 半矮秆 Semi dwarf | 145 |
1980–1990 | 扬稻6号 Yangdao 6 | 半矮秆 Semi dwarf | 146 |
1990–2000 | 扬两优6号 Yangliangyou 6 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
2000– | 两优培九 Liangyoupeijiu | 半矮秆杂交稻 Semi-dwarf hybrid rice | 152 |
2000– | II优084 II you 084 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
表1 供试品种
Table 1 Tested varieties.
应用年代 Age of application | 品种 Variety | 株高类型 Plant height type | 生长期 Growth duration/d |
---|---|---|---|
1940–1950 | 黄瓜籼 Huangguaxian | 高秆 High stalk | 118 |
1940–1950 | 银条籼 Yintiaoxian | 高秆 High stalk | 117 |
1940–1950 | 南京1号 Nanjing 1 | 高秆 High stalk | 117 |
1960–1970 | 台中籼 Taizhongxian | 矮秆 Dwarf | 130 |
1960–1970 | 南京11 Nanjing 11 | 矮秆 Dwarf | 122 |
1960–1970 | 珍珠矮 Zhenzhuai | 矮秆 Dwarf | 127 |
1970–1980 | IR24 | 半矮秆 Semi dwarf | 122 |
1980–1990 | 扬稻2号 Yangdao 2 | 半矮秆 Semi dwarf | 145 |
1980–1990 | 扬稻6号 Yangdao 6 | 半矮秆 Semi dwarf | 146 |
1990–2000 | 扬两优6号 Yangliangyou 6 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
2000– | 两优培九 Liangyoupeijiu | 半矮秆杂交稻 Semi-dwarf hybrid rice | 152 |
2000– | II优084 II you 084 | 半矮秆杂交稻 Semi-dwarf hybrid rice | 153 |
处理 Treatment | 品种 Variety | 单位面积穗数 Number of panicles/(m-2) | 每穗粒数 Spikelet number per panicle | 千粒重 1000-grain weight/g | 结实率 Seed setting rate/% | 产量 Yield/(g·m-2) |
---|---|---|---|---|---|---|
低磷 | 黄瓜籼 Huangguaxian | 270.39 e | 91.18 f | 24.81 ef | 70.23 de | 429.58 e |
LP | 银条籼 Yintiaoxian | 324.69 a | 96.45 f | 25.31 e | 67.69 e | 536.52 d |
南京1号 Nanjing 1 | 234.78 h | 123.56 d | 24.53 f | 76.27 cd | 543.88 d | |
台中籼 Taizhongxian | 300.86 b | 106.63 e | 23.37 g | 79.06 bc | 597.74 cd | |
南京11 Nanjing 11 | 303.21 b | 90.20 f | 24.43 f | 84.40 ab | 563.92 d | |
珍珠矮 Zhenzhuai | 303.80 b | 93.14 f | 26.13 d | 79.44 bc | 587.36 cd | |
IR24 | 269.10 ef | 80.41 g | 24.91 ef | 66.14 e | 329.55 f | |
扬稻2号 Yangdao 2 | 294.11 c | 129.59 d | 26.89 c | 70.89 de | 726.54 b | |
扬稻6号 Yangdao 6 | 244.99 g | 123.38 d | 29.74 b | 72.11 de | 648.21 c | |
扬两优6号 Yangliangyou 6 | 237.13 h | 137.60 c | 30.74 a | 75.89 cd | 761.17 b | |
两优培九 Liangyoupeijiu | 281.14 d | 156.96 b | 26.06 d | 65.22 e | 749.99 b | |
Ⅱ优084 Ⅱyou 084 | 263.82 f | 192.20 a | 26.62 cd | 86.51 a | 1167.7 a | |
正常磷 | 黄瓜籼 Huangguaxian | 335.17 c | 113.20 g | 24.61 d | 67.82 de | 633.26 e |
NP | 银条籼 Yintiaoxian | 345.25 b | 112.77 g | 24.44 de | 67.30 def | 640.39 e |
南京1号 Nanjing 1 | 281.86 f | 137.01 e | 23.46 f | 72.28 c | 654.83 e | |
台中籼 Taizhongxian | 316.55 d | 123.96 f | 22.75 g | 77.55 b | 692.30 de | |
南京11 Nanjing 11 | 318.80 d | 126.37 f | 24.30 de | 77.48 b | 758.50 cd | |
珍珠矮 Zhenzhuai | 361.45 a | 111.19 g | 25.76 b | 71.43 cd | 739.50 cd | |
IR24 | 299.98 e | 101.17 h | 24.25 e | 59.18 g | 435.54 f | |
扬稻2号 Yangdao 2 | 299.98 e | 156.07 d | 25.24 c | 66.75 ef | 788.77 c | |
扬稻6号 Yangdao 6 | 264.69 g | 161.59 d | 27.93 a | 64.69 ef | 772.77 c | |
扬两优6号 Yangliangyou 6 | 280.87 f | 169.95 c | 27.67 a | 67.89 de | 896.67 b | |
两优培九 Liangyoupeijiu | 313.22 d | 185.71 b | 24.99 c | 62.99 fg | 915.64 b | |
Ⅱ优084 Ⅱyou 084 | 300.41 e | 210.01 a | 24.95 c | 83.45 a | 1310.44 a |
表2 不同磷水平下各品种产量及其构成因素
Table 2 Yield and its components of rice varieties under different phosphorus levels.
