Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (4): 313-322.DOI: 10.16819/j.1001-7216.2019.9043
• Research Papers • Previous Articles Next Articles
Peng XU, Hong WANG, Ranran TU, Qunen LIU, Weixun WU, Xiumin FU, Liyong CAO, Xihong SHEN*()
Received:
2019-04-10
Revised:
2019-05-24
Online:
2019-07-10
Published:
2019-07-10
Contact:
Xihong SHEN
徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏*()
通讯作者:
沈希宏
基金资助:
CLC Number:
Peng XU, Hong WANG, Ranran TU, Qunen LIU, Weixun WU, Xiumin FU, Liyong CAO, Xihong SHEN. Orientation Improvement of Blast Resistance in Rice via CRISPR/Cas9 System[J]. Chinese Journal OF Rice Science, 2019, 33(4): 313-322.
徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学, 2019, 33(4): 313-322.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.9043
Fig. 1. Schematic diagram of the targeted sites in Pita, Pi21 and ERF922. The underlined letters are the initiation codons. The bold letters are the protospacer adjacent motif (PAM) sequences.
引物名称 Primer name | 引物序列 Sequence(5'-3') | 引物名称 Primer name | 引物序列 Sequence(5'-3') | |
---|---|---|---|---|
Pita-g-F | GGCACCATGGCGCCGGCGGTCATTGC | Pi21-F | CTGAATTCCACGGGAATTGC | |
Pita-g-R | AAACGCAATGACCGCCGGCGCCATGG | Pi21-R | CTCCTCTGCGTTCATATTC | |
Pi21-g-F | GGCAGGTATATTGGTCATCTTGGTGG | ERF922-F | GCGACAACATCACGCATCGCC | |
Pi21-g-R | AAACCCACCAAGATGACCAATATACC | ERF922-R | TCAGGCCAAGTGCCTACTGCAA | |
ERF922-g-F | GGCAGTGGACGTGTCTCTGTCGCTGG | Hyg-F | GCTGTTATGCGGCCATTGTC | |
ERF922-g-R | AAACCCAGCGACAGAGACACGTCCAC | Hyg-R | GACGTCTGTCGAGAAGTTTC | |
Pita-F | CAGCCTCTCTGCATGATTTC | Cas9-F | ACCAGACACGAGACGACTAA | |
Pita-R | TCTAGCAGGTGTCGGAGATC | Cas9-R | ATCGGTGCGGGCCTCTTC |
Table 1 Primers used in this study.
引物名称 Primer name | 引物序列 Sequence(5'-3') | 引物名称 Primer name | 引物序列 Sequence(5'-3') | |
---|---|---|---|---|
Pita-g-F | GGCACCATGGCGCCGGCGGTCATTGC | Pi21-F | CTGAATTCCACGGGAATTGC | |
Pita-g-R | AAACGCAATGACCGCCGGCGCCATGG | Pi21-R | CTCCTCTGCGTTCATATTC | |
Pi21-g-F | GGCAGGTATATTGGTCATCTTGGTGG | ERF922-F | GCGACAACATCACGCATCGCC | |
Pi21-g-R | AAACCCACCAAGATGACCAATATACC | ERF922-R | TCAGGCCAAGTGCCTACTGCAA | |
ERF922-g-F | GGCAGTGGACGTGTCTCTGTCGCTGG | Hyg-F | GCTGTTATGCGGCCATTGTC | |
ERF922-g-R | AAACCCAGCGACAGAGACACGTCCAC | Hyg-R | GACGTCTGTCGAGAAGTTTC | |
Pita-F | CAGCCTCTCTGCATGATTTC | Cas9-F | ACCAGACACGAGACGACTAA | |
Pita-R | TCTAGCAGGTGTCGGAGATC | Cas9-R | ATCGGTGCGGGCCTCTTC |
基因 Gene | 前引物 Forward primer | 后引物 Reverse primer |
---|---|---|
OsActin | GTGGACGTACTACTGGTATTGT | GAATCAGTCAGATCCCTACCAG |
OsPR1a | GGCCAATCTCCCTACTGATTAA | GCATAAACACGTAGCATAGCAT |
OsPR10 | CAGTGGTCAGTAGAGTGATCAG | GGGTTAAGCTTCATGGTGTAGA |
OsAOS2 | CAATACGTGTACTGGTCGAATG | CTTATTGCATATGCGTAGGACG |
OsPAL1 | GACCCTGTATTTTCTTCGTTCG | AGTAGCAATACTTTCACCCCAA |
OsRaP2.6 | AGAGAAAACCAGAAAAACGCTG | TGCTTTGGGGATGGAATATGTA |
β-1,3-glucanase | GGATCGGAGGAGTGTAGATAGA | GCAGAAAAGAAGGCAAAGTATACG |
qPita | CAGCAACTAACGAGGCATAATC | AGGTAGTAGTCATCTAGCAGGT |
qPi21 | GGCAAGATCATCAAGGAGATCC | CTTGGGCTTCTCGCAGTGA |
qERF922 | TGGACGTGTCTCTGTCGCT | GACGTCGAAGAGGACCATGTC |
Table 2 Primers used for the qRT-PCR of rice defense-related genes.
