Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (4): 348-358.DOI: 10.16819/j.1001-7216.2020.0103
• Research Papers • Previous Articles Next Articles
Yun GAO1,2, Tiesong HU2,*(), Xuebin QI1, Hongwei YUAN3
Received:
2020-01-08
Revised:
2020-02-26
Online:
2020-07-10
Published:
2020-07-10
Contact:
Tiesong HU
通讯作者:
胡铁松
基金资助:
CLC Number:
Yun GAO, Tiesong HU, Xuebin QI, Hongwei YUAN. Response of Yield Traits of Rice (Ⅱ-You 898) to Abrupt Drought-flood Alternation[J]. Chinese Journal OF Rice Science, 2020, 34(4): 348-358.
高芸, 胡铁松, 齐学斌, 袁宏伟. Ⅱ优898产量对旱涝急转的响应规律研究[J]. 中国水稻科学, 2020, 34(4): 348-358.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.0103
处理组 Treatment | 受旱程度 Drought degree/% | 受旱时间 Drought time/d | 受旱水平 Drought level | 受涝程度 Flood degree/% | 受涝时间 Flood time/d | 受涝水平 Flood level |
---|---|---|---|---|---|---|
ADFA1 | 70 | 5 | S-LD | 50 | 5 | S-LF |
DC1 | 70 | 5 | S-LD | |||
FC1 | 50 | 5 | S-LF | |||
ADFA2 | 70 | 10 | M-LD | 75 | 7 | M-MF |
DC2 | 70 | 10 | M-LD | |||
FC2 | 75 | 7 | M-MF | |||
ADFA3 | 70 | 15 | L-LD | 100 | 9 | L-HF |
DC3 | 70 | 15 | L-LD | |||
FC3 | 100 | 9 | L-HF | |||
ADFA4 | 60 | 5 | S-MD | 75 | 9 | L-MF |
DC4 | 60 | 5 | S-MD | |||
FC4 | 75 | 9 | L-MF | |||
ADFA5 | 60 | 10 | M-MD | 100 | 5 | S-HF |
DC5 | 60 | 10 | M-MD | |||
FC5 | 100 | 5 | S-HF | |||
ADFA6 | 60 | 15 | L-MD | 50 | 7 | M-LF |
DC6 | 60 | 15 | L-MD | |||
FC6 | 50 | 7 | M-LF | |||
ADFA7 | 50 | 5 | S-HD | 100 | 7 | M-HF |
DC7 | 50 | 5 | S-HD | |||
FC7 | 100 | 7 | M-HF | |||
ADFA8 | 50 | 10 | M-HD | 50 | 9 | L-LF |
DC8 | 50 | 10 | M-HD | |||
FC8 | 50 | 9 | L-LF | |||
ADFA9 | 50 | 15 | L-HD | 75 | 5 | S-MF |
DC9 | 50 | 15 | L-HD | |||
FC9 | 75 | 5 | S-MF |
Table 2 Design of drought and flood factors and levels.
处理组 Treatment | 受旱程度 Drought degree/% | 受旱时间 Drought time/d | 受旱水平 Drought level | 受涝程度 Flood degree/% | 受涝时间 Flood time/d | 受涝水平 Flood level |
---|---|---|---|---|---|---|
ADFA1 | 70 | 5 | S-LD | 50 | 5 | S-LF |
DC1 | 70 | 5 | S-LD | |||
FC1 | 50 | 5 | S-LF | |||
ADFA2 | 70 | 10 | M-LD | 75 | 7 | M-MF |
DC2 | 70 | 10 | M-LD | |||
FC2 | 75 | 7 | M-MF | |||
ADFA3 | 70 | 15 | L-LD | 100 | 9 | L-HF |
DC3 | 70 | 15 | L-LD | |||
FC3 | 100 | 9 | L-HF | |||
ADFA4 | 60 | 5 | S-MD | 75 | 9 | L-MF |
DC4 | 60 | 5 | S-MD | |||
FC4 | 75 | 9 | L-MF | |||
ADFA5 | 60 | 10 | M-MD | 100 | 5 | S-HF |
DC5 | 60 | 10 | M-MD | |||
FC5 | 100 | 5 | S-HF | |||
ADFA6 | 60 | 15 | L-MD | 50 | 7 | M-LF |
DC6 | 60 | 15 | L-MD | |||
FC6 | 50 | 7 | M-LF | |||
ADFA7 | 50 | 5 | S-HD | 100 | 7 | M-HF |
DC7 | 50 | 5 | S-HD | |||
FC7 | 100 | 7 | M-HF | |||
ADFA8 | 50 | 10 | M-HD | 50 | 9 | L-LF |
DC8 | 50 | 10 | M-HD | |||
FC8 | 50 | 9 | L-LF | |||
ADFA9 | 50 | 15 | L-HD | 75 | 5 | S-MF |
DC9 | 50 | 15 | L-HD | |||
FC9 | 75 | 5 | S-MF |
Fig. 2. Duration of growth of rice between 2017 and 2018. DAT, Days after transplanting; CK, Normal control; ADFA, Abrupt drought-flood alternation; DC, Drought control; FC, Flood control; Black bar chart, the duration of tillering stage; Red bar chart, Duration of jointing stage; Blue bar chart, Duration of heading stage; Magenta bar chart, Duration of milky stage; Green bar chart, Duration of maturity. The duration is the average of the treatment groups.
