Chinese Journal OF Rice Science ›› 2019, Vol. 33 ›› Issue (6): 489-498.DOI: 10.16819/j.1001-7216.2019.8126
• Orginal Article • Previous Articles Next Articles
Ni CAO, Yuan CHEN, Zhijuan JI, Yuxiang ZENG, Changdeng YANG*(), Yan LIANG*(
)
Received:
2018-11-22
Revised:
2019-03-23
Online:
2019-11-10
Published:
2019-11-10
Contact:
Changdeng YANG, Yan LIANG
曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登*(), 梁燕*(
)
通讯作者:
杨长登,梁燕
基金资助:
CLC Number:
Ni CAO, Yuan CHEN, Zhijuan JI, Yuxiang ZENG, Changdeng YANG, Yan LIANG. Recent Progress in Molecular Mechanism of Rice Blast Resistance[J]. Chinese Journal OF Rice Science, 2019, 33(6): 489-498.
曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展[J]. 中国水稻科学, 2019, 33(6): 489-498.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2019.8126
抗性基因Resistant gene | 无毒基因Avirulence gene | 参考文献 Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
稻瘟病抗性基因 R gene | 编码蛋白类型 Encoding protein | 稻瘟菌无毒基因 Avr gene | 编码蛋白类型 Encoding protein | ||||||||
Pi1 | NBS-LRR蛋白 | 未知Unknown | - | [40] | |||||||
Pi2 | NBS-LRR蛋白 | 未知Unknown | - | [33] | |||||||
Pi5 | NBS-LRR蛋白 | 未知Unknown | - | [42] | |||||||
Pi9 | NBS-LRR蛋白 | AvrPi9 | 分泌蛋白 | [32][43] | |||||||
Pi25 | NBS-LRR蛋白 | 未知Unknown | - | [44] | |||||||
Pi33 | - | ACE1 | 聚酮合成酶 | [45] | |||||||
Pi35 | NBS-LRR蛋白 | 未知Unknown | - | [46] | |||||||
Pi36 | NBS-LRR蛋白 | 未知Unknown | - | [47] | |||||||
Pi37 | NBS-LRR蛋白 | 未知Unknown | - | [48] | |||||||
Pi50 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [49] | |||||||
Pi56 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [50] | |||||||
Pi64 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [51] | |||||||
Piz-t | NBS-LRR蛋白 | AvrPiz-t | 分泌蛋白 | [35][52] | |||||||
Pit | NBS-LRR蛋白 | 未知Unknown | - | [37] | |||||||
Pit-a | NBS-LRR蛋白 | AvrPi-ta | 分泌蛋白 | [41][53] | |||||||
Pia | NBS-LRR蛋白 | Avr-Pia | 分泌蛋白 | [54][55] | |||||||
Pib | NBS-LRR蛋白 | Avr-Pib | 分泌蛋白 | [56][57] | |||||||
Pish | NBS-LRR蛋白 | 未知Unknown | - | [58] | |||||||
Pb1 | NBS-LRR蛋白 | 未知Unknown | - | [59] | |||||||
Pik | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][60] | |||||||
Pik-m | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][61] | |||||||
Pik-p | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][62] | |||||||
Pid3 | NBS-LRR蛋白 | 未知Unknown | - | [63] | |||||||
Pi-d2 | B-lectin蛋白 | 未知Unknown | - | [27] | |||||||
Pi21 | 富含脯氨酸类蛋白 | 未知Unknown | - | [28] | |||||||
Ptr | ARM蛋白 | 未知Unknown | - | [29] | |||||||
Pi-CO39 | NBS-LRR蛋白 | AvrPi-CO39 | 分泌蛋白 | [64] | |||||||
Pigm | NBS-LRR蛋白 | 未知 Unknown | - | [34] | |||||||
Pii | - | Avr-Pii | 分泌蛋白 | [55] | |||||||
Pi54 | NBS-LRR蛋白 | AvrPi54 | 分泌蛋白 | [39] | |||||||
Pi63 | NBS-LRR蛋白 | 未知Unknown | - | [65] | |||||||
Pid3-A4 | NBS-LRR蛋白 | 未知Unknown | - | [66] | |||||||
Pi54rh | NBS-LRR蛋白 | 未知Unknown | - | [67] | |||||||
Pi54of | NBS-LRR蛋白 | 未知Unknown | - | [68] | |||||||
Pike | NBS-LRR蛋白 | 未知Unknown | - | [69] | |||||||
Piks | - | 未知Unknown | - | GeneBank: AET36547.1, AET36548.1 | |||||||
未知Unknown | - | PWL1 | 分泌蛋白 | [70] | |||||||
未知Unknown | - | PWL2 | 分泌蛋白 | [71] | |||||||
bsr-k1 | TPRs蛋白 | 未知Unknown | - | [30] |
Table 1 The cloned rice resistance genes and avirulence genes of M. oryzae.
