Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (2): 125-134.DOI: 10.16819/j.1001-7216.2020.9125
• Research Papers • Previous Articles Next Articles
Panpan LI1, Yujun ZHU1, Liang GUO2, Jieyun ZHUANG1, Yeyang FAN1,*()
Received:
2019-11-21
Revised:
2019-12-28
Online:
2020-03-10
Published:
2020-03-10
Contact:
Yeyang FAN
李盼盼1, 朱玉君1, 郭梁2, 庄杰云1, 樊叶杨1,*()
通讯作者:
樊叶杨
基金资助:
CLC Number:
Panpan LI, Yujun ZHU, Liang GUO, Jieyun ZHUANG, Yeyang FAN. Fine Mapping of qGL1.1, a Minor QTL for Grain Length, Using Near Isogenic Lines Derived from Residual Heterozygotes in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(2): 125-134.
李盼盼, 朱玉君, 郭梁, 庄杰云, 樊叶杨. 利用剩余杂合体衍生的近等基因系精细定位水稻粒长微效QTL qGL1.1[J]. 中国水稻科学, 2020, 34(2): 125-134.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9125
Fig. 2. Genotypic compositions of the nine NILs sets in the target region. A, Three sets of NILs in F5:6 for validation. B, Six sets of NILs in F8:9 for fine-mapping.
标记名称 | 类型 | 限制性内切酶 | 正向引物(5'-3') | 反向引物(5'-3') |
---|---|---|---|---|
Name | Type | Restriction enzyme | Forward primer (5'-3') | Reverse primer (5'-3') |
Wn28826 | CAPS | BstN I | GACAAGTTGGGATAATTCTTCGAT | TAACGTGTCGATCTCTGACC |
Wn28893 | dCAPS | Hha I | GATCGCTCCCTTGTATACGCTGA | CCATTCCGCCCGGTTGATGAAACGC |
Wn28944 | InDel | CATTACAAGGTAAATTGTAGATTGG | TCATTTAGGGATTATGTTGGTC | |
Wn28990 | InDel | AGTTTATAAATCCGAAGCCAT | AGCACAAATAAGTAATTATGCCTA | |
Wn29048 | dCAPS | N1a III | GAATAAGTCCACTTTACGCATCTTTCTCA | GGATCAAGATTTTCCGTATTGCAG |
Wn29077 | dCAPS | Kpn I | CAGTTCACGGGATACGAAGC | CAGTTTGACCATCCTCTAAGCAAAGGGTA |
Wn29125 | dCAPS | Sty I | AAGTGTGTACGGTCAAATGTTTGCCA | ACGTCAGTCAAAACAAATACGG |
Wn29154 | CAPS | Xba I | TGGATTAATTAGGCTAGGTAGACA | TTCTCCCTCTCGTGATCGC |
Table 1 DNA markers developed in this study.