处理 Treatment | 品种 Variety | 单位面积穗数 Number of panicles/(m-2) | 每穗粒数 Spikelet number per panicle | 千粒重 1000-grain weight/g | 结实率 Seed setting rate/% | 产量 Yield/(g·m-2) |
---|---|---|---|---|---|---|
低磷 | 黄瓜籼 Huangguaxian | 270.39 e | 91.18 f | 24.81 ef | 70.23 de | 429.58 e |
LP | 银条籼 Yintiaoxian | 324.69 a | 96.45 f | 25.31 e | 67.69 e | 536.52 d |
南京1号 Nanjing 1 | 234.78 h | 123.56 d | 24.53 f | 76.27 cd | 543.88 d | |
台中籼 Taizhongxian | 300.86 b | 106.63 e | 23.37 g | 79.06 bc | 597.74 cd | |
南京11 Nanjing 11 | 303.21 b | 90.20 f | 24.43 f | 84.40 ab | 563.92 d | |
珍珠矮 Zhenzhuai | 303.80 b | 93.14 f | 26.13 d | 79.44 bc | 587.36 cd | |
IR24 | 269.10 ef | 80.41 g | 24.91 ef | 66.14 e | 329.55 f | |
扬稻2号 Yangdao 2 | 294.11 c | 129.59 d | 26.89 c | 70.89 de | 726.54 b | |
扬稻6号 Yangdao 6 | 244.99 g | 123.38 d | 29.74 b | 72.11 de | 648.21 c | |
扬两优6号 Yangliangyou 6 | 237.13 h | 137.60 c | 30.74 a | 75.89 cd | 761.17 b | |
两优培九 Liangyoupeijiu | 281.14 d | 156.96 b | 26.06 d | 65.22 e | 749.99 b | |
Ⅱ优084 Ⅱyou 084 | 263.82 f | 192.20 a | 26.62 cd | 86.51 a | 1167.7 a | |
正常磷 | 黄瓜籼 Huangguaxian | 335.17 c | 113.20 g | 24.61 d | 67.82 de | 633.26 e |
NP | 银条籼 Yintiaoxian | 345.25 b | 112.77 g | 24.44 de | 67.30 def | 640.39 e |
南京1号 Nanjing 1 | 281.86 f | 137.01 e | 23.46 f | 72.28 c | 654.83 e | |
台中籼 Taizhongxian | 316.55 d | 123.96 f | 22.75 g | 77.55 b | 692.30 de | |
南京11 Nanjing 11 | 318.80 d | 126.37 f | 24.30 de | 77.48 b | 758.50 cd | |
珍珠矮 Zhenzhuai | 361.45 a | 111.19 g | 25.76 b | 71.43 cd | 739.50 cd | |
IR24 | 299.98 e | 101.17 h | 24.25 e | 59.18 g | 435.54 f | |
扬稻2号 Yangdao 2 | 299.98 e | 156.07 d | 25.24 c | 66.75 ef | 788.77 c | |
扬稻6号 Yangdao 6 | 264.69 g | 161.59 d | 27.93 a | 64.69 ef | 772.77 c | |
扬两优6号 Yangliangyou 6 | 280.87 f | 169.95 c | 27.67 a | 67.89 de | 896.67 b | |
两优培九 Liangyoupeijiu | 313.22 d | 185.71 b | 24.99 c | 62.99 fg | 915.64 b | |
Ⅱ优084 Ⅱyou 084 | 300.41 e | 210.01 a | 24.95 c | 83.45 a | 1310.44 a |
品种 Variety | 耐低磷系数 Low-phosphorus tolerance coefficient | 耐低磷指数 Low-phosphorus tolerance index |
---|---|---|
黄瓜籼 Huangguaxian | 0.66 f | 0.44 g |
银条籼 Yintiaoxian | 0.82 bc | 0.67 ef |
南京1号 Nanjing 1 | 0.81 bc | 0.67 ef |
台中籼 Taizhongxian | 0.84 b | 0.76 de |
南京11 Nanjing 11 | 0.73 e | 0.64 f |
珍珠矮 Zhenzhuai | 0.78 cd | 0.70 ef |
IR24 | 0.75 de | 0.38 g |
扬稻2号 Yangdao 2 | 0.89 a | 0.99 b |
扬稻6号 Yangdao 6 | 0.83 b | 0.83 cd |
扬两优6号 Yangliangyou 6 | 0.84 b | 0.98 b |
两优培九 Liangyoupeijiu | 0.80 bc | 0.92 bc |
Ⅱ优084 Ⅱyou 084 | 0.90 a | 1.64 a |
表3 各品种的耐低磷系数和耐低磷指数
Table 3 Low phosphorus tolerance coefficient and low phosphorus tolerance index of varieties.