Fig. 4. Damage degree of the ADFA groups relative to the normal control group. Y, Yield; P, Panicle number per barrel; G, Grain number per panicle; SS, Total grain number; x3, Thousand-grain weight; x4, Seed setting rate; R, Damage degree of the ADFA groups relative to normal control group; G1, ADFA1 and CK; G2, ADFA2 and CK, and so on.
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight | 结实率 Seed setting rate |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree | ** | NS | NS | NS | NS | NS |
受旱时间 Drought time | * | * | NS | NS | NS | NS | |
受涝程度 Flood degree | ** | NS | ** | ** | ** | ** | |
受涝时间 Flood time | ** | ** | * | NS | NS | NS | |
2018 | 受旱程度 Drought degree | ** | NS | * | ** | NS | ** |
受旱时间 Drought time | ** | NS | ** | ** | NS | ** | |
受涝程度 Flood degree | ** | NS | ** | ** | NS | ** | |
受涝时间 Flood time | ** | NS | ** | ** | NS | ** |
Table 3 Significant influence of test factors on yield and yield components.
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight | 结实率 Seed setting rate |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree | ** | NS | NS | NS | NS | NS |
受旱时间 Drought time | * | * | NS | NS | NS | NS | |
受涝程度 Flood degree | ** | NS | ** | ** | ** | ** | |
受涝时间 Flood time | ** | ** | * | NS | NS | NS | |
2018 | 受旱程度 Drought degree | ** | NS | * | ** | NS | ** |
受旱时间 Drought time | ** | NS | ** | ** | NS | ** | |
受涝程度 Flood degree | ** | NS | ** | ** | NS | ** | |
受涝时间 Flood time | ** | NS | ** | ** | NS | ** |
Fig. 5. Influence of drought and flood degree and time on yield and yield components. Y, Yield; P, Panicle number per barrel; G, Grain number per panicle; SS, Total grain number; x3, Thousand-grain weight; x4, Seed setting rate; A1, A2 and A3, 70%, 60%, 50% field water-holding rates; B1, B2 and B3, Duration of drought for 5, 10, 15 d; C1, C2 and C3, Submergence depth of 50%, 75%, 100% plant height; D1, D2 and D3, Duration of flood for 5, 7, 9 d.
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield/g | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree | 9.713 | 1 | 8.666 | 335 | 1.81 | 4.274 |
受旱时间 Drought time | 8.636 | 2.666 | 4.667 | 263 | 0.666 | 3.334 | |
受涝程度 Flood degree | 34.773 | 1.334 | 18 | 641 | 3.056 | 12.82 | |
受涝时间 Flood time | 16.514 | 3 | 11.667 | 298.666 | 1.577 | 5.03 | |
2018 | 受旱程度 Drought degree | 14.737 | 0.667 | 9.333 | 525.334 | 0.773 | 7.83 |
受旱时间 Drought time | 14.596 | 2.333 | 12.333 | 797 | 0.7 | 5.644 | |
受涝程度 Flood degree | 33.31 | 1.334 | 29.667 | 1268.666 | 0.647 | 10.19 | |
受涝时间 Flood time | 21.294 | 0.667 | 18.334 | 849.333 | 0.514 | 4.793 |
Table 4 Extreme differences of test factors on yield and yield components.