抗性基因Resistant gene | 无毒基因Avirulence gene | 参考文献 Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
稻瘟病抗性基因 R gene | 编码蛋白类型 Encoding protein | 稻瘟菌无毒基因 Avr gene | 编码蛋白类型 Encoding protein | ||||||||
Pi1 | NBS-LRR蛋白 | 未知Unknown | - | [40] | |||||||
Pi2 | NBS-LRR蛋白 | 未知Unknown | - | [33] | |||||||
Pi5 | NBS-LRR蛋白 | 未知Unknown | - | [42] | |||||||
Pi9 | NBS-LRR蛋白 | AvrPi9 | 分泌蛋白 | [32][43] | |||||||
Pi25 | NBS-LRR蛋白 | 未知Unknown | - | [44] | |||||||
Pi33 | - | ACE1 | 聚酮合成酶 | [45] | |||||||
Pi35 | NBS-LRR蛋白 | 未知Unknown | - | [46] | |||||||
Pi36 | NBS-LRR蛋白 | 未知Unknown | - | [47] | |||||||
Pi37 | NBS-LRR蛋白 | 未知Unknown | - | [48] | |||||||
Pi50 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [49] | |||||||
Pi56 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [50] | |||||||
Pi64 | NBS-LRR蛋白 | 未知Unknown | 分泌蛋白 | [51] | |||||||
Piz-t | NBS-LRR蛋白 | AvrPiz-t | 分泌蛋白 | [35][52] | |||||||
Pit | NBS-LRR蛋白 | 未知Unknown | - | [37] | |||||||
Pit-a | NBS-LRR蛋白 | AvrPi-ta | 分泌蛋白 | [41][53] | |||||||
Pia | NBS-LRR蛋白 | Avr-Pia | 分泌蛋白 | [54][55] | |||||||
Pib | NBS-LRR蛋白 | Avr-Pib | 分泌蛋白 | [56][57] | |||||||
Pish | NBS-LRR蛋白 | 未知Unknown | - | [58] | |||||||
Pb1 | NBS-LRR蛋白 | 未知Unknown | - | [59] | |||||||
Pik | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][60] | |||||||
Pik-m | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][61] | |||||||
Pik-p | NBS-LRR蛋白 | Avr-Pik/km/kp | 分泌蛋白 | [55][62] | |||||||
Pid3 | NBS-LRR蛋白 | 未知Unknown | - | [63] | |||||||
Pi-d2 | B-lectin蛋白 | 未知Unknown | - | [27] | |||||||
Pi21 | 富含脯氨酸类蛋白 | 未知Unknown | - | [28] | |||||||
Ptr | ARM蛋白 | 未知Unknown | - | [29] | |||||||
Pi-CO39 | NBS-LRR蛋白 | AvrPi-CO39 | 分泌蛋白 | [64] | |||||||
Pigm | NBS-LRR蛋白 | 未知 Unknown | - | [34] | |||||||
Pii | - | Avr-Pii | 分泌蛋白 | [55] | |||||||
Pi54 | NBS-LRR蛋白 | AvrPi54 | 分泌蛋白 | [39] | |||||||
Pi63 | NBS-LRR蛋白 | 未知Unknown | - | [65] | |||||||
Pid3-A4 | NBS-LRR蛋白 | 未知Unknown | - | [66] | |||||||
Pi54rh | NBS-LRR蛋白 | 未知Unknown | - | [67] | |||||||
Pi54of | NBS-LRR蛋白 | 未知Unknown | - | [68] | |||||||
Pike | NBS-LRR蛋白 | 未知Unknown | - | [69] | |||||||
Piks | - | 未知Unknown | - | GeneBank: AET36547.1, AET36548.1 | |||||||
未知Unknown | - | PWL1 | 分泌蛋白 | [70] | |||||||
未知Unknown | - | PWL2 | 分泌蛋白 | [71] | |||||||
bsr-k1 | TPRs蛋白 | 未知Unknown | - | [30] |
[1] | 杜轶威. 水稻开花相关RING蛋白1(FRRP1)基因的克隆和开花功能分析. 北京: 中国农业大学, 2016. |
Du Y W.Molecular cloning and functional analysis of Flowering Related RING Protein 1(FRRP1) in rice. Beijing: China Agriculture University, 2016. (in Chinese with English abstract) | |
[2] | Seck P A, Diagne A, Mohanty S, Wopereis M C S. Crops that feed the world 7: Rice. Food Sec, 2012, 4(1): 7-24 |
[3] | Dean R, van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. The top 10 fungal pathogens in molecular plant pathology.Mol Plant Pathol, 2012, 13(4): 414-430. |
[4] | Skamnioti P, Gurr S J.Against the grain: Safeguarding rice from rice blast disease.Trends Biotechnol, 2009, 27(3):141-150. |
[5] | Pennisi E.Armed and dangerous.Science, 2010, 327(5967): 804-805 |
[6] | Nakahara K, Masuta C.Interaction between viral RNA silencing suppressors and host factors in plant immunity.Curr Opin Plant Biol, 2014, 20: 88-95. |
[7] | Akerley B J, Cotter P A, Miller J F.Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell, 1995, 80(4): 611-620. |
[8] | Dow M, Newman M A, von Roepenack E. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu Rev Phytopathol, 2000, 38: 241-261. |
