Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (2): 175-184.DOI: 10.16819/j.1001-7216.2017.6099
• Orginal Article • Previous Articles Next Articles
Zaisheng SHAO1, Hairong MU1, Yipeng ZHAO1,3, Yilei JIA1, Bin PENG1, Lianxin YANG1, Yunxia WANG2,*()
Online:
2017-03-20
Published:
2017-03-10
Contact:
Yunxia WANG
邵在胜1, 穆海蓉1, 赵轶鹏1,3, 贾一磊1, 彭斌1, 杨连新1, 王云霞2,*()
通讯作者:
王云霞
基金资助:
CLC Number:
Zaisheng SHAO, Hairong MU, Yipeng ZHAO, Yilei JIA, Bin PENG, Lianxin YANG, Yunxia WANG. A Comparative Study of Ozone-induced Leaf Injury of Rice with Different Ozone Sensitivity[J]. Chinese Journal OF Rice Science, 2017, 31(2): 175-184.
邵在胜, 穆海蓉, 赵轶鹏, 贾一磊, 彭斌, 杨连新, 王云霞. 臭氧胁迫对不同敏感型水稻叶片伤害的比较研究[J]. 中国水稻科学, 2017, 31(2): 175-184.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.6099
处理 Treatment | 臭氧浓度 Ozone concentration / (nL·L-1) | 温度 Temperature /℃ | 湿度 Relative humidity /% | 光照 Illumination /klx | 大气压力 Atmosphere pressure /kPa |
---|---|---|---|---|---|
Ambient | 67.7 | 32.1 | 65.9 | 28.0 | 99.5 |
C-O3 | 10.4±2.32 | 32.2±0.04 | 69.0±0.46 | 26.8±2.79 | 99.4±0.17 |
E-O3 | 100.1±0.06 | 32.2±0.04 | 69.3±0.05 | 29.0±1.19 | 99.3±0.17 |
Table 1 The performance of greenhouse-type gas fumigation platforms during the period of ozone fumigation(9:00-17:00).
处理 Treatment | 臭氧浓度 Ozone concentration / (nL·L-1) | 温度 Temperature /℃ | 湿度 Relative humidity /% | 光照 Illumination /klx | 大气压力 Atmosphere pressure /kPa |
---|---|---|---|---|---|
Ambient | 67.7 | 32.1 | 65.9 | 28.0 | 99.5 |
C-O3 | 10.4±2.32 | 32.2±0.04 | 69.0±0.46 | 26.8±2.79 | 99.4±0.17 |
E-O3 | 100.1±0.06 | 32.2±0.04 | 69.3±0.05 | 29.0±1.19 | 99.3±0.17 |
类型 Type | 最小值 Min/ % | 最大值 Max/ % | 平均数 Mean±SE/% | F值 F-value | 显著性水平Significance level | |
---|---|---|---|---|---|---|
0.05 | 0.01 | |||||
A(n=18) | -6.4 | -24.9 | -19.2±6.0 | 5.0 | a | A |
B(n=78) | -31.7 | -44.2 | -38.5±1.1 | 82.0 | b | B |
C(n=42) | -47.0 | -63.3 | -51.8±2.0 | 61.3 | c | C |
Table 2 Statistical analysis of ozone-induced changes in the above-ground biomass of different types of rice.
类型 Type | 最小值 Min/ % | 最大值 Max/ % | 平均数 Mean±SE/% | F值 F-value | 显著性水平Significance level | |
---|---|---|---|---|---|---|
0.05 | 0.01 | |||||
A(n=18) | -6.4 | -24.9 | -19.2±6.0 | 5.0 | a | A |
B(n=78) | -31.7 | -44.2 | -38.5±1.1 | 82.0 | b | B |
C(n=42) | -47.0 | -63.3 | -51.8±2.0 | 61.3 | c | C |
时期 Stage | O3 | 类型 Type(T) | 叶位 Leaf position(LP) | O3×T | O3×LP | O3×T×LP |
---|---|---|---|---|---|---|
移栽后23 d DAT23 | <0.01 | <0.01 | <0.01 | 0.479 | <0.01 | 0.827 |
移栽后53 d DAT53 | <0.01 | <0.01 | <0.01 | 0.017 | <0.01 | 0.949 |
移栽后67 d DAT67 | <0.01 | <0.01 | <0.01 | 0.101 | <0.01 | 0.989 |
移栽后81 d DAT81 | <0.01 | 0.769 | <0.01 | 0.064 | <0.01 | 0.673 |
全生育期平均 Mean | <0.01 | <0.01 | <0.01 | 0.098 | <0.01 | 0.890 |
Table 3 Analysis of variance for ozone-induced changes in mean SPAD value of three leaves from the top of different types of rice (P value).