标记名称 | 类型 | 限制性内切酶 | 正向引物(5'-3') | 反向引物(5'-3') |
---|---|---|---|---|
Name | Type | Restriction enzyme | Forward primer (5'-3') | Reverse primer (5'-3') |
Wn28826 | CAPS | BstN I | GACAAGTTGGGATAATTCTTCGAT | TAACGTGTCGATCTCTGACC |
Wn28893 | dCAPS | Hha I | GATCGCTCCCTTGTATACGCTGA | CCATTCCGCCCGGTTGATGAAACGC |
Wn28944 | InDel | CATTACAAGGTAAATTGTAGATTGG | TCATTTAGGGATTATGTTGGTC | |
Wn28990 | InDel | AGTTTATAAATCCGAAGCCAT | AGCACAAATAAGTAATTATGCCTA | |
Wn29048 | dCAPS | N1a III | GAATAAGTCCACTTTACGCATCTTTCTCA | GGATCAAGATTTTCCGTATTGCAG |
Wn29077 | dCAPS | Kpn I | CAGTTCACGGGATACGAAGC | CAGTTTGACCATCCTCTAAGCAAAGGGTA |
Wn29125 | dCAPS | Sty I | AAGTGTGTACGGTCAAATGTTTGCCA | ACGTCAGTCAAAACAAATACGG |
Wn29154 | CAPS | Xba I | TGGATTAATTAGGCTAGGTAGACA | TTCTCCCTCTCGTGATCGC |
性状 | 试验 | 名称 | 平均 | 标准差 | 变异系数 | 范围 | 偏斜度 | 峰度 | ||
---|---|---|---|---|---|---|---|---|---|---|
Trait | Trial | Name | Mean | SD | CV | Range | Skewness | Kurtosis | ||
千粒重 1000-grain weight /g | 杭州 | Y1 | 25.55 | 0.34 | 0.013 | 24.92~26.27 | 0.30 | -0.59 | ||
Hangzhou | Y2 | 26.74 | 0.36 | 0.013 | 25.84~27.92 | 0.45 | 1.15 | |||
Y3 | 25.67 | 0.26 | 0.010 | 25.05~26.17 | -0.27 | -0.38 | ||||
陵水 | LP1 | 30.16 | 0.36 | 0.012 | 29.42~30.89 | 0.07 | -0.34 | |||
Lingshui | LP2 | 29.25 | 0.61 | 0.021 | 27.67~30.36 | -0.50 | -0.18 | |||
LP3 | 29.93 | 0.29 | 0.010 | 29.26~30.57 | 0.07 | -0.43 | ||||
LP4 | 30.74 | 0.31 | 0.010 | 30.04~31.37 | 0.24 | -0.52 | ||||
LP5 | 29.81 | 0.48 | 0.016 | 28.35~30.79 | -0.31 | 0.28 | ||||
LP6 | 29.73 | 0.52 | 0.017 | 28.69~30.68 | -0.27 | -0.71 | ||||
粒长 Grain length / mm | 杭州 | Y1 | 8.120 | 0.057 | 0.007 | 7.999~8.261 | -0.08 | -0.06 | ||
Hangzhou | Y2 | 8.216 | 0.057 | 0.007 | 8.106~8.362 | 0.58 | 0.28 | |||
Y3 | 8.136 | 0.050 | 0.006 | 8.033~8.264 | 0.02 | -0.34 | ||||
陵水 | LP1 | 8.106 | 0.037 | 0.005 | 8.034~8.191 | 0.30 | -0.39 | |||
Lingshui | LP2 | 8.114 | 0.040 | 0.005 | 8.040~8.201 | 0.07 | -0.87 | |||
LP3 | 8.097 | 0.041 | 0.005 | 8.003~8.199 | 0.16 | -0.10 | ||||
LP4 | 8.268 | 0.047 | 0.006 | 8.138~8.358 | -0.44 | 0.02 | ||||
LP5 | 8.094 | 0.054 | 0.007 | 7.978~8.217 | 0.13 | -0.47 | ||||
LP6 | 8.164 | 0.045 | 0.005 | 8.051~8.245 | -0.15 | -0.29 | ||||
粒宽 Grain width / mm | 杭州 | Y1 | 2.958 | 0.022 | 0.008 | 2.899~3.024 | 0.13 | 0.81 | ||
Hangzhou | Y2 | 3.053 | 0.018 | 0.006 | 3.014~3.103 | 0.35 | 0.43 | |||
Y3 | 2.924 | 0.024 | 0.008 | 2.875~2.972 | 0.14 | -0.71 | ||||
陵水 | LP1 | 3.288 | 0.014 | 0.004 | 3.244~3.312 | -0.67 | 0.82 | |||
Lingshui | LP2 | 3.218 | 0.044 | 0.014 | 3.091~3.290 | -0.78 | 0.48 | |||
LP3 | 3.273 | 0.022 | 0.007 | 3.217~3.306 | -0.98 | 0.49 | ||||
LP4 | 3.296 | 0.014 | 0.004 | 3.267~3.324 | -0.26 | -0.63 | ||||
LP5 | 3.265 | 0.031 | 0.009 | 3.156~3.313 | -1.81 | 4.27 | ||||
LP6 | 3.236 | 0.040 | 0.012 | 3.129~3.306 | -0.66 | -0.14 |
Table 2 Phenotypic variations of 1000-grain weight, grain length and grain width in nine sets of NILs.