[9] | Zipfel C.Pattern-recognition receptors in plant innate immunity.Curr Opin Immunol, 2008, 20(1): 10-16. |
[10] | Shiu S, Karlowski W, Pan R, Tzeng Y H, Mayer K F, Li W H.Comparative analysis of the receptor-like kinase family inArabidopsis and rice. Plant Cell, 2004, 16(5): 1220-1234. |
[11] | Chen X, Ronald P.Innate immunity in rice.Trends Plant Sci, 2011, 16(8): 451-459. |
[12] | Liu B, Li J, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang H B.Lysin motif- containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity.Plant Cell, 2012, 24(8): 3406-3419. |
[13] | Felix G, Duran JD, Volko S, Boller T.Plants have a sensitive perception system for the most conserved domain of bacterial flagellin.Plant J, 1999, 18(3): 265-276. |
[14] | Delphine C, Martin R, Boller T.The Arabidopsis receptor kinase fls2 binds flg22 and determines the specificity of flagellin perception. Plant Cell, 2006, 18(2): 465-476. |
[15] | Shinya T, Osada T, Desaki Y, Hatamoto M, Yamanaka Y, Hirano H, Takai R, Che F S, Kaku H, Shibuya N.Characterization of receptor proteins using affinity cross-linking with biotinylated ligands.Plant & Cell Physiol, 2010, 51(2): 262-270. |
[16] | Lu D, Wu S, Gao X, Zhang Y, Shan L, He P.A receptor- like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity.Proc Natl Acad Sci USA, 2010, 107(1): 496-501. |
[17] | 张慧娟. 磷酸-1-鞘氨醇在植物抗病反应中的作用及水稻和拟南芥BIK1在逆境反应中的功能分析. 杭州: 浙江大学, 2009. |
Zhang H J.Role of sphingosine-1-phosphate in plant defense response and functional analysis of Arabidopsis and rice BIK1 in stress responses. Hangzhou: Zhejiang University, 2009. (in Chinese with English abstract) | |
[18] | Sun Y, Li L, Macho AP, Han Z, Hu Z, Zipfel C, Zhou J M, Chai J.Structural basis for flg22-induced activation of theArabidopsis FLS2-BAK1 immune complex. Science, 2013, 342(6158): 624-628. |
[19] | Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N.CERK1, a LysM receptor kinase, is essential for chitin elicitor signal in inArabidopsis. Proc Natl Acad Sci USA, 2007, 104(49): 19613-19618. |
[20] | Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N.Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice.Plant J, 2010, 64(2): 204-214. |
[21] | Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto- Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N.Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor.Proc Natl Acad Sci USA, 2006, 103(29): 11 086-11 091. |
[22] | Liu B, Li J F, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi KB, He Y M, Wang J F, Wang H B.Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity.Plant Cell, 2012, 24(8): 3406-3419. |
[23] | Ao Y, Li Z Q, Feng D R, Xiong F, Liu J, Li J F, Wang J, Liu B, Wang H B.OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant J ,2014, 80: 1072-1084. |
[24] | Li Z, Ao Y, Feng D, Liu J, Wang J, Wang H B, Liu B.OsRLCK 57, OsRLCK107 and OsRLCK118 positively regulate chitin- and PGN-induced immunity in rice.Rice, 2017, 10(1): 6. |
[25] | Kawasaki T, Yamada K, Yoshimura S, Yamaquchi K.Chitin receptor-mediated activation of MAP kinases and ROS production in rice and Arabidopsis. Plant Signal Behav, 2017: e1361076 |
[26] | Wang B H, Ebbole D J, Wang Z H.The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. J Integr Agric, 2017, 16: 2746-2760. |
[27] | Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G.A B-lectin receptor kinase gene conferring rice blast resistance.Plant J, 2006, 46(5): 794-804. |