基因 Gene | 前引物 Forward primer | 后引物 Reverse primer |
---|---|---|
OsActin | GTGGACGTACTACTGGTATTGT | GAATCAGTCAGATCCCTACCAG |
OsPR1a | GGCCAATCTCCCTACTGATTAA | GCATAAACACGTAGCATAGCAT |
OsPR10 | CAGTGGTCAGTAGAGTGATCAG | GGGTTAAGCTTCATGGTGTAGA |
OsAOS2 | CAATACGTGTACTGGTCGAATG | CTTATTGCATATGCGTAGGACG |
OsPAL1 | GACCCTGTATTTTCTTCGTTCG | AGTAGCAATACTTTCACCCCAA |
OsRaP2.6 | AGAGAAAACCAGAAAAACGCTG | TGCTTTGGGGATGGAATATGTA |
β-1,3-glucanase | GGATCGGAGGAGTGTAGATAGA | GCAGAAAAGAAGGCAAAGTATACG |
qPita | CAGCAACTAACGAGGCATAATC | AGGTAGTAGTCATCTAGCAGGT |
qPi21 | GGCAAGATCATCAAGGAGATCC | CTTGGGCTTCTCGCAGTGA |
qERF922 | TGGACGTGTCTCTGTCGCT | GACGTCGAAGAGGACCATGTC |
基因 Gene | 株数 No. of plants | 突变基因型比率Ratio of mutation genotypes / % | 突变类型比率Ratio of mutation types / % | |||||
---|---|---|---|---|---|---|---|---|
纯合突变率 Homozygous | 杂合突变率 Heterozygous | 双等位突变率 Bi-allele | 碱基插入 Insert | 碱基缺失 Deletion | 碱基替换 Substitution | 替换和缺失 Substitution and deletion | ||
Pita | 17 | 41.2(7/17) | 0.0(0/17) | 47.1(8/17) | 73.5(25/34) | 14.7(5/34) | 0.0(0/34) | 0.0(0/34) |
Pi21 | 17 | 35.3(6/17) | 5.9(1/17) | 58.8(10/17) | 8.8(3/34) | 85.3(29/34) | 2.9(1/34) | 0.0(0/34) |
ERF922 | 17 | 5.9(1/17) | 17.7(3/17) | 64.7(11/17) | 17.6(6/34) | 50.0(17/34) | 8.8(3/34) | 2.9(1/34) |
Table 3 Ratios of mutant genotype and mutation types in T0 plants.
基因 Gene | 株数 No. of plants | 突变基因型比率Ratio of mutation genotypes / % | 突变类型比率Ratio of mutation types / % | |||||
---|---|---|---|---|---|---|---|---|
纯合突变率 Homozygous | 杂合突变率 Heterozygous | 双等位突变率 Bi-allele | 碱基插入 Insert | 碱基缺失 Deletion | 碱基替换 Substitution | 替换和缺失 Substitution and deletion | ||
Pita | 17 | 41.2(7/17) | 0.0(0/17) | 47.1(8/17) | 73.5(25/34) | 14.7(5/34) | 0.0(0/34) | 0.0(0/34) |
Pi21 | 17 | 35.3(6/17) | 5.9(1/17) | 58.8(10/17) | 8.8(3/34) | 85.3(29/34) | 2.9(1/34) | 0.0(0/34) |
ERF922 | 17 | 5.9(1/17) | 17.7(3/17) | 64.7(11/17) | 17.6(6/34) | 50.0(17/34) | 8.8(3/34) | 2.9(1/34) |
Fig. 3. Screening of transgenic-free mutant plants by PCR in T1. M, DNA marker; 1, ddH2O; 2, Wild type; 3, Positive control; Lines 4 to 24, T1 mutation plants; P1, Primer Hyg-F and Hyg-R; P2, Primer Cas9-F and Cas9-R.