性状 | 试验 | 名称 | 平均 | 标准差 | 变异系数 | 范围 | 偏斜度 | 峰度 | ||
---|---|---|---|---|---|---|---|---|---|---|
Trait | Trial | Name | Mean | SD | CV | Range | Skewness | Kurtosis | ||
千粒重 1000-grain weight /g | 杭州 | Y1 | 25.55 | 0.34 | 0.013 | 24.92~26.27 | 0.30 | -0.59 | ||
Hangzhou | Y2 | 26.74 | 0.36 | 0.013 | 25.84~27.92 | 0.45 | 1.15 | |||
Y3 | 25.67 | 0.26 | 0.010 | 25.05~26.17 | -0.27 | -0.38 | ||||
陵水 | LP1 | 30.16 | 0.36 | 0.012 | 29.42~30.89 | 0.07 | -0.34 | |||
Lingshui | LP2 | 29.25 | 0.61 | 0.021 | 27.67~30.36 | -0.50 | -0.18 | |||
LP3 | 29.93 | 0.29 | 0.010 | 29.26~30.57 | 0.07 | -0.43 | ||||
LP4 | 30.74 | 0.31 | 0.010 | 30.04~31.37 | 0.24 | -0.52 | ||||
LP5 | 29.81 | 0.48 | 0.016 | 28.35~30.79 | -0.31 | 0.28 | ||||
LP6 | 29.73 | 0.52 | 0.017 | 28.69~30.68 | -0.27 | -0.71 | ||||
粒长 Grain length / mm | 杭州 | Y1 | 8.120 | 0.057 | 0.007 | 7.999~8.261 | -0.08 | -0.06 | ||
Hangzhou | Y2 | 8.216 | 0.057 | 0.007 | 8.106~8.362 | 0.58 | 0.28 | |||
Y3 | 8.136 | 0.050 | 0.006 | 8.033~8.264 | 0.02 | -0.34 | ||||
陵水 | LP1 | 8.106 | 0.037 | 0.005 | 8.034~8.191 | 0.30 | -0.39 | |||
Lingshui | LP2 | 8.114 | 0.040 | 0.005 | 8.040~8.201 | 0.07 | -0.87 | |||
LP3 | 8.097 | 0.041 | 0.005 | 8.003~8.199 | 0.16 | -0.10 | ||||
LP4 | 8.268 | 0.047 | 0.006 | 8.138~8.358 | -0.44 | 0.02 | ||||
LP5 | 8.094 | 0.054 | 0.007 | 7.978~8.217 | 0.13 | -0.47 | ||||
LP6 | 8.164 | 0.045 | 0.005 | 8.051~8.245 | -0.15 | -0.29 | ||||
粒宽 Grain width / mm | 杭州 | Y1 | 2.958 | 0.022 | 0.008 | 2.899~3.024 | 0.13 | 0.81 | ||
Hangzhou | Y2 | 3.053 | 0.018 | 0.006 | 3.014~3.103 | 0.35 | 0.43 | |||
Y3 | 2.924 | 0.024 | 0.008 | 2.875~2.972 | 0.14 | -0.71 | ||||
陵水 | LP1 | 3.288 | 0.014 | 0.004 | 3.244~3.312 | -0.67 | 0.82 | |||
Lingshui | LP2 | 3.218 | 0.044 | 0.014 | 3.091~3.290 | -0.78 | 0.48 | |||
LP3 | 3.273 | 0.022 | 0.007 | 3.217~3.306 | -0.98 | 0.49 | ||||
LP4 | 3.296 | 0.014 | 0.004 | 3.267~3.324 | -0.26 | -0.63 | ||||
LP5 | 3.265 | 0.031 | 0.009 | 3.156~3.313 | -1.81 | 4.27 | ||||
LP6 | 3.236 | 0.040 | 0.012 | 3.129~3.306 | -0.66 | -0.14 |
试验 Trial | 名称 Name | 分离区间 Segregating region | 性状 Trait | 表型值(平均值±标准差) | P | A | R2 / % | ||