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield/g | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight/g | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree | 9.713 | 1 | 8.666 | 335 | 1.81 | 4.274 |
受旱时间 Drought time | 8.636 | 2.666 | 4.667 | 263 | 0.666 | 3.334 | |
受涝程度 Flood degree | 34.773 | 1.334 | 18 | 641 | 3.056 | 12.82 | |
受涝时间 Flood time | 16.514 | 3 | 11.667 | 298.666 | 1.577 | 5.03 | |
2018 | 受旱程度 Drought degree | 14.737 | 0.667 | 9.333 | 525.334 | 0.773 | 7.83 |
受旱时间 Drought time | 14.596 | 2.333 | 12.333 | 797 | 0.7 | 5.644 | |
受涝程度 Flood degree | 33.31 | 1.334 | 29.667 | 1268.666 | 0.647 | 10.19 | |
受涝时间 Flood time | 21.294 | 0.667 | 18.334 | 849.333 | 0.514 | 4.793 |
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight | 结实率 Seed setting rate |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree/% | 70 | 70 | 70 | 70 | 60 | 60 |
受旱时间 Drought time/d | 15 | 5 | 15 | 10 | 15 | 10 | |
受涝程度 Flood degree/% | 50 | 75 | 50 | 50 | 50 | 50 | |
受涝时间 Flood time/d | 5 | 5 | 5 | 5 | 5 | 7 | |
2018 | 受旱程度 Drought degree/% | 60 | 60 | 60 | 60 | 70 | 70 |
受旱时间 Drought time/d | 10 | 10 | 10 | 10 | 10 | 10 | |
受涝程度 Flood degree/% | 50 | 75 | 50 | 50 | 50 | 50 | |
受涝时间 Flood time/d | 5 | 7 | 5 | 5 | 5 | 7 |
Table 5 Optimal combination of drought and flood with the lowest impact on yield and yield components.
年份 Year | 旱涝程度和时间 Drought/Flood degree and time | 产量 Yield | 穗数 Panicle number per barrel | 每穗粒数 Grain number per panicle | 总粒数 Total grain number | 千粒质量 Thousand-grain weight | 结实率 Seed setting rate |
---|---|---|---|---|---|---|---|
2017 | 受旱程度 Drought degree/% | 70 | 70 | 70 | 70 | 60 | 60 |
受旱时间 Drought time/d | 15 | 5 | 15 | 10 | 15 | 10 | |
受涝程度 Flood degree/% | 50 | 75 | 50 | 50 | 50 | 50 | |
受涝时间 Flood time/d | 5 | 5 | 5 | 5 | 5 | 7 | |
2018 | 受旱程度 Drought degree/% | 60 | 60 | 60 | 60 | 70 | 70 |
受旱时间 Drought time/d | 10 | 10 | 10 | 10 | 10 | 10 | |
受涝程度 Flood degree/% | 50 | 75 | 50 | 50 | 50 | 50 | |
受涝时间 Flood time/d | 5 | 7 | 5 | 5 | 5 | 7 |
[1] | Yan D H, Wu D, Huang R, Wang L N.Drought evolution characteristics and precipitation intensity changes during alternating dry-wet changes in the Huang-Huai-Hai River Basin[J]. Hydrology and Earth System Sciences. 2013, 17: 2859-2871. |
[2] | Li X H, Ye X C.Spatiotemporal characteristics of dry-wet abrupt transition based on precipitation in Poyang Lake Basin, China[J]. Water, 2015, 7(5): 1943-1958. |
[3] | Shi W Y.Study on the flood and drought disasters of Chaohu Lake Basin in the past 600 years[D]. Shanghai: Shanghai Normal University, 2011. |
[4] | Wang S, Tian H, Ding X J.Climate characteristics of precipitation and phenomenon of drought-flood abrupt alternation during main flood season in Huaihe River Basin[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 31-34. |
[5] | Wu W B, Verburg P H, Tang H J.Climate change and the food production system: impacts and adaptation in China[J]. Regional Environmental Change, 2014, 14(1): 1-5. |
[6] | Darzi-Naftchali A, Ritzema H, Karandish F, Mokhtassi B, Ghasemi N.Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran[J]. Agricultural Water Management, 2017, 193: 221-231. |
