Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (6): 525-538.DOI: 10.16819/j.1001-7216.2020.0701
• Research Papers • Previous Articles Next Articles
Yuping ZHANG1,2,#, Junke WANG2,#, Yaliang WANG2, Yanhua CHEN2, Dengfeng ZHU2, Huizhe CHEN2, Jing XIANG2, Yikai ZHANG2, Xiaojun LIU1, Yan ZHU1, Weixing CAO1,*()
Received:
2020-07-01
Revised:
2020-09-11
Online:
2020-11-10
Published:
2020-11-10
Contact:
Yuping ZHANG, Junke WANG, Weixing CAO
张玉屏1,2,#, 王军可2,#, 王亚梁2, 陈燕华2, 朱德峰2, 陈惠哲2, 向镜2, 张义凯2, 刘小军1, 朱艳1, 曹卫星1,*()
通讯作者:
张玉屏,王军可,曹卫星
基金资助:
CLC Number:
Yuping ZHANG, Junke WANG, Yaliang WANG, Yanhua CHEN, Dengfeng ZHU, Huizhe CHEN, Jing XIANG, Yikai ZHANG, Xiaojun LIU, Yan ZHU, Weixing CAO. Response ofRice Starch Synthesis to Night Temperature Changes[J]. Chinese Journal OF Rice Science, 2020, 34(6): 525-538.
张玉屏, 王军可, 王亚梁, 陈燕华, 朱德峰, 陈惠哲, 向镜, 张义凯, 刘小军, 朱艳, 曹卫星. 水稻淀粉合成对夜温变化的响应[J]. 中国水稻科学, 2020, 34(6): 525-538.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.0701
温度时段 Period | 夜间低温 LN | 夜间适温 NT | 夜间高温 HT |
---|---|---|---|
0:00–6:30 | 20 | 24 | 28 |
6:30–9:30 | 28 | 28 | 28 |
9:30–17:30 | 31 | 31 | 31 |
17:30–22:30 | 28 | 28 | 28 |
22:30–24:00 | 20 | 24 | 28 |
平均Average | 26.3 | 27.7 | 29 |
Table 1 Temperature setting of different treatments in climate chambers.℃
温度时段 Period | 夜间低温 LN | 夜间适温 NT | 夜间高温 HT |
---|---|---|---|
0:00–6:30 | 20 | 24 | 28 |
6:30–9:30 | 28 | 28 | 28 |
9:30–17:30 | 31 | 31 | 31 |
17:30–22:30 | 28 | 28 | 28 |
22:30–24:00 | 20 | 24 | 28 |
平均Average | 26.3 | 27.7 | 29 |
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
OsUBQ | GCACCCTCGCCGACTACAACATCCA | CCACCTTGTAGAACTGGAGCACGGC |
OsSUT1 | ATGTGGCTCTGTGGTCCTATTGC | TCAACACACATCCTGTAAGAATA |
OsSUT2 OsSUT4 | GCTGTGCCAACCTCAAGTCTGCC TCAAAGTATGGAAGAAGGAGACCGT | GTGAGGGCAGTAACAATCAAAAC GACCTTGAACTGTATTGTTTGCGAG |
OsSSⅠ | CGTGTGATGGTTGTAATGCCGAG | CTGATTATCGCCAAAAGCACCAA |
OsSSⅡa | GGTGTCTATGCGTTGTTGGAATG | CTCTTTGCTCTTGCGGATAACAG |
OsSSⅢa | CCCACCGCCTTCCTTCCTGCTACT | GTGAAGGGCTGGCGGGGAGACGAG |
OsBEⅡb | GGTGTTTGGGAGATTTTTCTGCCTA | GGTCTTTTAGGTTGAGGATGCTTGA |
Table 2 Primers used for quantitative real-time PCR.