---|---|---|---|---|---|---|---|---|---|
Phenotype (Mean±SD) | |||||||||
NILZS97 | NILMY46 | ||||||||
杭州 | Y1 | Wn28826-RM1231 | TGW/g | 25.42±0.30 | 25.69±0.32 | 0.0017 | 0.13 | 8.99 | |
Hangzhou | GL/mm | 8.098±0.062 | 8.143±0.041 | 0.0018 | 0.023 | 8.13 | |||
GW/mm | 2.950±0.019 | 2.966±0.023 | 0.0048 | 0.008 | 8.19 | ||||
Y2 | Wn28990-RM1231 | TGW/g | 26.68±0.32 | 26.78±0.38 | 0.2372 | ||||
GL/mm | 8.201±0.050 | 8.231±0.061 | 0.0343 | 0.015 | 5.33 | ||||
GW/mm | 3.049±0.017 | 3.056±0.019 | 0.1553 | ||||||
Y3 | Wn29154-RM1231 | TGW/g | 25.65±0.25 | 25.68±0.28 | 0.6181 | ||||
GL/mm | 8.143±0.053 | 8.129±0.046 | 0.2623 | ||||||
GW/mm | 2.922±0.023 | 2.927±0.025 | 0.3944 | ||||||
陵水 | LP1 | Wn28826-Wn28893 | TGW/g | 30.19±0.39 | 30.12±0.34 | 0.4894 | |||
Lingshui | GL/mm | 8.110±0.034 | 8.104±0.040 | 0.5480 | |||||
GW/mm | 3.291±0.013 | 3.286±0.014 | 0.1920 | ||||||
LP2 | Wn28826-Wn28990 | TGW/g | 29.32±0.58 | 29.19±0.64 | 0.4124 | ||||
GL/mm | 8.123±0.042 | 8.105±0.037 | 0.1011 | ||||||
GW/mm | 3.224±0.041 | 3.212±0.046 | 0.3026 | ||||||
LP3 | Wn28990-Wn29048 | TGW/g | 30.00±0.27 | 29.85±0.29 | 0.0394 | -0.08 | 4.30 | ||
GL/mm | 8.109±0.043 | 8.086±0.035 | 0.0256 | -0.012 | 5.25 | ||||
GW/mm | 3.275±0.022 | 3.272±0.023 | 0.6138 | ||||||
LP4 | Wn29048-Wn29125 | TGW/g | 30.56±0.25 | 30.91±0.27 | <0.0001 | 0.17 | 19.09 | ||
GL/mm | 8.241±0.043 | 8.296±0.033 | <0.0001 | 0.027 | 27.12 | ||||
GW/mm | 3.297±0.015 | 3.295±0.014 | 0.7289 | ||||||
LP5 | Wn29125-RM1231 | TGW/g | 29.84±0.44 | 29.78±0.52 | 0.6563 | ||||
GL/mm | 8.083±0.049 | 8.105±0.057 | 0.1154 | ||||||
GW/mm | 3.268±0.024 | 3.262±0.036 | 0.4580 | ||||||
LP6 | Wn29154-RM1231 | TGW/g | 29.67±0.49 | 29.78±0.55 | 0.4381 | ||||
GL/mm | 8.177±0.042 | 8.151±0.043 | 0.0206 | -0.013 | 6.03 | ||||
GW/mm | 3.227±0.043 | 3.245±0.034 | 0.0711 | ||||||
A-密阳46等位基因取代珍汕97等位基因所产生的遗传效应。R2-效应对表型方差的贡献率。 A, Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele. R2, Proportion of phenotypic variance explained by the QTL effect. |
Table 3 QTL analysis for 1000-grain weight, grain length and grain width in nine sets of NILs.