品种 Variety | 耐低磷系数 Low-phosphorus tolerance coefficient | 耐低磷指数 Low-phosphorus tolerance index |
---|---|---|
黄瓜籼 Huangguaxian | 0.66 f | 0.44 g |
银条籼 Yintiaoxian | 0.82 bc | 0.67 ef |
南京1号 Nanjing 1 | 0.81 bc | 0.67 ef |
台中籼 Taizhongxian | 0.84 b | 0.76 de |
南京11 Nanjing 11 | 0.73 e | 0.64 f |
珍珠矮 Zhenzhuai | 0.78 cd | 0.70 ef |
IR24 | 0.75 de | 0.38 g |
扬稻2号 Yangdao 2 | 0.89 a | 0.99 b |
扬稻6号 Yangdao 6 | 0.83 b | 0.83 cd |
扬两优6号 Yangliangyou 6 | 0.84 b | 0.98 b |
两优培九 Liangyoupeijiu | 0.80 bc | 0.92 bc |
Ⅱ优084 Ⅱyou 084 | 0.90 a | 1.64 a |
类型 Type | 品种 Variety |
---|---|
强耐低磷品种 Varieties with strong tolerance to low phosphorus | Ⅱ优084、扬两优6号、扬稻2号、两优培九 Ⅱyou 084, Yangliangyou 6, Yangdao 2, Liangyoupeijiu |
中耐低磷品种 Varieties with medium tolerance to low phosphorus | 台中籼、扬稻6号、南京1号、银条籼、珍珠矮、南京11 Taizhongxian , Yangdao 6, Nanjing 1, Yintiaoxian, Zhenzhuai, Nanjing 11 |
弱耐低磷品种 Varieties with weak tolerance to low phosphorus | 黄瓜籼、IR24 Huangguaxian, IR24 |
表4 各品种的耐低磷性分类
Table 4 Classification of low phosphorus tolerance of various varieties.
类型 Type | 品种 Variety |
---|---|
强耐低磷品种 Varieties with strong tolerance to low phosphorus | Ⅱ优084、扬两优6号、扬稻2号、两优培九 Ⅱyou 084, Yangliangyou 6, Yangdao 2, Liangyoupeijiu |
中耐低磷品种 Varieties with medium tolerance to low phosphorus | 台中籼、扬稻6号、南京1号、银条籼、珍珠矮、南京11 Taizhongxian , Yangdao 6, Nanjing 1, Yintiaoxian, Zhenzhuai, Nanjing 11 |
弱耐低磷品种 Varieties with weak tolerance to low phosphorus | 黄瓜籼、IR24 Huangguaxian, IR24 |
图1 不同磷水平下水稻的地上部干质量(A,B)、根干质量(C,D)和根冠比(E,F)同一测定时期内标以不同字母表示在0.05水平差异显著。LP和NP分别表示低磷处理和正常磷处理。下图同。
Fig. 1. Shoot dry weight (A, B), root dry weight (C, D) and root-shoot ratio (E, F) of rice under different phosphorus levels. Different letters above the column indicate statistical significance (P<0.05) within the same growing stage. LP and NP represent the low phosphorus treatment and the normal phosphorus treatment, respectively. The same as in figures below.
处理 Treatment | 品种 Variety | 茎蘖数Number of tillers and main stems/(m-2) | 茎蘖成穗率 Proportion of productive tillers/% | |||
---|---|---|---|---|---|---|
分蘖中期 Mid-tillering | 穗分化始期 Panicle initiation | 抽穗期 Heading | 成熟期 Maturity | |||
低磷 | IR24 | 163.96 e | 317.63 e | 308.81 d | 269.10 cd | 84.72 a |
LP | 黄瓜籼 Huangguaxian | 213.96 d | 386.53 d | 357.12 c | 270.39 cd | 69.95 c |
扬稻2号 Yangdao 2 | 257.34 c | 411.21 c | 401.00 b | 294.11 bc | 71.52 c | |
Ⅱ优084 Ⅱyou 084 | 220.58 d | 324.58 e | 315.55 d | 263.36 d | 81.10 b | |
正常磷 | IR24 | 340.78 b | 450.39 b | 417.20 b | 299.98 b | 66.60 d |
NP | 黄瓜籼 Huangguaxian | 392.13 a | 535.45 a | 508.37 a | 335.17 a | 63.82 d |
扬稻2号 Yangdao 2 | 389.16 a | 525.18 a | 508.37 a | 299.98 b | 56.02 e | |
Ⅱ优084 Ⅱyou 084 | 334.88 b | 421.52 c | 398.93 b | 300.41 b | 72.16 c |
表5 不同磷水平下水稻的茎蘖动态
Table 5 Dynamics of tillers and main stems of rice under different phosphorus levels.