时期 Stage | O3 | 类型 Type(T) | 叶位 Leaf position(LP) | O3×T | O3×LP | O3×T×LP |
---|---|---|---|---|---|---|
移栽后23 d DAT23 | <0.01 | <0.01 | <0.01 | 0.479 | <0.01 | 0.827 |
移栽后53 d DAT53 | <0.01 | <0.01 | <0.01 | 0.017 | <0.01 | 0.949 |
移栽后67 d DAT67 | <0.01 | <0.01 | <0.01 | 0.101 | <0.01 | 0.989 |
移栽后81 d DAT81 | <0.01 | 0.769 | <0.01 | 0.064 | <0.01 | 0.673 |
全生育期平均 Mean | <0.01 | <0.01 | <0.01 | 0.098 | <0.01 | 0.890 |
指标 Index | DAT10 | DAT12 | DAT19 | DAT27 | DAT41 | DAT59 | Mean |
---|---|---|---|---|---|---|---|
r | 0.293 | 0.293 | 0.420 | 0.513 | 0.354 | 0.474 | 0.450 |
P-value | 0.175 | 0.174 | 0.046 | 0.012 | 0.097 | 0.022 | 0.031 |
Table 4 Correlation analysis of rice LBS at different growth stages and ozone-induced changes in above-ground part biomass.
指标 Index | DAT10 | DAT12 | DAT19 | DAT27 | DAT41 | DAT59 | Mean |
---|---|---|---|---|---|---|---|
r | 0.293 | 0.293 | 0.420 | 0.513 | 0.354 | 0.474 | 0.450 |
P-value | 0.175 | 0.174 | 0.046 | 0.012 | 0.097 | 0.022 | 0.031 |
叶位 Leaf position | 指标 Index | DAT23 | DAT53 | DAT67 | DAT81 | Mean |
---|---|---|---|---|---|---|
倒1叶 First leaf from the top of rice | r | 0.263 | 0.253 | 0.146 | 0.116 | 0.270 |
P-value | 0.225 | 0.244 | 0.507 | 0.597 | 0.212 | |
倒2叶 Second leaf from the top of rice | r | 0.090 | 0.091 | 0.202 | -0.045 | 0.112 |
P-value | 0.682 | 0.678 | 0.354 | 0.837 | 0.612 | |
倒3叶 Third leaf from the top of rice | r | -0.040 | 0.130 | 0.057 | 0.009 | 0.078 |
P-value | 0.856 | 0.555 | 0.798 | 0.966 | 0.725 |
Table 5 Correlation analysis of ozone-induced changes in rice leaf SPAD value at different growth stages and final above-ground part biomass.
叶位 Leaf position | 指标 Index | DAT23 | DAT53 | DAT67 | DAT81 | Mean |
---|---|---|---|---|---|---|
倒1叶 First leaf from the top of rice | r | 0.263 | 0.253 | 0.146 | 0.116 | 0.270 |
P-value | 0.225 | 0.244 | 0.507 | 0.597 | 0.212 | |
倒2叶 Second leaf from the top of rice | r | 0.090 | 0.091 | 0.202 | -0.045 | 0.112 |
P-value | 0.682 | 0.678 | 0.354 | 0.837 | 0.612 | |
倒3叶 Third leaf from the top of rice | r | -0.040 | 0.130 | 0.057 | 0.009 | 0.078 |
P-value | 0.856 | 0.555 | 0.798 | 0.966 | 0.725 |
[1] | Fiscus E L, Booker F L, Burkey K O.Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning.Plant Cell Environ, 2005, 28: 997-1011. |
[2] | Yamaji K, Ohara T, Uno I, Kurokawa J, Pochanart P, Akimoto H.Future prediction of surface ozone over east Asia using Models-3 Community Multiscale Air Quality Modeling System and Regional Emission Inventory in Asia.J Geophys Res, 2008, 113(D8): D08306. |
[3] | Cooper O R, Parrish D D, Stohl A, Trainer M, Nédélec P, Thouret V, Cammas J P, Oltmans S J, Johnson B J, Tarasick D, Leblanc T, McDermid I S, Jaffe D, Gao R, Stith J, Ryerson T, Aikin K, Campos T, Weinheimer A, Avery M A. Increasing springtime ozone mixing ratios in the free troposphere over western North America.Nature, 2010, 463(7279): 344-348. |
[4] | IRRI. Rice Almanac: Source Book for the Most Important Economic Activity on Earth. 3rd. Oxford: CABI Publishing, 2002. |
[5] | Feng Z W, Jin M H, Zhang F Z, Huang Y Z.Effects of ground-level ozone(O3)pollution on the yields of rice and winter wheat in Yangtze River delta.J Environ Sci-China, 2003, 15: 360-362. |