[7] | Yao F X, Huang J L, Cui K H, Nie L X, Xiang J, Liu X J, Wu W, Chen M X, Peng S B.Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation[J]. Field Crop Research, 2012, 126: 16-22. |
[8] | Shao G C, Deng S, Liu N, Yu S E, Wang M H, She D L.Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice[J]. European Journal of Agronomy, 2014, 53: 1-9. |
[9] | Gao Y, Hu T S, Wang Q, Yuan H W, Yang J W.Effect of drought-flood abrupt alternation on rice yield and yield components[J]. Crop Science, 2019, 58: 1-13. |
[10] | 高芸, 胡铁松, 袁宏伟, 杨继伟. 淮北平原旱涝急转条件下水稻减产规律分析[J]. 农业工程学报, 2017, 33(21): 128-136. |
Gao Y, Hu T S, Yuan H W, Yang J W.Analysis on yield reduced law of rice in Huaibei plain under drought-flood abrupt alternation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(21): 128-136. | |
[11] | 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量和品质的影响及其生理原因[J]. 作物学报. 2008, 34(2): 268-276. |
Liu K, Zhang H, Zhang S F, Wang Z Q, Yang J C.Effect of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(2): 268-276. | |
[12] | 郭相平,杨骕,王振昌, 杨静晗, 李小朴. 旱涝交替胁迫对水稻产量和品质的影响[J]. 灌溉排水学报,2015,34(1):13-16. |
Guo X P, Yang S, Wang Z C, Yang J H, Li X P.Effects of alternative stress of drought and waterlogging on rice yield and quality[J]. Journal of Irrigation and Drainage, 2015, 34(1): 13-16.(in Chinese with English abstract) | |
[13] | 熊强强, 沈天花, 钟蕾, 陈小荣, 朱昌兰, 彭小松, 贺浩华. 分蘖期和幼穗分化期旱涝急转对超级杂交早稻产量和品质的影响[J]. 灌溉排水学报, 2017, 36(10): 40-45. |
Xiong Q Q, Shen T H, Zhong L, Chen X R, Zhu C L, Peng X S, He H H.Effect of a sudden change from drought to waterlogging at the tillering or young spiking stage on yield and grain of hybrid rice[J]. Journal of Irrigation and Drainage, 2017, 36(10): 40-45. | |
[14] | 熊强强, 钟蕾, 沈天花, 陈小荣, 朱昌兰, 彭小松, 傅军如, 贺浩华. 穗分化期旱涝急转对双季超级杂交稻物质积累和产量形成的影响[J]. 中国农业气象, 2017, 38(9): 597-608. |
Xiong Q Q, Zhong L, Shen T H, Chen X R, Zhu C L, Peng X S, Fu J R, He H H.Effects of drought-floods abrupt alternation during panicle differentiation stage on matter accumulation and yield formation in double-season super hybrid rice[J]. Chinese Journal of Agrometeorology, 2017, 38(9): 597-608. (in Chinese with English abstract) | |
[15] | 邓艳, 钟蕾, 陈小荣, 朱昌兰, 彭小松, 贺晓鹏, 傅军如, 边建民, 胡丽芳, 欧阳林娟, 贺浩华. 穗分化期旱涝急转对超级杂交早稻产量和生理特性的影响[J]. 核农学报, 2017, 31(4): 768-776. |
Deng Y, Zhong L, Chen X R, Zhu C L, Peng X S, He X P, Fu J R, Bian J M, Hu L F, Ouyang L J, He H H.Effects of drought-floods abrupt alternation on physiological and yield characteristics in super hybrid early rice during panicle differentiation stage[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 768-776. (in Chinese with English abstract) | |
[16] | Cannell R Q, Belford R K, Gales K, Thomson R J, Webster C P.Effects of waterlogging and drought on winter wheat and winter barley grown on a clay and a sandy loam soil: I. Crop growth and yield[J]. Plant and Soil, 1984, 80: 53-66. |
[17] | Shao G C, Cheng X, Liu N, Zhang Z.Effect of drought pretreatment before anthesis and post-anthesis waterlogging on water relation, photosynthesis, and growth of tomatoes[J]. Archives of Agronomy and Soil Science, 2016, 62(7): 935-946. |
