Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (1): 31-39.DOI: 10.16819/j.1001-7216.2017.6046
• Orginal Article • Previous Articles Next Articles
Jie ZHANG, Leina ZHENG, Yue CAI, Xiaoman YOU, Fei KONG, Guoxiang WANG, Haigang YAN, Jie JIN, Liang WANG, Wenwei ZHANG*(), Ling JIANG
Received:
2016-03-17
Revised:
2016-04-09
Online:
2017-01-20
Published:
2017-01-10
Contact:
Wenwei ZHANG
张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮, 张文伟*(), 江玲
通讯作者:
张文伟
基金资助:
Jie ZHANG, Leina ZHENG, Yue CAI, Xiaoman YOU, Fei KONG, Guoxiang WANG, Haigang YAN, Jie JIN, Liang WANG, Wenwei ZHANG, Ling JIANG. Correlation Analysis and QTL Mapping for Starch RVA Profile Properties and Amylose and Protein Contents in Rice[J]. Chinese Journal OF Rice Science, 2017, 31(1): 31-39.
张杰, 郑蕾娜, 蔡跃, 尤小满, 孔飞, 汪国湘, 燕海刚, 金洁, 王亮, 张文伟, 江玲. 稻米淀粉RVA谱特征值与直链淀粉、蛋白含量的相关性及QTL定位分析[J]. 中国水稻科学, 2017, 31(1): 31-39.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.6046
性状 Trait | 亲本(平均值±标准差) Parent(Mean±SD) | BIL群体 BIL population | |||
---|---|---|---|---|---|
平均值±标准差 Mean±SD | 变异范围 Range | ||||
Sasanishiki | Habataki | ||||
蛋白质含量 Protein content/% | 7.15±0.01 | 8.09±0.02 | 7.96±0.78 | 6.52~9.94 | |
7.36±0.02 | 8.79±0.01 | 7.96±0.75 | 6.55~9.78 | ||
直链淀粉含量 Amylose content/% | 14.18±0.11 | 12.89±0.22 | 13.09±2.14 | 9.58~24.87 | |
14.32±0.12 | 13.04±0.20 | 13.08±2.12 | 9.65~24.95 | ||
峰值黏度 Peak viscosity/BU | 362.75±12.00 | 222.58±12.80 | 345.86±35.90 | 167.67~396.33 | |
301.83±4.00 | 279.25±3.00 | 299.32±21.89 | 244.50~349.25 | ||
热浆黏度 Hot paste viscosity/BU | 229.75±8.00 | 102.42±6.90 | 206.62±25.30 | 134.75~267.08 | |
134.58±4.50 | 121.42±6.00 | 324.02±52.02 | 106.75~179.50 | ||
崩解值 Breakdown viscosity/BU | 133.00±4.00 | 120.17±7.20 | 139.24±24.30 | 32.92~186.75 | |
167.25±0.50 | 157.83±3.00 | 212.26±120.06 | 114.50~186.58 | ||
冷胶黏度 Cool paste viscosity/BU | 326.67±20.20 | 178.67±9.30 | 298.16±23.77 | 241.08~352.67 | |
235.75±1.50 | 225.33±1.00 | 416.30±53.47 | 202.42~314.67 | ||
消减值 Setback viscosity/BU | -36.08±8.10 | -43.92±3.50 | -47.70±35.24 | -119.58~134.25 | |
-66.08±5.50 | -53.92±2.00 | -120.17±113.11 | -108.00~29.50 | ||
回复值 Consistence viscosity/BU | 96.92±12.20 | 76.25±2.40 | 91.54±14.86 | 61.66~167.17 | |
107.17±6.00 | 103.91±5.00 | 92.28±39.78 | 62.50~144.00 | ||
峰值时间 Peak time/min | 6.27±0.03 | 5.73±0.08 | 6.21±0.18 | 5.73~6.53 | |
5.87±0.16 | 5.67±0.10 | 5.91±0.42 | 5.25~6.83 |
Table 1 Descriptive statistics of the rice quality traits(parameters) in parents and BIL population in two environments.