[28] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M.Loss of function of a proline-containing protein confers durable disease resistance in rice.Science, 2009, 325: 998-1001. |
[29] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edward J D, Wamishe Y, Valent B, Wang G L, Yang Y.The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat Commun, 2018, 9(1): 2039. |
[30] | Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X.Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance.Proc Natl Acad Sci, 2018, 115(12): 3174-3179. |
[31] | Wu Y, Yu L, Pan C, Dai Z, Li Y, Xiao N, Zhang X, Ji H, Huang N, Zhao B.Development of near-isogenic lines with different alleles of Piz locus and analysis of their breeding effect under Yangdao 6 background. Mol Breeding, 2016, 36(2): 12. |
[32] | Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang GL.The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006, 172(3): 1901-1914. |
[33] | Chen D H, Zeigler R S, Ahn S W, Nelson R J.Phenotypic characterization of the rice blast resistance gene Pi-2(t). Plant Dis, 1996: 80. |
[34] | Deng Y, Zhu X, Shen Y, He Z.Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet, 2006, 113(4): 705-713. |
[35] | Zhou B, Qu S H, Liu G F, Dolan M, Sakai H, Lu GD, Bellizzi M, Wang G L.The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant Microbe Interact, 2006, 19(11): 1216-1228. |
[36] | Hua L X, Liang L Q, He X Y, Wang L, Zhang W S, Liu W, Liu X Q, Lin F.Development of a marker specific for the rice blast resistance gene Pi39 in the Chinese cultivar Q15 and its use in genetic improvement. Biotechnol Biotecnol Equip, 2015, 29(3): 448-456. |
[37] | Hayashi K, Yoshida H.Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J, 2009, 57: 413-425. |
[38] | Xu X, Hayashi N, Wang CT, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J.Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breeding, 2014, 34(2): 691-700. |
[39] | Sharma T R, Rai A K, Gupta S K, Singh N K.Broad-spectrum blast resistance gene Pi-k(h) cloned from rice line Tetep designated as Pi54. Plant Biochem Biotechnol, 2010, 19(1): 87-89. |
[40] | Hua L, Wu J Z, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H.The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012, 125(5): 1047-1055. |
[41] | Orbach M J, Farrall L, Sweigard J A, Chumley F G, Valent B.A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000, 12: 2019-2032. |
[42] | Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S.Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes. Genetics, 2009, 181(4): 1627-1638. |
[43] | Wu J, Kou Y, Bao J, Li Y, Tang M, Zhu X, Ponaya A, Xiao G, Li C, Song M Y, Cumagun C J, Deng Q, Lu G, Jeon J S, Naqvi N I.Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytol, 2015, 206: 1463-1475. |
[44] | Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y, Zhuang J Y, Wu J L.A Pid3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe oryzae. Genet Genom, 2011, 38: 209-216. |
[45] | Bohnert HU, Fudal I, Dioh W.A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell, 2004, 16: 2499-2513. |
[46] | Fukuoka S, Yamamoto S I, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Nguyen TTT, Koizumi S, Sugimoto K, Matsumoto T, Yano M.Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast.Sci Rep, 2014: 4. |
[47] | Liu X, Lin F, Wang L, Pan Q.The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race specific resistance to the blast fungus. Genetics, 2007, 176: 2541-2549. |