基因 Gene | 正向引物 Forward primer (5'→3') | 反向引物 Reverse primer (5'→3') |
---|---|---|
OsUBQ | GCACCCTCGCCGACTACAACATCCA | CCACCTTGTAGAACTGGAGCACGGC |
OsSUT1 | ATGTGGCTCTGTGGTCCTATTGC | TCAACACACATCCTGTAAGAATA |
OsSUT2 OsSUT4 | GCTGTGCCAACCTCAAGTCTGCC TCAAAGTATGGAAGAAGGAGACCGT | GTGAGGGCAGTAACAATCAAAAC GACCTTGAACTGTATTGTTTGCGAG |
OsSSⅠ | CGTGTGATGGTTGTAATGCCGAG | CTGATTATCGCCAAAAGCACCAA |
OsSSⅡa | GGTGTCTATGCGTTGTTGGAATG | CTCTTTGCTCTTGCGGATAACAG |
OsSSⅢa | CCCACCGCCTTCCTTCCTGCTACT | GTGAAGGGCTGGCGGGGAGACGAG |
OsBEⅡb | GGTGTTTGGGAGATTTTTCTGCCTA | GGTCTTTTAGGTTGAGGATGCTTGA |
Fig. 1. Comparison of 1000-grain weight, starch contents, amylopectin contents of different chain lengths, pasting temperature, and gel consistency of rice grain at different night temperatures. LT, Low night temperature treatment; NT, Normal night temperature treatment; HT, High night temperature treatment; DAT, Days after treatment. Values are Mean ± SD. Bars superscripted by different lowercase letters are significantly different at 0.05 level among treatments. The same as below.
Fig. 2. Comparison of carbohydrate accumulation in grain under different night temperature treatments. A, Contents of soluble sugar at 12:00 AM; B, Contents of soluble sugar at 24:00 PM; C, Contents of starch at 12:00 AM; D, Contents of starch at 24:00 PM; E, Non-structural carbohydrate contents at 12:00 AM; F, Non-structural carbohydrate contents at 24:00 PM.
Fig. 3. Comparison of sucrose transporter gene expression under different night temperature treatments. A, Relative expression level of OsSUT1 at 12:00 AM; B, Relative expression level of OsSUT1 at 24:00 PM; C, Relative expression level of OsSUT2 at 12:00 AM; D, Relative expression level of OsSUT2 at 24:00 PM; E, Relative expression level of OsSUT4 at 12:00 AM; F, Relative expression level of OsSUT4 at 24:00 PM.
Fig. 4. Comparison of sucrose hydrolysis-related enzymes under different night temperature treatments. A, Sucrose synthase activity at 12:00 AM; B, Sucrose synthase activity at 24:00 PM; C, Activity of soluble sucroseinvertase at 12:00 AM; D, Activity ofsoluble sucroseinvertase at 24:00 PM.
处理温度Treatment | 5 DAT | 10 DAT | 15 DAT |
---|---|---|---|
LT | 21.8±0.5 a | 22.8±0.5 a | 21.8±0.5 a |
NT | 22.4±0.3 a | 21.4±0.3 a | 21.4±0.3 a |
HT | 22.7±0.5 a | 21.7±0.5 a | 19.7±0.5 b |
Table 3 Comparison of leaf net photosynthetic rate under different night temperature treatments.μmol/(m2·s)
处理温度Treatment | 5 DAT | 10 DAT | 15 DAT |
---|---|---|---|
LT | 21.8±0.5 a | 22.8±0.5 a | 21.8±0.5 a |
NT | 22.4±0.3 a | 21.4±0.3 a | 21.4±0.3 a |
HT | 22.7±0.5 a | 21.7±0.5 a | 19.7±0.5 b |
Fig. 6. Comparison of amylose synthase activity under different night temperature treatments. A, Content of glucose adenosine diphosphate at 12:00 AM; B, Content of glucose adenosine diphosphate at 24:00 PM; C, Activity of ADP-glucose pyrophosphorylase at 12:00 AM; D, Activity of ADP-glucose pyrophosphorylase at 24:00 PM; E, Activity of particle-binding starch synthase at 12:00 AM; F, Activity of granuce-bound starch synthase at 24:00 PM.