性状 Trait | 亲本(平均值±标准差) Parent(Mean±SD) | BIL群体 BIL population | |||
---|---|---|---|---|---|
平均值±标准差 Mean±SD | 变异范围 Range | ||||
Sasanishiki | Habataki | ||||
蛋白质含量 Protein content/% | 7.15±0.01 | 8.09±0.02 | 7.96±0.78 | 6.52~9.94 | |
7.36±0.02 | 8.79±0.01 | 7.96±0.75 | 6.55~9.78 | ||
直链淀粉含量 Amylose content/% | 14.18±0.11 | 12.89±0.22 | 13.09±2.14 | 9.58~24.87 | |
14.32±0.12 | 13.04±0.20 | 13.08±2.12 | 9.65~24.95 | ||
峰值黏度 Peak viscosity/BU | 362.75±12.00 | 222.58±12.80 | 345.86±35.90 | 167.67~396.33 | |
301.83±4.00 | 279.25±3.00 | 299.32±21.89 | 244.50~349.25 | ||
热浆黏度 Hot paste viscosity/BU | 229.75±8.00 | 102.42±6.90 | 206.62±25.30 | 134.75~267.08 | |
134.58±4.50 | 121.42±6.00 | 324.02±52.02 | 106.75~179.50 | ||
崩解值 Breakdown viscosity/BU | 133.00±4.00 | 120.17±7.20 | 139.24±24.30 | 32.92~186.75 | |
167.25±0.50 | 157.83±3.00 | 212.26±120.06 | 114.50~186.58 | ||
冷胶黏度 Cool paste viscosity/BU | 326.67±20.20 | 178.67±9.30 | 298.16±23.77 | 241.08~352.67 | |
235.75±1.50 | 225.33±1.00 | 416.30±53.47 | 202.42~314.67 | ||
消减值 Setback viscosity/BU | -36.08±8.10 | -43.92±3.50 | -47.70±35.24 | -119.58~134.25 | |
-66.08±5.50 | -53.92±2.00 | -120.17±113.11 | -108.00~29.50 | ||
回复值 Consistence viscosity/BU | 96.92±12.20 | 76.25±2.40 | 91.54±14.86 | 61.66~167.17 | |
107.17±6.00 | 103.91±5.00 | 92.28±39.78 | 62.50~144.00 | ||
峰值时间 Peak time/min | 6.27±0.03 | 5.73±0.08 | 6.21±0.18 | 5.73~6.53 | |
5.87±0.16 | 5.67±0.10 | 5.91±0.42 | 5.25~6.83 |
指标 Index | 蛋白质含量 PC | 直链淀粉含量 AC | 峰值黏度 PKV | 热浆黏度 HPV | 崩解值 BDV | 冷胶黏度 CPV | 消减值 SBV | 回复值 CSV |
---|---|---|---|---|---|---|---|---|
直链淀粉含量 AC | -0.22 | |||||||
-0.14 | ||||||||
峰值黏度 PKV | -0.24 | -0.60** | ||||||
-0.17 | -0.20 | |||||||
热浆黏度 HPV | -0.36** | -0.23* | 0.74** | |||||
-0.39** | -0.15 | 0.73** | ||||||
崩解值 BDV | -0.29* | -0.64** | 0.71** | 0.05 | ||||
-0.26* | -0.54** | 0.70** | 0.03 | |||||
冷胶黏度 CPV | -0.38** | 0.26* | 0.36** | 0.82** | -0.32** | |||
-0.33** | 0.17 | 0.44** | 0.83** | -0.21 | ||||
消减值 SBV | 0.19 | 0.78** | -0.78** | -0.20 | -0.94** | 0.31** | ||
0.12 | 0.86** | -0.62** | -0.10 | -0.89** | 0.43** | |||
回复值 CSV | 0.02 | 0.81** | -0.68** | -0.40** | -0.60** | 0.21 | 0.83** | |
0.02 | 0.78** | -0.27* | -0.41** | -0.41** | 0.58** | 0.78** | ||
峰值时间 PeT | 0.07 | 0.46** | -0.17 | 0.45** | -0.72** | 0.69** | 0.64** | 0.34** |
0.02 | 0.38** | -0.27* | 0.41** | -0.41** | 0.58** | 0.78** | 0.92** |
Table 2 Coefficients of pairwise correlations of the rice quality traits in a BIL population observed in two environments.