处理 Treatment | 品种 Variety | 茎蘖数Number of tillers and main stems/(m-2) | 茎蘖成穗率 Proportion of productive tillers/% | |||
---|---|---|---|---|---|---|
分蘖中期 Mid-tillering | 穗分化始期 Panicle initiation | 抽穗期 Heading | 成熟期 Maturity | |||
低磷 | IR24 | 163.96 e | 317.63 e | 308.81 d | 269.10 cd | 84.72 a |
LP | 黄瓜籼 Huangguaxian | 213.96 d | 386.53 d | 357.12 c | 270.39 cd | 69.95 c |
扬稻2号 Yangdao 2 | 257.34 c | 411.21 c | 401.00 b | 294.11 bc | 71.52 c | |
Ⅱ优084 Ⅱyou 084 | 220.58 d | 324.58 e | 315.55 d | 263.36 d | 81.10 b | |
正常磷 | IR24 | 340.78 b | 450.39 b | 417.20 b | 299.98 b | 66.60 d |
NP | 黄瓜籼 Huangguaxian | 392.13 a | 535.45 a | 508.37 a | 335.17 a | 63.82 d |
扬稻2号 Yangdao 2 | 389.16 a | 525.18 a | 508.37 a | 299.98 b | 56.02 e | |
Ⅱ优084 Ⅱyou 084 | 334.88 b | 421.52 c | 398.93 b | 300.41 b | 72.16 c |
处理 Treatment | 品种 Variety | 抽穗期NSC NSC at heading/(kg·m-2) | 成熟期NSC NSC at maturity/(kg·m-2) | NSC转运率 NSC remobilized rate/% | NSC对籽粒的贡献率 NSC contribution to grain/% |
---|---|---|---|---|---|
低磷 | IR24 | 0.11 f | 0.09 f | 17.98 e | 6.34 d |
LP | 黄瓜籼 Huangguaxian | 0.16 de | 0.13 e | 22.39 d | 8.70 c |
扬稻2号 Yangdao 2 | 0.37 c | 0.24 c | 35.10 b | 22.00 a | |
Ⅱ优084 Ⅱyou 084 | 0.43 ab | 0.25 bc | 40.96 a | 15.81 b | |
正常磷 | IR24 | 0.13 ef | 0.11 ef | 15.65 e | 3.89 e |
NP | 黄瓜籼 Huangguaxian | 0.20 d | 0.17 d | 18.34 de | 5.69 de |
扬稻2号 Yangdao 2 | 0.39 bc | 0.28 ab | 28.62 c | 14.76 b | |
Ⅱ优084 Ⅱyou 084 | 0.44 a | 0.29 a | 33.80 b | 10.41 c |
表6 不同磷水平下水稻茎鞘中非结构性碳水化合物(NSC)的积累与运转
Table 6 Non-structural carbohydrate (NSC) in stems and sheath and NSC remobilization of rice under different phosphorus levels.
处理 Treatment | 品种 Variety | 抽穗期NSC NSC at heading/(kg·m-2) | 成熟期NSC NSC at maturity/(kg·m-2) | NSC转运率 NSC remobilized rate/% | NSC对籽粒的贡献率 NSC contribution to grain/% |
---|---|---|---|---|---|
低磷 | IR24 | 0.11 f | 0.09 f | 17.98 e | 6.34 d |
LP | 黄瓜籼 Huangguaxian | 0.16 de | 0.13 e | 22.39 d | 8.70 c |
扬稻2号 Yangdao 2 | 0.37 c | 0.24 c | 35.10 b | 22.00 a | |
Ⅱ优084 Ⅱyou 084 | 0.43 ab | 0.25 bc | 40.96 a | 15.81 b | |
正常磷 | IR24 | 0.13 ef | 0.11 ef | 15.65 e | 3.89 e |
NP | 黄瓜籼 Huangguaxian | 0.20 d | 0.17 d | 18.34 de | 5.69 de |
扬稻2号 Yangdao 2 | 0.39 bc | 0.28 ab | 28.62 c | 14.76 b | |
Ⅱ优084 Ⅱyou 084 | 0.44 a | 0.29 a | 33.80 b | 10.41 c |
图4 不同磷水平下水稻的根系氧化力(A,B)和根系酸性磷酸酶活性(C,D)
Fig. 4. Root oxidation activity (A, B) and root acid phosphatase activity (A, B) of rice under different phosphorus levels.