试验 Trial | 名称 Name | 分离区间 Segregating region | 性状 Trait | 表型值(平均值±标准差) | P | A | R2 / % | ||
---|---|---|---|---|---|---|---|---|---|
Phenotype (Mean±SD) | |||||||||
NILZS97 | NILMY46 | ||||||||
杭州 | Y1 | Wn28826-RM1231 | TGW/g | 25.42±0.30 | 25.69±0.32 | 0.0017 | 0.13 | 8.99 | |
Hangzhou | GL/mm | 8.098±0.062 | 8.143±0.041 | 0.0018 | 0.023 | 8.13 | |||
GW/mm | 2.950±0.019 | 2.966±0.023 | 0.0048 | 0.008 | 8.19 | ||||
Y2 | Wn28990-RM1231 | TGW/g | 26.68±0.32 | 26.78±0.38 | 0.2372 | ||||
GL/mm | 8.201±0.050 | 8.231±0.061 | 0.0343 | 0.015 | 5.33 | ||||
GW/mm | 3.049±0.017 | 3.056±0.019 | 0.1553 | ||||||
Y3 | Wn29154-RM1231 | TGW/g | 25.65±0.25 | 25.68±0.28 | 0.6181 | ||||
GL/mm | 8.143±0.053 | 8.129±0.046 | 0.2623 | ||||||
GW/mm | 2.922±0.023 | 2.927±0.025 | 0.3944 | ||||||
陵水 | LP1 | Wn28826-Wn28893 | TGW/g | 30.19±0.39 | 30.12±0.34 | 0.4894 | |||
Lingshui | GL/mm | 8.110±0.034 | 8.104±0.040 | 0.5480 | |||||
GW/mm | 3.291±0.013 | 3.286±0.014 | 0.1920 | ||||||
LP2 | Wn28826-Wn28990 | TGW/g | 29.32±0.58 | 29.19±0.64 | 0.4124 | ||||
GL/mm | 8.123±0.042 | 8.105±0.037 | 0.1011 | ||||||
GW/mm | 3.224±0.041 | 3.212±0.046 | 0.3026 | ||||||
LP3 | Wn28990-Wn29048 | TGW/g | 30.00±0.27 | 29.85±0.29 | 0.0394 | -0.08 | 4.30 | ||
GL/mm | 8.109±0.043 | 8.086±0.035 | 0.0256 | -0.012 | 5.25 | ||||
GW/mm | 3.275±0.022 | 3.272±0.023 | 0.6138 | ||||||
LP4 | Wn29048-Wn29125 | TGW/g | 30.56±0.25 | 30.91±0.27 | <0.0001 | 0.17 | 19.09 | ||
GL/mm | 8.241±0.043 | 8.296±0.033 | <0.0001 | 0.027 | 27.12 | ||||
GW/mm | 3.297±0.015 | 3.295±0.014 | 0.7289 | ||||||
LP5 | Wn29125-RM1231 | TGW/g | 29.84±0.44 | 29.78±0.52 | 0.6563 | ||||
GL/mm | 8.083±0.049 | 8.105±0.057 | 0.1154 | ||||||
GW/mm | 3.268±0.024 | 3.262±0.036 | 0.4580 | ||||||
LP6 | Wn29154-RM1231 | TGW/g | 29.67±0.49 | 29.78±0.55 | 0.4381 | ||||
GL/mm | 8.177±0.042 | 8.151±0.043 | 0.0206 | -0.013 | 6.03 | ||||
GW/mm | 3.227±0.043 | 3.245±0.034 | 0.0711 | ||||||
A-密阳46等位基因取代珍汕97等位基因所产生的遗传效应。R2-效应对表型方差的贡献率。 A, Additive effect of replacing a Zhenshan 97 allele with a Milyang 46 allele. R2, Proportion of phenotypic variance explained by the QTL effect. |
[1] | Xing Y Z, Zhang Q F.Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 2010, 61: 421-442. |
[2] | Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H.Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nature Plants, 2016, 2: 15203. |
[3] | Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q.A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8: 1455-1465. |
[4] | Yu J P, Xiong H Y, Zhu X Y, Zhang H L, Li H H, Miao J L, Wang W S, Tang Z S, Zhang Z Y, Yao G X, Zhang Q, Pan Y H, Wang X, Rashid M A R, Li J J, Gao Y M, Li Z K, Yang W C, Fu X D, Li Z C. OsLG3 contributing to rice grain length and yield was mined by Ho-LAMap[J]. BMC Biology, 2017, 15: 28. |
[5] | Yu J P, Miao J L, Zhang Z Y, Xiong H Y, Zhu X Y, Sun X M, Pan Y H, Liang Y T, Zhang Q, Abdul Rehman R M, Li J J, Zhang H L, Li Z C. Alternative splicing of OsLG3b controls grain length and yield in japonica rice[J]. Plant Biotechnology Journal, 2018, 16: 1667-1678. |
[6] | Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D.G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nature Communications, 2018, 9: 852. |