指标 Index | 蛋白质含量 PC | 直链淀粉含量 AC | 峰值黏度 PKV | 热浆黏度 HPV | 崩解值 BDV | 冷胶黏度 CPV | 消减值 SBV | 回复值 CSV |
---|---|---|---|---|---|---|---|---|
直链淀粉含量 AC | -0.22 | |||||||
-0.14 | ||||||||
峰值黏度 PKV | -0.24 | -0.60** | ||||||
-0.17 | -0.20 | |||||||
热浆黏度 HPV | -0.36** | -0.23* | 0.74** | |||||
-0.39** | -0.15 | 0.73** | ||||||
崩解值 BDV | -0.29* | -0.64** | 0.71** | 0.05 | ||||
-0.26* | -0.54** | 0.70** | 0.03 | |||||
冷胶黏度 CPV | -0.38** | 0.26* | 0.36** | 0.82** | -0.32** | |||
-0.33** | 0.17 | 0.44** | 0.83** | -0.21 | ||||
消减值 SBV | 0.19 | 0.78** | -0.78** | -0.20 | -0.94** | 0.31** | ||
0.12 | 0.86** | -0.62** | -0.10 | -0.89** | 0.43** | |||
回复值 CSV | 0.02 | 0.81** | -0.68** | -0.40** | -0.60** | 0.21 | 0.83** | |
0.02 | 0.78** | -0.27* | -0.41** | -0.41** | 0.58** | 0.78** | ||
峰值时间 PeT | 0.07 | 0.46** | -0.17 | 0.45** | -0.72** | 0.69** | 0.64** | 0.34** |
0.02 | 0.38** | -0.27* | 0.41** | -0.41** | 0.58** | 0.78** | 0.92** |
Fig. 1. Locations of the identified QTL for rice grain quality using Sasanishiki/Habataki BIL population in two environments. E1, Nanjing, Jiangsu Province, China; E2, Jinhu, Jiangsu Province, China; “+” and “-” following the abbreviation of traits indicate the additive effects of the alleles are contributed by Sasanishiki and Habataki, respectively.
位点 Loci | 染色体 Chr. | 标记区间 Marker interval | 地点 Location | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Effect | 效应来源 Positive allele | ||
---|---|---|---|---|---|---|---|---|---|
qPC1 | 1 | R1485 | - | R886 | E1 | 2.71 | 11.46 | -0.47 | Habataki |
qPC8 | 8 | R2382 | - | S14074 | E1 | 3.26 | 14.44 | 0.45 | Sasanishiki |
E2 | 2.44 | 11.47 | 0.39 | Sasanishiki | |||||
qPC9 | 9 | R1751 | - | G385 | E1 | 2.25 | 10.23 | -0.61 | Habataki |
qPC12.1 | 12 | C1336 | - | R367 | E2 | 3.31 | 13.89 | 0.47 | Sasanishiki |
qPC12.2 | 12 | S1436 | - | R1709 | E2 | 3.35 | 16.16 | -0.44 | Habataki |
qAC4 | 4 | G264 | - | G177 | E1 | 2.91 | 10.69 | -1.16 | Habataki |
E2 | 2.94 | 10.71 | -1.15 | Habataki | |||||
qAC5 | 5 | R3166 | - | R708 | E1 | 2.01 | 7.70 | 1.24 | Sasanishiki |
qAC10 | 10 | R2447 | - | R3285 | E1 | 3.82 | 16.38 | -2.09 | Habataki |
E2 | 4.00 | 16.97 | -2.09 | Habataki | |||||
qPKV2 | 2 | R1843 | - | S2068 | E1 | 2.78 | 22.34 | 26.89 | Sasanishiki |
E2 | 2.99 | 12.67 | 14.48 | Sasanishiki | |||||
qPKV3 | 3 | S1466 | - | R19 | E2 | 2.45 | 9.96 | -11.87 | Habataki |
qPKV4 | 4 | G271 | - | C513 | E2 | 2.20 | 10.13 | 10.51 | Sasanishiki |
qPKV7 | 7 | R2829 | - | R2401 | E1 | 2.10 | 7.72 | 13.69 | Sasanishiki |