处理 Treatment | 品种 Variety | 分蘖中期 Mid-tillering/(g·m-2) | 穗分化始期 Panicle initiation/(g·m-2) | 抽穗期 Heading/(g·m-2) | 成熟期 Maturity/(g·m-2) |
---|---|---|---|---|---|
低磷 | IR24 | 0.07 e | 0.81 g | 0.84 h | 1.25 g |
LP | 黄瓜籼 Huangguaxian | 0.09 e | 0.96 fg | 1.32 g | 1.82 f |
扬稻2号 Yangdao 2 | 0.12 e | 1.14 f | 1.64 f | 2.07 f | |
Ⅱ优084 Ⅱyou 084 | 0.14 e | 1.62 e | 2.28 e | 2.93 e | |
正常磷 | IR24 | 0.70 d | 2.52 d | 2.72 d | 3.77 d |
NP | 黄瓜籼 Huangguaxian | 0.97 c | 2.79 c | 5.13 c | 5.95 c |
扬稻2号 Yangdao 2 | 1.11 b | 3.32 b | 6.64 b | 6.74 b | |
Ⅱ优084 Ⅱyou 084 | 1.51 a | 3.72 a | 7.84 a | 8.02 a |
表7 不同磷水平下水稻的磷含量
Table 7 Phosphorus content of rice under different phosphorus levels.
处理 Treatment | 品种 Variety | 分蘖中期 Mid-tillering/(g·m-2) | 穗分化始期 Panicle initiation/(g·m-2) | 抽穗期 Heading/(g·m-2) | 成熟期 Maturity/(g·m-2) |
---|---|---|---|---|---|
低磷 | IR24 | 0.07 e | 0.81 g | 0.84 h | 1.25 g |
LP | 黄瓜籼 Huangguaxian | 0.09 e | 0.96 fg | 1.32 g | 1.82 f |
扬稻2号 Yangdao 2 | 0.12 e | 1.14 f | 1.64 f | 2.07 f | |
Ⅱ优084 Ⅱyou 084 | 0.14 e | 1.62 e | 2.28 e | 2.93 e | |
正常磷 | IR24 | 0.70 d | 2.52 d | 2.72 d | 3.77 d |
NP | 黄瓜籼 Huangguaxian | 0.97 c | 2.79 c | 5.13 c | 5.95 c |
扬稻2号 Yangdao 2 | 1.11 b | 3.32 b | 6.64 b | 6.74 b | |
Ⅱ优084 Ⅱyou 084 | 1.51 a | 3.72 a | 7.84 a | 8.02 a |
处理 Treatment | 品种 Variety | PTE/% | IPE/(kg·kg-1) | PHE/% |
---|---|---|---|---|
低磷 | IR24 | 41.71 c | 264.37 c | 63.83 a |
LP | 黄瓜籼 Huangguaxian | 45.94 b | 236.65 d | 57.76 b |
扬稻2号 Yangdao 2 | 48.55 ab | 350.57 b | 53.70 cd | |
Ⅱ优084 Ⅱyou 084 | 51.51 a | 398.98 a | 57.06 bc | |
正常磷 | IR24 | 30.06 e | 115.51 f | 50.89 d |
NP | 黄瓜籼 Huangguaxian | 35.37 d | 106.33 f | 42.32 e |
扬稻2号 Yangdao 2 | 42.04 c | 117.02 f | 40.23 e | |
Ⅱ优084 Ⅱyou 084 | 41.77 c | 163.11 e | 41.23 e |
表8 不同磷水平下水稻的磷素运转率(PTE)、磷产谷利用率(IPE)和磷收获指数(PHE)
Table 8 Phosphorus translocation efficiency (PTE), internal phosphorus efficiency (IPE), and phosphorus harvest index (PHI) of rice under different phosphorus levels.