[48] | Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q . The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007, 177: 1871-1880. |
[49] | Su J, Wang W, Han J, Chen S, Wang C, Zeng L, Feng A, Yang J, Zhou B, Zhu X.Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015, 128: 2213-2225. |
[50] | Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H.Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet, 2013, 126(4): 985-998. |
[51] | Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J.Pi64, encoding a Novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice. Mol Plant Microbe Interact, 2015, 28: 558-568. |
[52] | Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B.The Magnaporthe oryzae avirulence gene AvrPizt encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microbe Interact, 2009, 22: 411-420. |
[53] | Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance genePita. Plant Cell, 2000, 12: 2033-2046. |
[54] | Okuyama Y, Kanzaki H, Abe A,Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R.A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J ,2011, 66: 467-479. |
[55] | Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R.Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009, 21: 1573-1591. |
[56] | Zhang S, Wang L, Wu W, He L, Yang X, Pan Q.Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Sci Rep, 2015, 5: 11642. |
[57] | Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T.The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999, 19: 55-64. |
[58] | Takahashi A, Hayashi N, Miyao A, Hirochika H.Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biol, 2010, 10(1): 175. |
[59] | Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano S Y, Matsumoto T, Yano M, Takatsuji H.Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS- LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010, 64: 498-510. |
[60] | Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q.The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2011, 189: 321-334. |
[61] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M.Two adjacent nucleotide- binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics, 2008, 180: 2267-2276. |
[62] | Yuan B, Zhai C, Wang W, Zeng X, Xu X, He X, Lin F, Wang L, Pan Q.The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet,2011, 122: 1017-1028. |
[63] | Shang J, Tao Y, Chen X, Liu W, Chai R, Fu Y, Zhuang J, Wu J.Identification of a new rice blast resistance gene, Pid3, by genome wide comparison of paired nucleotide- binding site leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes. Genetics, 2009, 182: 1303-1311. |
[64] | Ribot C, Cesari S, Abidi I.The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J, 2013, 74: 1-12. |
[65] | Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C.Rice blast resistance gene Pikahei-1 (t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014, 34: 691-700. |
[66] | Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L.Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 2013, 103: 594-599. |
[67] | Das A, Soubam D, Singh P K, Thakur S, Singh NK, Sharma R.A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Func Integr Genom, 2012, 12: 215-228. |
[68] | Devanna NB, Vijayan J, Sharma TR.The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. Plos ONE, 2014, 9: e104840. |
[69] | Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z.Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus. Mol Breeding, 2015, 35: 117. |