E2 | 3.32 | 21.72 | 16.30 | Sasanishiki | |||||
qPKV10 | 10 | R2447 | - | R3285 | E1 | 2.35 | 8.74 | 16.30 | Sasanishiki |
qHPV2 | 2 | C37 | - | C1236 | E2 | 3.35 | 15.32 | 11.53 | Sasanishiki |
qHPV7 | 7 | R2829 | - | R2401 | E1 | 2.87 | 14.66 | 8.65 | Sasanishiki |
E2 | 2.69 | 11.74 | 8.05 | Sasanishiki | |||||
qCPV1 | 1 | C470 | - | R1944 | E1 | 3.10 | 15.38 | 14.15 | Sasanishiki |
E2 | 2.56 | 9.47 | 8.94 | Sasanishiki | |||||
qCPV2 | 2 | G1340 | - | R1843 | E1 | 2.39 | 11.31 | 13.39 | Sasanishiki |
qCPV8 | 8 | R2382 | - | S14074 | E1 | 2.88 | 12.51 | 14.96 | Sasanishiki |
qCPV9 | 9 | C711 | - | G36 | E2 | 2.40 | 15.68 | -9.69 | Habataki |
qCPV10 | 10 | R716 | - | C16 | E1 | 2.38 | 12.82 | 15.08 | Sasanishiki |
qBDV1 | 1 | G393 | - | C813 | E1 | 2.51 | 8.86 | -11.74 | Habataki |
qBDV2 | 2 | R1843 | - | S2068 | E1 | 3.21 | 11.77 | 14.38 | Sasanishiki |
qBDV3 | 3 | C1351 | - | C1468 | E2 | 2.14 | 7.87 | -6.47 | Habataki |
qBDV4 | 4 | G264 | - | G177 | E1 | 2.96 | 10.55 | 12.93 | Sasanishiki |
E2 | 3.02 | 11.45 | 13.04 | Sasanishiki | |||||
qBDV5 | 5 | R3166 | - | R708 | E1 | 2.03 | 7.90 | -11.59 | Habataki |
qBDV7 | 7 | R2829 | - | R2401 | E1 | 2.98 | 17.66 | 8.97 | Sasanishiki |
E2 | 3.24 | 19.36 | 9.43 | Sasanishiki | |||||
qBDV8 | 8 | R2382 | - | S14074 | E1 | 2.82 | 10.45 | -11.47 | Habataki |
qBDV9 | 9 | G36 | - | R1146 | E2 | 5.21 | 22.47 | 12.74 | Sasanishiki |
qSBV2 | 2 | S2068 | - | C499 | E1 | 2.79 | 21.70 | -26.49 | Habataki |
qSBV5 | 5 | R708 | - | R372 | E2 | 2.29 | 9.39 | 11.84 | Sasanishiki |
qSBV7 | 7 | R2829 | - | R2401 | E1 | 3.90 | 14.99 | -19.42 | Habataki |
E2 | 2.84 | 18.41 | -13.72 | Habataki | |||||
qSBV9 | 9 | G36 | - | R1146 | E2 | 2.75 | 29.11 | -18.62 | Habataki |
qSBV10 | 10 | S2083 | - | R2174 | E1 | 2.80 | 10.50 | -17.12 | Habataki |
qSBV12 | 12 | C1336 | - | R367 | E2 | 2.73 | 11.73 | -10.91 | Habataki |
qCSV1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qCSV2 | 2 | S2068 | - | C499 | E1 | 2.13 | 13.66 | -11.18 | Habataki |
qCSV5 | 5 | R708 | - | R372 | E1 | 2.80 | 10.61 | 8.30 | Sasanishiki |
qCSV7 | 7 | R2829 | - | R2401 | E1 | 2.55 | 8.13 | 7.29 | Sasanishiki |
qCSV8 | 8 | R1943 | - | G278 | E1 | 2.15 | 8.13 | 7.29 | Sasanishiki |
qPeT1.1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qPeT1.2 | 1 | G393 | - | C813 | E1 | 2.70 | 12.75 | 0.10 | Sasanishiki |
qPeT8 | 8 | R2382 | - | S14074 | E1 | 3.49 | 20.47 | 0.13 | Sasanishiki |
Table 3 QTL affecting rice quality detected in Sasanishiki/Habataki BIL.