处理 Treatment | 品种 Variety | PTE/% | IPE/(kg·kg-1) | PHE/% |
---|---|---|---|---|
低磷 | IR24 | 41.71 c | 264.37 c | 63.83 a |
LP | 黄瓜籼 Huangguaxian | 45.94 b | 236.65 d | 57.76 b |
扬稻2号 Yangdao 2 | 48.55 ab | 350.57 b | 53.70 cd | |
Ⅱ优084 Ⅱyou 084 | 51.51 a | 398.98 a | 57.06 bc | |
正常磷 | IR24 | 30.06 e | 115.51 f | 50.89 d |
NP | 黄瓜籼 Huangguaxian | 35.37 d | 106.33 f | 42.32 e |
扬稻2号 Yangdao 2 | 42.04 c | 117.02 f | 40.23 e | |
Ⅱ优084 Ⅱyou 084 | 41.77 c | 163.11 e | 41.23 e |
[1] | 黄荣, 孙虎威, 刘尚俊, 宋文静, 刘言勋, 余超, 毛颖, 张亚丽, 徐国华. 低磷胁迫下水稻根系的发生及生长素的响应[J]. 中国水稻科学, 2012, 26(5): 563-568. |
Huang R, Sun H W, Liu S J, Song W J, Liu Y X, Yu C, Mao Y, Zhang Y L, Xu G H.Rice root growth and auxin concentration in response to phosphate deficiency[J]. Chinese Journal of Rice Science, 2012, 26(5): 563-568. (in Chinese with English abstract) | |
[2] | Schachtman D P, Reid R J, Ayling S M.Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116(2): 447-53. |
[3] | 李淑芳, 于志晶, 林秀峰, 马瑞. 水稻耐低磷胁迫研究现状及未来发展方向[J]. 吉林农业科学, 2009, 34(6): 37-39, 44. |
Li S F,Yu Z J, Lin X F, Ma R.Advances and future trends in studies on low phosphorus stress of rice[J]. Jilin Agricultural Sciences, 2009, 34(6): 37-39, 44. (in Chinese with English abstract) | |
[4] | 韩胜芳, 邓若磊, 徐海荣, 曹云飞, 王笑颖, 肖凯. 缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性[J]. 应用生态学报, 2007(11): 2462-2467. |
Han S F, Deng R L, Xu H R, Cao Y F, Wang X Y, Xiao K.Photosynthesis and active oxygen-scavenging enzyme activities in rice varieties with different phosphorus efficiency under phosphorus stress[J]. Chinese Journal of Applied Ecology, 2007(11): 2462-2467. (in Chinese with English abstract) | |
[5] | Rose T J, Mori A, Julia C C, Wissuwa M.Screening for internal phosphorus utilization efficiency: Comparison of genotypes at equal shoot P content is critical[J]. Plant and Soil, 2016, 401(1-2): 79-91. |
[6] | Deng Y P, Men C B, Qiao S F, Wang W J, Gu J F, Liu L J, Zhang Z J, Zhang H, Wang Z Q, Yang J C.Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth.The Crop Journal, 2020, 8(4): 534-547. |
[7] | 章骏德. 植物生理实验法[M]. 南昌: 江西人民出版社, 1982: 52-57. |
Zhang J D.Plant physiology experiment[M]. Nanchang: Jiangxi People’s Publishing House, 1982: 52-57. (in Chinese) | |
[8] | 李银银, 许更文, 李俊峰, 郭佳蓉, 王志琴. 水稻品种的耐低磷性及其农艺生理性状[J]. 中国水稻科学, 2018, 32(1): 51-66. |
Li Y Y, Xu G W, Li J F, Guo J R, Wang Z Q.Tolerance to low phosphorus and its agronomic and physiological characteristics of rice cultivars[J]. Chinese Journal of Rice Science, 2018, 32(1): 51-66. (in Chinese with English abstract) | |
[9] | Bieleski R L.Phosphate pools, phosphate transport, and phosphate availability[J]. Annual Review of Plant Physiology, 1973, 24(1): 225-252. |
[10] | Raghothama K G, Karthikeyan A S.Phosphate acquisition[J]. Plant and Soil, 2005, 274: 37-49. |
[11] | 潘晓华, 刘水英, 李锋, 李木英. 低磷胁迫对不同水稻品种叶片膜脂过氧化及保护酶活性的影响[J]. 中国水稻科学, 2003, 17(1): 57-60. |
Pan X H, Liu S Y, Li F, Li M Y.Effect of low-phosphorus stress on membrane lipid peroxidation and protective enzyme activities in rice leaves of different cultivars[J]. Chinese Journal of Rice Science, 2003, 17(1): 57-60. (in Chinese with English abstract) | |
[12] | Elke V, Terry R, Kazuki S, Kwanho J, Matthias W.Integration of P acquisition efficiency, P utilization efficiency and low grain P concentrations into P-efficient rice genotypes for specific target environments[J]. Nutrient Cycling in Agroecosystems, 2016, 104(3): 413-427. |
[13] | Wang K, Cui K H, Liu G L, Luo X N, Huang J L.Low straw phosphorus concentration is beneficial for high phosphorus use efficiency for grain production in rice recombinant inbred lines[J]. Field Crops Research, 2017, 203: 65-73. |