[6] | Pang J, Kobayashi K, Zhu J G.Yield and photosynthetic characteristics of flag leaves in Chinese rice(Oryza sativa L.) varieties subjected to free-air release of ozone. Agr Ecosyst Environ, 2009, 132: 203-211 |
[7] | 彭斌, 李潘林, 周楠, 赖上坤, 朱建国, 杨连新, 王余龙. 不同秧苗素质和移栽密度条件下臭氧胁迫对水稻光合作用、物质生产和产量的影响. 生态学报, 2013, 33( 12) : 3668-3675. |
Peng B, Li P L, Zhou N, Lai S K, Zhu J G, Yang L X, Wang Y L.Effects of ozone stress on photosynthesis, dry matter production and yield of rice under different seedling quality and plant density.Acta Ecol Sin, 2013, 33(12): 3668-3675. (in Chinese with English abstract) | |
[8] | 彭斌, 赖上坤, 李潘林, 王云霞, 朱建国, 杨连新, 王余龙. 不同密度下臭氧胁迫对 Ⅱ 优 084 水稻光合作用和物质生产的影响——FACE 研究. 应用生态学报, 2015, 26(1): 17-24. |
Peng B, Lai S K, Li P L, Wang Y X, Zhu J G, Yang L X, Wang Y L.Effects of ozone stress on photosynthesis and dry matter production of rice Ⅱ-you 084 under different planting densities. Chin J Appl Ecol, 2015, 26(1): 17-24. (in Chinese with English abstract) | |
[9] | 金明红, 冯宗炜, 张福珠. 臭氧对水稻叶片膜脂过氧化和抗氧化系统的影响. 环境科学, 2000, 21(3): 1-5. |
Jin M H, Feng Z W, Zhang F Z.Effects of ozone on membrane lipid peroxidation and antioxidantsystem of rice leaves.Chin J Envir Sci, 2000, 03: 1-5. (in Chinese with English abstract)) | |
[10] | 黄益宗, 隋立华. 臭氧污染胁迫下植物的抗氧化系统调节机制. 生态毒理学报, 2013, 04: 456-464. |
Huang Y Z, Sui L H.Antioxidant mechanism of plants under ozone stress.Asian J Ecotoxicol, 2013, 04: 456-464. (in Chinese with English abstract) | |
[11] | Frei M.Breeding of ozone resistant rice: Relevance, approaches and challenges.Environ Pollut, 2015, 197: 144-155. |
[12] | 杨连新, 王余龙, 石广跃, 王云霞, 朱建国, Kobayashi K, 赖上坤. 近地层高臭氧浓度对水稻生长发育影响研究进展. 应用生态学报, 2008, 19(4): 901-910. |
Yang L X, Wang Y L, Shi G Y, WangY X, Zhu J G, Kobayashi K, Lai S K. Responses of rice growth and development to elevated near-surface layer ozone (O3) concentration: a review.Chin J Appl Ecol, 2008, 19(4): 901-910. (in Chinese with English abstract) | |
[13] | Kobayashi K, Okada M, Nouchi I.Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.).Agr Ecosyst Environ, 1995, 53(2): 109-122. |
[14] | Pandey A K, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E.Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: Results from ethylenediurea studies.Sci Total Environ, 2015, 532: 230-238. |
[15] | Hur J S, Kim P G, Yun S C, Park E W.Indicative responses of rice plant to atmospheric ozone.Plant Pathol J, 2000, 16(3): 130-136. |
[16] | Sagar V K, William J M.Atmospheric ozone: Formation and effects on vegetation.Environ Pollut, 1988, 50(1-2): 101-137. |
[17] | Wissuwa M, Ismail A M, Yanagihara S.Effects of zinc deficiency onrice growth and genetic factors contributing to tolerance.Plant Physiol, 2006, 142(2): 731-741. |
[18] | Frei M, Tanaka J P, Wissuwa M.Genotypic variationin tolerance to elevated ozone in rice: dissection of distinct genetic factors linked to tolerance mechanisms. J Exp Bot, 2008, 59(13): 3741-3752. |
[19] | Sawadw H, Kohno Y.Differential ozone sensitivity of rice cultivars as indicatedby visible injury and grain yield.Plant Biol, 2009, 1435-8603. |