[70] | Kang S, Sweigard J A, Valent B.The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact, 1995, 8(6): 939-948. |
[71] | Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B.Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 1995, 7: 1221-1233. |
[72] | Ray S, Singh P K, Gupta D K, Mahato A K, Sarkar C, Rathour R, Singh N K, Sharma T R.Analysis ofMagnaporthe oryzae genome reveals a fungal effector, which is able to induce resistance response in transgenic rice line containing resistance gene, Pi54. Front Plant Sci, 2016(7): 1140. |
[73] | Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R.Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012, 72(6): 894-907. |
[74] | Ortiz D, de Guillen K, Cesari S, Chalvon V, Gracy J, Padilla A, Kroi T. Recognition of the Magnaporthe oryzae effector AVR-Pia by the Decoy domain of the rice NLR immune receptor RGA5. Plant Cell, 2017, 29(1): 156-168. |
[75] | Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M.The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen- associated molecular pattern-triggered immunity in rice. Plant Cell, 2012, 24(11): 4748-4762. |
[76] | Park C H, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang G L.The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice. PLoS Pathog, 2016, 12(3): e1005529. |
[77] | Wang R, Ning Y, Shi X, He F, Zhang C, Fan J, Jiang N, Zhang Y, Zhang T, Hu Y, Bellizzi M, Wang G L.Immunity to rice blast disease by suppression of effector- triggered necrosis.Curr Biol, 2016, 26(18): 2399-2411. |
[78] | Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X.A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017, 170(1): 114-126. |
[79] | Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L.The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity.BMC Plant Biol, 2015, 15(1): 49. |
[80] | Wang J, Zhou L, Shi H, Chern M, Yu H, Yi H, He M, Yin J, Zhu X, Li Y, Li W, Liu J, Wang J, Chen X, Qing H, Wang Y, Liu J, Wang W, Li P, Wu X, Zhu L, Zhou J M, Ronald P C, Li S, Li J, Chen X,.A single transcription factor promotes both yield and immunity in rice.Science, 2018, 361(6406): 1026. |
[81] | Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G.Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance.Science, 2017, 355(6328): 962-965. |
[82] | Wang Y, Wu W H.Genetic approaches for improvement of the crop potassium acquisition and utilization efficiency.Curr Opin Plant Biol, 2015, 25: 46-52. |
[83] | Shi X, Long Y, He F, Zhang C, Wang R.The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLOS Pathog, 2018, 14(1): e1006878. |
[84] | Kourelis J, van der Hoorn R A L. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function.Plant Cell, 2018, 30(2): 285-299. |
[85] | 向聪, 任西明, 雷东阳, 陈英. 分子标记辅助选择改良C815S的稻瘟病抗性. 湖南农业大学学报: 自然科学版, 2018, 44(1): 62-65. |
Xiang C, Ren X M, Lei D Y, Chen Y.Improvement of rice blast resistance of C815S through molecular marker-assisted selection.J Hunan Agric Univ: Nat Sci, 2018, 44(1): 62-65. (in Chinese with English abstract) | |
[86] | 刘文强, 李小湘, 黎用朝, 潘孝武, 盛新年, 段永红. 分子标记辅助选择改良优质稻湘晚籼13号的稻瘟病抗性. 分子植物育种, 2017, 15(8): 3063-3069. |
Liu W Q, Li X X, Li Y C, Pan X W, Sheng X N, Duan Y H.Improvement of rice blast resistance of Xiangzaoxian No. 13 with high quality by molecular marker-assisted selection.Mol Plant Breed, 2017, 15(8): 3063-3069. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||