[14] | 李永夫, 罗安程, 黄继德, 魏兴华. 不同磷效率水稻基因型根系形态和生理特性的研究[J]. 浙江大学学报, 2006, 32(6): 658-664. |
Li Y F, Luo A C, Huang J D, Wei X H.Study on the morphological and physiological characteristics of roots in rice genotypes with contrasting P efficiency[J]. Journal of Zhejiang University, 2006, 32(6): 658-664. (in Chinese with English abstract) | |
[15] | Yang S Y, Huang T K, Kuo H F, Chiou T J.Role of vacuoles in phosphorus storage and remobilization[J]. Journal of Experimental Botany, 2017, 68(12): 3045-3055. |
[16] | 石秋梅. 水稻耐低磷基因型的筛选及其适应机理研究[D]. 福州: 福建农林大学, 2002. |
Shi Q M.Studies on screening of rice genotypes tolerant to low phosphorus stress and its adaptive mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2002. (in Chinese with English abstract) | |
[17] | 郭玉春. 不同基因型水稻对低磷胁迫的响应及其分子机制研究[D]. 福州: 福建农林大学, 2005. |
Guo Y C.Study on the response of different genotypic rice to low phosphate stress and its molecular mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese with English abstract) | |
[18] | 潘晓华, 刘水英, 李锋, 李木英. 低磷胁迫对不同水稻品种幼苗生长和磷效率的影响[J]. 江西农业大学学报.自然科学, 2002(3): 297-300. |
Pan X H, Liu S Y, Li F, Li M Y.Effects of low- phosphorus stress on growth and phosphorus efficiency of different rice cultivars seedlings[J]. Acta Agriculturae Universitatis Jiangxiensis: Natural Science Edition 2002(3): 297-300. (in Chinese with English abstract) | |
[19] | 张兰民, 潘国君, 张淑华, 刘传雪, 刘乃生. 寒地粳稻耐低磷品种筛选方法研究. 中国农学通报[J], 1999(6): 38-41. |
Zhang L M, Pan G J, Zhang S H, Liu C X, Liu N S.Study on the selection method of low phosphorus tolerant japonica rice in cold region[J]. Chinese Agricultural Science Bulletin, 1999(6): 38-41. (in Chinese with English abstract) | |
[20] | 郭再华, 贺立源, 黄魏, 徐才国. 耐低磷水稻筛选与鉴定. 植物营养与肥料学报[J], 2006(5): 46-52. |
Guo Z H, He L Y, Huang W, Xu C G.Screening of rice for tolerance to low phosphorus stress[J]. Plant Nutrition and Fertilizer Science, 2006(5): 46-52. (in Chinese with English abstract) | |
[21] | 潘晓华, 刘水英, 李锋, 李木英. 低磷胁迫对不同水稻品种幼苗光合作用的影响. 作物学报[J], 2003, 29(5): 770-774. |
Pan X H, Liu S Y, Li F, Li M Y.Effect of low phosphorus stress on leaf photosynthesis in the seedlings of different rice cultivars[J]. Acta Agronomica Sinica, 2003, 29(5): 770-774. (in Chinese with English abstract) | |
[22] | 李永夫. 水稻适应低磷胁迫的营养生理机理研究[D]. 杭州: 浙江大学, 2006. |
Li Y F.Nutritional and physiological mechanisms of rice plant adaptation to low phosphorus stress[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract) | |
[23] | Fu J, Huang Z H, Wang Z Q, Yang J C, Zhang J H.Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice[J]. Field Crops Research, 2011, 123: 170-182. |
[24] | Katsura K, Maeda S, Horie T, Shiraiwa T.Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China[J]. Field Crops Research, 2007, 103: 170-177 |
[25] | Araki H, Morita S, Tatsumi J, Iijima M.Physiol-morphological analysis on axile root growth in upland rice[J]. Plant Production Science, 2002, 5: 286-293. |
[26] | 石庆华, 李木英, 涂起红. 杂交水稻根系N素营养效率及其生理因素研究[J]. 杂交水稻, 2002, 17(4): 45-48. |
Shi Q H, Li M Y, Tu Q H.Studies on efficiency of N nutrition and physiological factor in roots of hybrid rice[J]. Hybrid Rice, 2002, 17(4): 45-48. (in Chinese with English abstract) | |
[27] | 李锋, 潘晓华, 刘水英, 李木英, 杨福孙. 低磷胁迫对不同水稻品种根系形态和养分吸收的影响[J]. 作物学报, 2004, 30(5): 438-442. |
Li F, Pan X H, Liu S Y, Li M H, Yang F S.Effect of phosphorus deficiency stress on root morphology and nutrient absorption of rice cultivars[J]. Acta Agronomica Sinica, 2004, 30(5): 438-442. (in Chinese with English abstract) | |
[28] | 李庆逵. 现代磷肥研究的进展. 土壤学进展[J]. 1986, 14(2): 1-7. |
Li Q K.Development of modern phosphate fertilizer research[J]. Progress in Soil Science, 1986, 14(2): 1-7. (in Chinese with English abstract) | |