[18] | Cannell R Q, Belford R K, Gales K, Dennis C W, Prew R D.Effects of waterlogging at different stages of development on the growth and yield of winter wheat[J]. Journal of the Science of Food and Agriculture, 1980, 31: 117-132. |
[19] | Dickin E, Wright D.The effects of winter waterlogging and summer drought on the growth and yield of winter wheat (Triticum aestivum L.)[J]. European Journal of Agronomy, 2008, 28: 234-244. |
[20] | 郭相平, 袁静, 郭枫, 陈治平. 旱涝快速转换对分蘖后期水稻生理特性的影响. 河海大学学报:自然科学版[J]. 2008, 36(4): 516-519. |
Guo X P, Yuan J, Guo F, Chen Z P.Effects of rapid shift from drought to waterlogging stress on physiological characteristics of rice in late tillering stage[J]. Journal of Hohai University: Natural Sciences, 2008, 36(4): 516-519. (in Chinese with English abstract) | |
[21] | Kawano N, Ito O, Sakagami J I.Morphological and physiological responses of rice seedlings to complete submergence (flash flooding)[J]. Annals of Botany, 2008, 103(2): 161-169. |
[22] | Wang C, Yang A, Yin H, Zhang J.Influence of water stress on endogenous hormone contents and cell damage of maize seedlings[J]. Journal of Integrative Plant Biology, 2008, 50(4): 427-434. |
[23] | 郝树荣, 郭相平, 张展羽.作物干旱胁迫及复水的补偿效应研究进展. 水利水电科技进展. 2009, 29(1): 81-84. |
Hao S R, Guo X P, Zhang Z Y.Research progress on compensatory effects at crops in drought stress and rehydration[J]. Advances in Science and Technology of Water Resources, 2009, 29(1): 81-84. (in Chinese with English abstract) | |
[24] | 崔远来, 茆智, 李远华. 水稻水分生产函数时空变异规律研究[J]. 水科学进展, 2002, 13(4): 484-491. |
Cui Y L, Mao Z, Li Y H.Study on temporal and spatial variation of rice water production function[J]. Advances in Water Science, 2002, 13(4): 484-491. | |
[25] | 李阳生, 彭凤英, 李达模, 李振声. 杂交水稻苗期耐淹特性及其与亲本的关系[J]. 杂交水稻, 2001, 16(2): 50-53. |
Li Y S, Peng F Y, Li D M, Li Z S.Relationship between hybrids and their parents on submergence tolerance at seedling stage[J]. Hybrid Rice, 2001, 16(2): 50-53. (in Chinese with English abstract) | |
[26] | Gravois K A, Helms R S.Path analysis of rice yield and yield components as mected by seeding rate[J]. Agronomy Journal, 1992, 84: 1-4. |
[27] | Gravois K A, McNew R W. Genetic relationships among and selection for rice yield and yield components[J]. Crop Science, 1993, 33(2): 249-252. |
[28] | Bhatia D, Joshi S, Das A.Introgression of yield component traits in rice (Oryza sativa ssp. indica) through interspecific hybridization[J]. Crop Science, 2017, 57(3): 1557-1573. |
[29] | Singh S, Mackill D J, Ismail A M.Responses of SUB1 rice introgression lines to submergence in the field: Yield and grain quality[J]. Field Crops Research, 2009, 113(1): 12-23. |
[30] | Dar N H, Janvry A D, Emerick K, Raitzer D, Sadoulet E.Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups[J]. Scientific Reports, 2013, 3: 3315. |
[31] | Subere J O Q, Bolatete D, Bergantin R, Pardales A, Belmonte J J. Genotypic variation in responses of cassava (Manihot esculenta Crantz) to drought and rewatering: Root system development[J]. Plant Production Science, 2009, 12(4): 462-474. |
[32] | Zhang H, Tan G L, Yang L N, Yang J C, Zhang J H.Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J]. Plant Physiology & Biochemistry, 2009, 47(3): 195-204. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||