[7] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112: 1164-1171. |
[8] | Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao P J, Lin H X.The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22: 1666-1680. |
[9] | Zhang X J, Wang J F, Huang J, Lan H X, Wang C L, Yin C F, Wu Y Y, Tang H J, Qian Q, Li J Y, Zhang H S.Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(52): 21534-21539. |
[10] | Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X.A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Molecular Plant, 2018, 11:736-749. |
[11] | Xia D, Zhou H, Liu R j, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice[J]. Molecular Plant, 2018, 11: 754-756. |
[12] | Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J.TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 2018, 11: 750-753. |
[13] | Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang X K, Wing R A, Zhu Z F.A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3: 17064. |
[14] | Wang A H, Hou Q Q, Si L Z, Huang X H, Luo J H, Lu D F, Zhu J J, Shangguan Y Y, Miao J S, Xie Y F, Wang Y C, Zhao Q, Feng Q, Zhou C C, Li Y, Fan D L, Lu Y Q, Tian Q L, Wang Z X, Han B.The PLATZ transcription factor GL6 affects grain length and number in rice[J]. Plant Physiology, 2019, 180 : 2077-2090. |
[15] | Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6): 707-711. |
[16] | Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shangguan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B.OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4): 447-456. |
[17] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[18] | Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12): 1266-1269. |
[19] | Duan P G, Xu J S, Zeng D L, Zhang B L, Geng M F, Zhang G Z, Huang K, Huang L J, Xu R, Ge S, Qian Q, Li Y H.Natural variation in the promoter of GSE5 contributes to grain size diversity in rice[J]. Molecular Plant, 2017, 10: 685-694. |
[20] | Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M.GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice[J]. Nature Plants, 2017, 3: 17043. |
[21] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[22] | Song X J, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J Z, Kitano H, Sakakibara H, Jacobsen S E, Ashikari M.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1): 76-81. |
[23] | Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[24] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D.The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. |
[25] | Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nature Communications, 2018, 9: 1240. |
[26] | Li N, Xu R, Duan P G, Li Y H.Control of grain size in rice[J]. Plant Reproduction, 2018, 31: 237-251. |
[27] | 刘喜,牟昌铃,周春雷,程治军,江玲,万建民. 水稻粒型基因克隆和调控机制研究进展[J]. 中国水稻科学,2018, 32(1): 1-11. |
Liu X, Mou C L, Zhou C L, Cheng Z J, Jiang L, Wang J M.Research progress on cloning and regulation mechanism of rice grain shape genes[J]. Chinese Journal of Rice Science, 2018, 32(1): 1-11. (in Chinese with English abstract) | |