[29] | Wissuwa M, Gamat G, Ismail A M.Is root growth under phosphorus deficiency affected by source or sink limitations?[J]. Journal of Experimental Botany, 2005, 56(417): 1943-1950. |
[30] | Tsung-Han H, Yan-Fu K.Developing a system for three-dimensional quantification of root traits of rice seedlings[J]. Computers and Electronics in Agriculture, 2018, 152: 90-100. |
[31] | 严小龙, 张福锁. 植物营养遗传学[M]. 北京: 农业出版社, 1997: 6-9. |
Yan X L, Zhang F S.Plant Nutrition Genetics[M]. Beijing: Agricultural Publishing House, 1997: 6-9. (in Chinese) | |
[32] | 刘辉. 大麦和小麦对低磷胁迫的生长反应及其生理生化机制研究[D]. 重庆: 西南农业大学, 2003. |
Liu H.Studies on growth response and physiological and biochemical changes mechanism in wheat and barley under phosphorus deficiency stress[D]. Chongqing: Southwest Agricultural University, 2003. (in Chinese with English abstract) | |
[33] | 曹黎明,潘晓华. 水稻耐低磷机理的初步研究[J]. 作物学报, 2002, 28(2): 260-264. |
Cao L M, Pan X H.A preliminary study on the tolerant mechanism of rice (Oryza sativa L.) cultivars to low phosphorus[J]. Acta Agronomica Sinica, 2002, 28(2): 260-264. (in Chinese with English abstract) | |
[34] | 郭玉春. 不同基因型水稻对低磷胁迫的响应及其分子机制研究[D]. 福州: 福建农林大学, 2005. |
Guo Y C.Study on the response of different genotypic rice to low phosphate stress and its molecular mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2005. (in Chinese with English abstract) | |
[35] | 李坤朋. 不同基因型玉米对磷胁迫的反应及根系蛋白质组学研究[D]. 济南: 山东大学, 2007. |
Li K P.Phosphorus stress response of different genotype maize and the study of roots proteomics[D]. Jinan: Shandong University, 2007. (in Chinese with English abstract) | |
[36] | 李锋, 李木英, 潘晓华, 朱安繁. 不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J]. 中国水稻科学, 2004, 18(1): 48-52. |
Li F, Li M Y, Pan X H, Zhu A F.Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress[J]. Chinese Journal of Rice Science, 2004, 18(1): 48-52. (in Chinese with English abstract) | |
[37] | 李德华, 向春雷, 姜益泉, 郭再华, 贺立源. 低磷胁迫下不同水稻品种根系生理特性的研究[J]. 华中农业大学学报, 2006(6): 626-629. (in Chinese with English abstract) |
Li D H, Xiang C L, Jiang Y Q, Guo Z H, He L Y.Physiological characteristics of roots of different rice varieties under low phosphorus stress[J]. Journal of Huazhong Agricultural University, 2006(6): 626-629. | |
[38] | 魏志强, 史衍玺, 孔凡美. 缺磷胁迫对花生磷酸酶活性的影响[J]. 中国油料作物学报, 2002(3): 44-46. |
Wei Z Q, Shi Y X, Kong F M.Effect of phosphorus deficiency stress on the activity of peanut phosphatase[J]. Chinese Journal of Oil Crop Sciences, 2002(3): 44-46. (in Chinese with English abstract) | |
[39] | 丁洪, 李生秀, 郭庆元, 张学江, 徐巧珍. 酸性磷酸酶活性与大豆耐低磷能力的相关研究[J]. 植物营养与肥料学报, 1997: 123-128. |
Ding H, Li S X, Guo Q Y, Zhang X J, Xu Q Z.Study on the correlation between acid phosphatase activity and soybean tolerance to low phosphorus[J]. Plant nutrition and fertilizer science, 1997: 123-128. (in Chinese with English abstract) | |
[40] | 孙海国, 张福锁. 缺磷条件下的小麦根系酸性磷酸酶活性研究[J]. 应用生态学报, 2002(3): 379-381. |
Sun H G, Zhang S F.Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots[J]. Chinese Journal of Applied Ecology, 2002(3): 379-381. (in Chinese with English abstract) | |
[41] | 樊明寿, 徐冰, 王艳. 缺磷条件下玉米根系酸性磷酸酶活性的变化[J]. 中国农业科技导报, 2001(3): 33-36. |
Fan M S, Xu B, Wang Y.Changes of acid phosphatase activity in maize roots under phosphorus deficiency[J]. Review of China Agricultural Science and Technology, 2001(3): 33-36. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[7] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[8] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[9] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[10] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[11] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[12] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||