Fig. 7. Comparison of amylopectin formation-related enzyme activities under different night temperature treatments. A, Activity of soluble starch synthase (SSS) at 12:00 AM; B, Activity of soluble starch synthase (SSS) at 24:00 PM; C, Activity of amylase branching enzyme (SBE) at 12:00 AM; D, Activity of amylase branching enzyme (SBE) at 24:00 PM; E, Activity of amylase branching enzyme (DBE) at 12:00 AM; F, Activity of amylase branching enzyme (DBE) at 24:00 PM.
Fig. 8. Comparison of starch hydrolase-related enzyme activities under different night temperature treatments. A, Activity of ɑ-amylase activity at 12:00 AM; B, Activity of ɑ-amylase activity at 24:00 PM; C, β-amylase activity at 12:00 AM; D, β-amylase activity at 24:00 PM.
Fig. 9. Comparison of sucrose transporter gene expression under different night temperatures. A, Relative expression level of OsSSⅠat 12:00 AM; B, Relative expression level of OsSSⅠat 24:00 PM; C, Relative expression level of OsSSⅡa at 12:00 AM; D, Relative expression level of OsSSⅡa at 24:00 PM; E, Relative expression level of OsSSⅢa at 12:00 AM; F, Relative expression level of OsSSⅢa at 24:00 PM; G, Relative expression level of OsBEⅡb at 12:00 AM; H, Relative expression level of OsBEⅡb at 24:00 PM.
[1] | 陈波, 周年兵, 郭保卫, 黄大山, 陈忠平, 花劲, 霍中洋, 张洪程. 南方稻区“籼改粳”研究进展[J]. 扬州大学学报:农业与生命科学版, 2017, 38(1): 67-72, 88. |
Chen B, Zhou N B, Guo B W, Huang D S, Chen Z P, Hua J, Huo Z Y, Zhang H C.Progress of “indicarice to japonicarice” in southern China[J]. Journal of Yangzhou University:Agricultural and Life Science Edition,2017, 38(1): 67-72, 88. (in Chinese with English abstract) | |
[2] | 成臣, 黎星, 谭雪明, 商庆银, 曾研华, 石庆华, 曾勇军, 吕伟生, 王玮, 陈芸.播期对南方优质晚粳稻产量及稻米品质的调控效应研究[J].中国稻米, 2018, 24(5): 58-63. |
Cheng C, Li X, Tan X M, Shang Q Y, Zeng Y H, Shi Q H, Zeng Y J, Lü W S, Wang W, Chen Y.Effects of sowing date on yield and quality of late japonica rice with high quality in southern China[J].China Rice, 2018, 24(5): 58-63. (in Chinese with English abstract) | |
[3] | 范晓磊,李应秋,陈专专,朱韵,刘巧泉.高温影响稻米品质形成机制研究及育种利用[C].2019年中国作物学会学术年会论文摘要集. 北京: 中国作物学会. 2019. |
Fan X L, Li Y Q, Chen Z Z, Zhu Y, Liu Q Q.Study on the mechanism of high temperature influencing rice quality formation and breeding utilization[C].Proceedings of the Annual Conference of the Chinese Crop Society.Beijing: The Chinese Crop Society,2019. | |
[4] | 杨军,章毅之,贺浩华,李迎春,陈小荣, 边建民,金国花,李翔翔,黄淑娥.水稻高温热害的研究现状与进展[J].应用生态学报,2020, 31(8): 2817-2830. |
Yang J, Zhang YZ, He H H,Li Y C,Chen X R,Bian J M,Jin G H,LiX X,Huang S E.Current status and research advances of high-temperature hazards in rice[J].Chinese Journal ofApplied Ecology, 2020, 31(8): 2817-2830.(in Chinese with English abstract) | |
[5] | 杨陶陶,解嘉鑫,黄山,谭雪明,潘晓华,曾勇军,石庆华,张俊,曾研华.花后增温对双季晚粳稻产量和稻米品质的影响[J].中国农业科学,2020,53(7):1338-1347. |