Fig. 4. Three mutation types of homozygotes in T2. The PAM sequence is highlighted in blue and insertions are represented by red letters. The deletions are shown by red hyphens. The initiation codon is highlighted by underline in black. D2101 and D2102 are monogenic mutation of Pi21, mutations with 1 bp and 4 bp deletions, respectively. D0301 is co-mutation of Pita, Pi21 and ERF922, mutations with 1 bp insertion in Pita and Pi21, respectively, and the mutation with 23 bp deletion in ERF922.
Fig. 5. Expression analyses of Pita, Pi21 and ERF922 in homozygous mutant plants. * and ** represent significant difference between the wild type and the homozygous lines at the 0.05 and 0.01 levels, respectively(t-test).
Fig. 6. Pita, Pi21 and ERF922 gene amino acid sequences in homozygous mutant lines and the wild type. A indicate the alignment of Pi21 gene amino acid sequences in homozygous mutant lines D2101 and D2102; B, C and D show the alignment of Pita, Pi21 and ERF922 gene amino acid sequences in homozygous mutant line D0301.
Fig. 7. Identification of homozygous mutant lines and the control varieties after inoculation. A, Homozygous mutant lines and wild type inoculated at the seedling stage. B, Statistical lesion area of wild type and homozygous mutant lines(Mean±SE, n=3). Different lowercase letters above the bars indicate significant difference between the mutant and the wild type at the 0.01 level(t-test). LTH, Lijiangxintuanheigu; WT, Wild type; D2101 and D2102, Homozygous lines of Pi21; D0301, Homozygous lines of Pita, Pi21 and ERF922.
Fig. 8. Relative expression levels of defense-related genes in the wild type (L1014, WT) and the homozygous mutant lines inoculated with M. coryza (Mean±SE, n=3). * and ** represent significant difference between the wild type and the homozygous lines at the 0.05 and 0.01 levels by t-test with the same time point.
Fig. 9. Relative expression level of defense-related genes in the wild type(L1014) and the homozygous mutant line D0301, inoculated with M. coryza (Mean±SE, n=3). *and** represent significant difference between the wild type and the homozygous lines at the 0.05 and 0.01 levels by t-test at the same stage, respectively.
[1] | Liu J, Wang X, Mitchell T, Hu Y, Liu X, Dai L, Wang G L.Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction.Mol Plant Pathol, 2010, 11(3): 419-427. |
[2] | Borrelli V, Brambilla V, Rogowsky P, Marocco A, Lanubile A.The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front Plant Sci, 2018, 9: 1245. |
[3] | Wilson R A, Talbot N J.Under pressure: investigating the biology of plant infection by Magnaporthe oryzae.Nat Rev Microbiol, 2009, 7(3): 185-195. |
[4] | Xie K, Yang Y.RNA-guided genome editing in plants using a CRISPR-Cas system.Mol Plant, 2013, 6(6): 1975-1983. |
[5] | Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C.Targeted genome modification of crop plants using a CRISPR-Cas system.Nat Biotechnol, 2013, 31(8): 686-688. |
[6] | Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F.Multiplex genome engineering using CRISPR/Cas systems.Science, 2013, 339(6121): 819-823 |
[7] | Islam W.CRISPR-Cas9: An efficient tool for precise plant genome editing.Mol Cell Probes, 2018, 39: 47-52. |
[8] | Vriend L E M, Prakash R, Chen C, Vanoli F, Cavallo F, Zhang Y, Jasin M, Krawczyk P M. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks.Nucleic Acids Res, 2016, 44(11): 5204-5217. |
[9] | Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J K.Application of the CRISPR-Cas system for efficient genome engineering in plants.Mol Plant, 2013, 6(6): 2008-2011. |
[10] | Shan Q, Wang Y, Li J, Gao C.Genome editing in rice and wheat using the CRISPR/Cas system.Nat Protoc, 2014, 9(10): 2395-2410. |
[11] | Zhang J, Zhang H, Botella J R, Zhu J K.Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol, 2018, 60(5): 369-375. |
[12] | Jiang W, Zhou H, Bi H, Fromm M, Yang B Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice.Nucleic Acids Res, 2013, 41(20): e188. |
[13] | Fauser F, Schiml S, Puchta H.Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana.Plant J, 2014, 79(2): 348-359. |
[14] | Jiang W, Yang B Weeks D P. Efficient CRISPR/Cas9- mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations.PLoS One, 2014, 9(6): e99225. |