[20] | Picchi V, Iriti M, Quaroni S, Saracchi M, Viola P, Faoro F.Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po Valley (Northern Italy).Agr Ecosyst Environ, 2010, 135(4): 310-317. |
[21] | Olszyk D M,Wise C.Interactive effects of elevated CO2 and O3 on rice and flacca tomato.Agr Ecosyst Environ, 1997, 66(1): 1-10. |
[22] | Phothi R, Umponstira C, Sarin C, Siriwong W, Nabheerong N.Combining effects of ozone and carbon dioxide application on photosynthesis of Thai jasmine rice (Oryza sativa L.) cultivar Khao Dawk Mali 105. Aust J Crop Sci, 2016, 10(4): 591-597. |
[23] | Sawada H, Komatsu S, Nanjo Y, Khan N A, Kohno Y.Proteomic analysis of rice response involved in reduction of grain yield under elevated ozone stress.Environ Exp Bot, 2012, 77: 108-116. |
[24] | 赵轶鹏, 邵在胜, 宋琪玲, 赖上坤, 周娟, 王云霞, 秦超, 杨连新, 王余龙. 一种新型自然光气体熏蒸平台: 系统结构与控制精度. 农业环境科学学报, 2012, 31(11): 2082-2093. |
Zhao Y P, Shao Z S, Song Q L, Lai S K, Zhou J, Wang Y X, Qin C, Yang L X, Wang Y L.System structure and control accuracy of a solar-illuminated gas fumigation platform. J Agro-Environ Sci, 2012, 31(11): 2082-2093. (in Chinese with English abstract) | |
[25] | Wang Y X, Yang L X, Meike H, Shao Z S, Pariasca-Tanaka J, Wissuwa M, Frei M.Pyramiding of ozone tolerance QTLsOzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice. Environ Exp Bot, 2014, 104: 26-33. |
[26] | 顾世梁, 莫惠栋. 动态聚类的一种新方法一最小组里平方和法. 江苏农学院学报, 1989, 10(4): 1-8. |
Gu S L, Mo H D.A new dynamic clustering method- MinSSw mehtod.J Jiangsu Agric Coll, 1989, 10(4): 1-8. (in Chinese with English abstract) | |
[27] | Ainsworth E A.Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration.Glob Change Biol, 2008, 14: 1642-1650. |
[28] | Ueda Y, Siddique S, Frei M.A novel gene OsORAP1 enhances cell death inozone stress in rice (Oryza sativa L.).Plant Physiol, 2016, 169: 873-889. |
[29] | Tausz M, Grulke N E, Wieser G.Defense and avoidance of ozone under global change.Environ Pollut, 2007, 147(3): 525-531. |
[30] | Nouchi I, Ito O, Harazono Y, Kobayashi K.Effects of chronic ozone exposure on growth, root respiration and nutrient uptake of rice plants.Environ Pollut, 1991, 74(2): 149-164. |
[31] | Shi G Y, Yang L X, Wang Y X, Kobayashi K, Zhu J G, Tang H Y, Pan S T, Chen T, Liu G, Wang Y L.Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions.Agr Ecosyst Environ, 2009, 131(3): 178-184. |
[32] | 邵在胜, 沈士博, 贾一磊, 穆海蓉, 王云霞, 杨连新, 王余龙. 臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响. 农业环境科学学报, 2016, 35(9): 1642-1652. |
Shao Z S, Shen S B, Jia Y L, Mu H R, Wang Y X, Yang L X, Wang Y L.Impact of Ozone Stress on Element Absorption and Distribution of Rice Genotypes with Different Ozone Sensitivity.J Agro-Environ Sci, 2016, 35(9): 1642-1652. (in Chinese with English abstract) | |
[33] | 邵在胜, 沈士博, 贾一磊, 穆海蓉, 王云霞, 杨连新, 王余龙. 臭氧胁迫对不同敏感型水稻生长和产量形成的影响. 中国农业科学, 2016, 17: 3319-3331. |
Shao Z S, Shen S B, Jia Y L, Mu H R, Wang Y X, Yang L X, Wang Y L.Impact of ozone stress on growth and yield formation of rice genotypes with different ozone sensitivity.Sci Agric Sin, 2016 17: 3319-3331. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||