Yang TT, Xie JX, Huang S, Tan X M, Pan XH, Zeng YJ,Shi QH, Zhang J, Zeng YH.The impacts of post-anthesiswarming on grain yield and quality oflate japonicarice in a double rice cropping system[J].Scientia AgriculturaSinica,2020,53(7):1338-1347. | |
[6] | Zhang C X, Feng B H, Chen TT, Fu W M, Li H B, Li G Y, JinQ Y, Tao L X, Fu G F. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source-sink relationship and sugars allocation[J]. Environmental and Experimental Botany, 2018, 155: 718-733. |
[7] | 龚金龙, 张洪程, 胡雅杰, 龙厚元, 常勇, 王艳, 邢志鹏, 霍中洋. 灌浆结实期温度对水稻产量和品质形成的影响[J]. 生态学杂志, 2013, 32(2): 482-491. |
Gong J L, Zhang H C, Hu Y J, Long H Y, Chang Y, Wang Y, Xing Z P, Huo Z Y.Effects of air temperature during rice grain-filling period on the formation of rice grain yield and its quality[J]. Chinese Journal of Ecology, 2013, 32(2): 482-491. (in Chinese with English abstract) | |
[8] | 曹云英, 段骅, 杨立年, 王志琴,刘立军, 杨建昌. 抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因[J]. 作物学报, 2009, 35(3): 512-521. |
Cao Y Y, Duan H, Yang L M, Wang Z Q, Liu L J, Yang C J.Effect of high temperature during heading and early grain filling on grain yield of indica rice cultivars differing in heat-tolerance and its physiological mechanism[J]. ActaAgronomicaSinica, 2009, 35(3): 512-521. (in Chinese with English abstract) | |
[9] | 曾凯, 居为民, 周玉, 管建丰, 王尚明, 张清霞. 高温逼熟等级对早稻品质与产量的影响[J]. 中国农学通报, 2011, 27(30): 120-125. |
Zeng K, Ju W M, Zhou Y, Guan S M, Zhang Q X.Influences of high temperature induced maturity on the quality and yield characteristics of early rice[J]. Chinese Agricultural Science Bulletin, 2011, 27(30): 120-125. (in Chinese with English abstract) | |
[10] | 朱昌兰, 贺浩华, 贺晓鹏, 彭小松, 傅军如, 欧阳林娟. 稻米支链淀粉的结构及其遗传调控研究进展[J]. 中国粮油学报, 2010, 25(12): 37-43. |
Zhu C L, He H H, He X P, Peng X S, Fu J R, Ouyang L J.Advance in research on rice amylopectin structure and its genetic mechanism[J]. Journal of the Chinese Cereals and Oils Association, 2010, 25(12): 37-43. (in Chinese with English abstract) | |
[11] | Houghton J, Ding Y, Griggs D J,Noguer M,van der Linden P J,Dai X,Maskell K,Johnson C A. IPCC, Climate Change 2001: The Scientific Basis[M].Cambridge, UK: Cambridge University Press, 2001, 881. |
[12] | Peng S, Huang J, Sheehy J E,Laza R C,Visperas R M,Zhong X, Centeno G S,Khush G S,Cassman K G.Rice yields decline with higher night temperature from global warming[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:9971-9975. |
[13] | Jagadish SV, Murty M V,Quick W P. Rice responses to rising temperatures-challenges, perspectives and future directions[J]. Plant Cell Environment,2015, 38: 1686-1698. |
[14] | Laza M R C, Sakai H, Cheng W,Tokida T, Peng S, Hasegawa T. Differential response of rice plants to high night temperatures imposed at varying developmental phases.Agricultural and Forest Meteorology, 2015:209-210. |