[15] | Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J L.Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.Nat Biotechnol, 2014, 32(9): 947-951. |
[16] | Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D.Simultaneous modification of three homologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat.Plant J, 2017, 91(4): 714-724. |
[17] | Shen L, Hua Y, Fu Y, Li J, Liu Q, Jiao X, Xin G, Wang J, Wang X, Yan C, Wang K.Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.Sci China Life Sci, 2017, 60(5): 506-515. |
[18] | Fei Y Y, Yang J, Wang F Q, Fan F J, Li W Q, Wang J, Xu Y, Zhu J Y, Zhong W G.Production of two elite glutinous rice varieties by editing Wx gene.Rice Sci, 2019, 26(2): 118-124. |
[19] | Fukuoka S, Okuno K.QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice.Theor Appl Genet, 2001, 103(2-3): 185-190. |
[20] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M.Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009, 325(5943): 998-1001. |
[21] | Liu D, Chen X, Liu J, Ye J, Guo Z.The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance.J Exp Bot, 2012, 63(10): 3899-3911. |
[22] | Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell, 2000, 12(11): 2033-2046. |
[23] | Jia Y, Martin R.Identification of a new locus, Ptr(t), required for rice blast resistance gene Pi-ta-mediated resistance.Mol Plant Microbe Interact, 2008, 21(4): 396-403. |
[24] | Tu Z, Yang W, Yan S, Guo X, Li X.CRISPR/Cas9: A powerful genetic engineering tool for establishing large animal models of neurodegenerative diseases.Mol Neurod, 2015, 10: 35. |
[25] | Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B.Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.Development, 2013, 140(24): 4982-4987. |
[26] | Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W.CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean.Plant Biotechnol J, 2018, 16(1): 176-185. |
[27] | Yu Z, Chen Q, Chen W, Zhang X, Mei F, Zhang P, Zhao M, Wang X, Shi N, Jackson S, Hong Y.Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.J Integr Plant Biol, 2018, 60(5): 376-381. |
[28] | Jakočiu̅nas T, Rajkumar AS, Zhang J, Arsovska D, Rodriguez A, Jendresen C B, Skjødt M L, Nielsen A T, Borodina I, Jensen M K, Keasling J D. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in Saccharomyces cerevisiae.ACS Synthetic Biol, 2015, 4(11): 1226-1234. |
[29] | 沈兰. 基于CRISPR/Cas9的水稻多基因编辑及其在育种中的应用. 扬州: 扬州大学, 2017. |
Shen L.CRISPR/Cas9-mediated multiples genome editing in rice (Oryza sativa) and the application in rice breeding. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract) | |
[30] | 王芳权, 范方军, 李文奇, 朱金燕, 王军. 利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析. 中国水稻科学, 2016, 30(5): 469-478. |
Wang F Q, Fan F J, Li W Q, Zhu J Y, Wang J.Knock-out efficiency analysis of Pi21 gene using CRISPR/Cas9 in rice.Chin J Rice Sci, 2016, 30(5): 469-478. (in Chinese with English abstract) | |
[31] | 杨海河, 毕冬玲, 张玉, 邹小维, 高晓庆, 袁正杰, 曲海艳, 何海燕, 瞿绍洪. 基于CRISPR/Cas9技术的水稻pi21基因编辑材料的创制及稻瘟病抗性鉴定. 分子植物育种, 2017, 15(11): 4451-4465. |
Yang H H, Bi D L, Zhang Y, Zou X W, Gao X Q, Yuan Z J, Qu H Y, He H Y, Qu S H.Generation of rice pi21 gene editing lines based on CRISPR/Cas9 technology and evaluation of their blast resistance.Mol Plant Breed, 2017, 15(11): 4451-4465. (in Chinese with English abstract) | |
[32] | Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu Y, Zhao K.Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922.Plos One, 2016, 11(4): e0154027. |
[33] | Zhang Y, Zhao J, Li Y, Yuan Z, He H, Yang H, Qu H, Ma C, Qu S.Transcriptome analysis highlights defense and signaling pathways mediated by rice pi21 gene with partial resistance to Magnaporthe oryzae.Front Plant Sci, 2016, 7: 1834. |
[34] | Wamaitha M J, Yamamoto R, Wong H L, Kawasaki T, Kawano Y, Shimamoto K. OsRap2.6 transcription factor contributes to rice innate immunity through its interaction with Receptor for Activated Kinase-C1(RACK1). Rice, 2012, 5: 35. |
[35] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G, Yang Y.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance.Nat Commun, 2018, 9(1): 2039. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||