[28] | Mackay T F C, Stone E A, Ayroles J F. The genetics of quantitative traits: challenges and prospects[J]. Nature Reviews Genetics, 2009, 10: 565-577. |
[29] | Kumar J, Gupta D S, Gupta S, Dubey S, Gupta P, Kumar S.Quantitative trait loci from identification to exploitation for crop improvement[J]. Plant Cell Reports, 2017, 36: 1187-1213. |
[30] | Yamamoto T, Yonemaru J, Yano M.Towards the understanding of complex traits in rice: substantially or superficially[J]. DNA Research, 2009, 16: 141-154. |
[31] | Zhang H W, Fan Y Y, Zhu Y J, Chen J Y, Yu S B, Zhuang J Y.Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice[J]. BMC Genetics, 2016, 17: 98. |
[32] | Guo L, Wang K, Chen J Y, Huang D R, Fan Y Y, Zhuang J Y.Dissection of two quantitative trait loci for grain weight linked in repulsion on the long arm of chromosome 1 of rice (Oryza sativa L.)[J]. The Crop Journal, 2013, 1: 70-76. |
[33] | Zheng K L, Huang N, Bennett J, Khush G S.PCR-based marker-assisted selection in rice breeding//IRRI Discussion Paper Series No. 12. Los Banos: International Rice Research Institute, 1995. |
[34] | Chen X, Temnykh S, Xu Y, Cho Y G, McCouch S R. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 1997, 95: 553-567. |
[35] | SAS Institute Inc.SAS/STAT User’s Guide[M]. Cary, NC: SAS Institute, 1999. |
[36] | Dai W M, Zhang K Q, Wu J R, Wang L, Duan B W, Zheng K L, Cai R, Zhuang J Y.Validating a segment on the short arm of chromosome 6 responsible for genetic variation in the hull silicon content and yield traits of rice[J]. Euphytica, 2008, 160: 317-324. |
[37] | Abiola O, Angel J M, Avner P, Bachmanov A A, Belknap J K, Bennett B, Blankenhorn E P, Blizard D A, Bolivar V, Brockmann G A, Buck K J, Bureau J F, Casley W L, Chesler E J, Cheverud J M, Churchill G A, Cook M, Crabbe J C, Crusio W E, Darvasi A, Haan G D, Dermant P, Doerge R W, Elliot R W, Farber C R, Flaherty L, Flint J, Gershenfeld H, Gibson J P, Gu J, Gu W, Himmelbauer H, Hitzemann R, Hsu H C, Hunter K, Iraqi F F, Jansen R C, Johnson T E, Jones B C, Kempermann G, Lammert F, Lu L, Manly K F, Matthews D B, Medrano J F, Mehrabian M, Mittlemann G, Mock B A, Mogil J S, Montagutelli X, Morahan G, Mountz J D, Nagase H, Nowakowski R S, O'Hara B F, Osadchuk A V, Paigen B, Palmer A A, Peirce J L, Pomp D, Rosemann M, Rosen G D, Schalkwyk L C, Seltzer Z, Settle S, Shimomura K, Shou S, Sikela J M, Siracusa L D, Spearow J L, Teuscher C, Threadgill D W, Toth L A, Toye A A, Vadasz C, Van Zant G, Wakeland E, Williams R W, Zhang H G, Zou F. Complex Trait Consortium. The nature and identification of quantitative trait loci: A community’s view[J]. Nature Reviews Genetics, 2003, 4(11): 911-916. |
[38] | Wang L L, Chen Y Y, Guo L, Zhang H W, Fan Y Y, Zhuang J Y.Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.)[J]. Euphytica, 2015, 202: 119-127. |
[39] | Dong Q, Zhang Z H, Wang L L, Zhu Y J, Fan Y Y, Mou T M, Ma L Y, Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice[J]. Rice, 2018, 11: 44. |
[40] | Wang W H, Wang L L, Zhu Y J, Fan Y Y, Zhuang J Y.Fine-mapping of qTGW1.2a, a quantitative trait locus for 1000-grain weight in rice[J]. Rice Science, 2019, 26(4): 220-228. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||