[15] | 吴自明, 时红, 石秀兰, 谭雪明, 石庆华, 潘晓华. 夜温升高对双季晚稻产量和品质影响[J]. 核农学报, 2014, 28(4): 708-713. |
Wu Z M, Shi H, Shi X L, Tan X M, Shi Q H, Pan X H.The effects of the elevated nighttime temperature on the yield and quality of double season late rice[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(4): 708-713. (in Chinese with English abstract) | |
[16] | Bahuguna R N, Solis C A, Shi W J, Jagadish K SV.Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.). PhysiologiaPlantarum, 2017, 159: 59-73. |
[17] | 周倩兰, 李怡, 肖枫, 徐宏发, 李刚华, 王绍华, 丁艳锋, 刘正辉. 水稻植株温度的研究进展与展望[J]. 杂交水稻, 2019, 34(5): 1-6. |
Zhou Q L, Li Y, Xiao F, Xu H F, Li G H, Wang S H, Ding Y F, Liu Z H.Advances in and future prospect of researches on rice plant temperature[J]. Hybrid Rice, 2019, 34(5): 1-6. (in Chinese with English abstract) | |
[18] | Czechowski T, Bari R P, Stitt M, Scheible W R, Udvardi M K.Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: Unprecedented sensitivity reveals novel root- and shoot-specific genes[J]. Plant Journal, 2004, 38: 366-379. |
[19] | 冯敏玉, 祝必琴, 雷俊, 朱建章,刘文英. 南昌高温逼熟发生规律及其对早稻产量的影响[J]. 中国农业气象, 2014, 35(3): 287-292. |
Feng M Y, Zhu B Q, Lei J, Zhu J Z, Liu W Y.Characteristics of high-temperature forced maturity disaster and It's impacts on early rice in Nanchang area[J]. Chinese Journal of Agrometeorology, 2014,35(3):287-292. (in Chinese with English abstract) | |
[20] | 曾研华, 张玉屏, 潘晓华, 朱德峰, 向镜, 陈惠哲,张义凯. 花后低温对水稻籽粒灌浆与内源激素含量的影响[J]. 作物学报, 2016, 42(10): 1551-1559. |
Zeng Y H, Zhang Y P, Pan X H, Zhu D F, Xang J, Chen H Z, Zheng Y K.Effect of low temperature after flowering on grain filling and plant hormones contents in rice[J]. ActaAgronomicaSinica, 2016,42(10):1551-1559. (in Chinese with English abstract) | |
[21] | Bhat F M, Riar C S.Effect of composition, granular morphology and crystalline structure on the pasting, textural, thermal and sensory characteristics of traditional rice cultivars[J]. Food Chemistry, 2019, 280: 303-309. |
[22] | 彭小松, 朱昌兰, 王方, 欧阳林娟, 贺晓鹏, 傅军如, 陈小荣, 刘琚珥, 贺浩华. 籼粳杂种后代支链淀粉结构及其与稻米糊化特性相关性分析[J].核农学报,2014,28(7):1219-1225. |
Peng X S, Zhu C L, Wang F, Ouyang L J, He X P, Fu J R, Chen X R, Liu J E, He H H.The relationship between amylopectin structure and rice pastepropertyof indica/japonica cross progenies[J]. Journal of Nuclear Agricultural Sciences, 2014,28(7):1219-1225. (in Chinese with English abstract) | |
[23] | 韦克苏. 花后高温对水稻胚乳淀粉合成与蛋白积累的影响机理[D]. 杭州: 浙江大学,2012. |
Wei K S.Effects of high temperature on starch synthesis and protein accumulation in rice endosperm at filling stage[D]. Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract) | |
[24] | Naoko F, Mayumi Y, Noriko A, Takashi O, Akio M, Hirohiko H, Yasunori N.Function and characterization of starch synthase I using mutants in rice[J]. Plant Physiology, 2006, 140(3):1070-1084. |
[25] | 高振宇, 曾大力, 崔霞, 周奕华, 颜美仙, 黄大年, 李家洋, 钱前. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析[J]. 中国科学: 生命科学, 2003, 46(6): 481-487. |
Gao Z Y, Zeng D L, Cui X, Zhou Y H, Yan M X, Huang D N, Ji J Y, Qian Q.Map based cloning and sequence analysis of ALK gene for rice gelatinization temperature control[J]. Science in China:Life Sciences, 2003, 46(6):481-487. (in Chinese with English abstract) | |
[26] | Jiang H, Dian W, Wu P.Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme[J]. Phytochemistry, 2003, 63(1):53-59. |
[27] | 滕中华, 智丽, 吕俊, 宗学凤, 王三根, 何光华. 灌浆期高温对水稻光合特性、内源激素和稻米品质的影响[J]. 生态学报, 2010, 30(23): 6504-6511. |
Teng Z H, Zhi L, Lü J, Zong X F, Wang S G, He G H.Effects of high temperature on photosynthesis characteristics, phytohormones and grain quality during filling-periods in rice[J]. ActaEcologicaSinica, 2010,30(23):6504-6511. (in Chinese with English abstract) | |
[28] | 张彩霞, 符冠富, 奉保华, 陈婷婷, 陶龙兴. 水稻同化物转运及其对逆境胁迫响应的机理[J]. 中国农业气象, 2018, 39(2): 73-83. |
Zhang C X, Fu G F, Feng B H, Chen T T, Tao L X.Mechanisms of assimilation transport in phloem of rice and its response to abiotic stress[J]. Chinese Journal of Agrometeorology, 2018, 39(2): 73-83.(in Chinese with English abstract) | |
[29] | 张彩霞. 高温影响水稻韧皮部同化物转运及代谢的作用机制及调控[D]. 北京: 中国农业科学院, 2018. |
Zhang C X.The mechanism and regulation underlying the inhibition on the assimilates transport and metabolism in phloem of rice caused by heat stress [D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[30] | 赵超, 王海燕, 刘美珍, 王文泉. 干旱胁迫下木薯茎杆可溶性糖、淀粉及相关酶的代谢规律[J]. 植物生理学报, 2017, 53(5): 795-806. |
Zhao C, Wang H Y, Liu M Z, Wang W Q.Effect of drought on the contents of soluble sugars, starch and enzyme activities in cassava stem[J]. Plant Physiology Journal, 2017,53(5):795-806. (in Chinese with English abstract) | |
[31] | 李天. 温光对水稻籽粒碳水化合物代谢及品质的影响[D]. 雅安: 四川农业大学, 2005. |
Li T.Effects of temperature and light on carbohydrate metabolism and quality of rice grain[D]. Yaan: Sichuan Agricultural University, 2005. (in Chinese with English abstract) | |
[32] | 张文倩,王亚梁,朱德峰,陈惠哲,向镜,张义凯,张玉屏.花期夜温升高对水稻颖花开放及籽粒结实的影响[J]. 中国农业气象, 2019, 40(3): 180-185. |
Zhang W Q,Wang YL,Zhu DF,Chen HZ,Xiang J,Zhang YK,Zhang YP.Effect of increasing night temperature on floret opening and grain setting of rice[J]. Chinese Journal of Agrometeorology, 2019,40(3):180-185. (in Chinese with English abstract) | |
[33] | 程方民, 丁元树, 朱碧岩. 稻米直链淀粉含量的形成及其与灌浆结实期温度的关系[J].生态学报, 2000, 20(4): 646-652. |
Cheng F M, Ding Y S, Zhu B Y.The formation of amylose content in rice grain and its relation with field temperature[J]. ActaEcologicaSinica, 2000, 20(4): 646-652. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||