位点 Loci | 染色体 Chr. | 标记区间 Marker interval | 地点 Location | LOD值 LOD value | 贡献率 PVE/% | 加性效应 Effect | 效应来源 Positive allele | ||
---|---|---|---|---|---|---|---|---|---|
qPC1 | 1 | R1485 | - | R886 | E1 | 2.71 | 11.46 | -0.47 | Habataki |
qPC8 | 8 | R2382 | - | S14074 | E1 | 3.26 | 14.44 | 0.45 | Sasanishiki |
E2 | 2.44 | 11.47 | 0.39 | Sasanishiki | |||||
qPC9 | 9 | R1751 | - | G385 | E1 | 2.25 | 10.23 | -0.61 | Habataki |
qPC12.1 | 12 | C1336 | - | R367 | E2 | 3.31 | 13.89 | 0.47 | Sasanishiki |
qPC12.2 | 12 | S1436 | - | R1709 | E2 | 3.35 | 16.16 | -0.44 | Habataki |
qAC4 | 4 | G264 | - | G177 | E1 | 2.91 | 10.69 | -1.16 | Habataki |
E2 | 2.94 | 10.71 | -1.15 | Habataki | |||||
qAC5 | 5 | R3166 | - | R708 | E1 | 2.01 | 7.70 | 1.24 | Sasanishiki |
qAC10 | 10 | R2447 | - | R3285 | E1 | 3.82 | 16.38 | -2.09 | Habataki |
E2 | 4.00 | 16.97 | -2.09 | Habataki | |||||
qPKV2 | 2 | R1843 | - | S2068 | E1 | 2.78 | 22.34 | 26.89 | Sasanishiki |
E2 | 2.99 | 12.67 | 14.48 | Sasanishiki | |||||
qPKV3 | 3 | S1466 | - | R19 | E2 | 2.45 | 9.96 | -11.87 | Habataki |
qPKV4 | 4 | G271 | - | C513 | E2 | 2.20 | 10.13 | 10.51 | Sasanishiki |
qPKV7 | 7 | R2829 | - | R2401 | E1 | 2.10 | 7.72 | 13.69 | Sasanishiki |
E2 | 3.32 | 21.72 | 16.30 | Sasanishiki | |||||
qPKV10 | 10 | R2447 | - | R3285 | E1 | 2.35 | 8.74 | 16.30 | Sasanishiki |
qHPV2 | 2 | C37 | - | C1236 | E2 | 3.35 | 15.32 | 11.53 | Sasanishiki |
qHPV7 | 7 | R2829 | - | R2401 | E1 | 2.87 | 14.66 | 8.65 | Sasanishiki |
E2 | 2.69 | 11.74 | 8.05 | Sasanishiki | |||||
qCPV1 | 1 | C470 | - | R1944 | E1 | 3.10 | 15.38 | 14.15 | Sasanishiki |
E2 | 2.56 | 9.47 | 8.94 | Sasanishiki | |||||
qCPV2 | 2 | G1340 | - | R1843 | E1 | 2.39 | 11.31 | 13.39 | Sasanishiki |
qCPV8 | 8 | R2382 | - | S14074 | E1 | 2.88 | 12.51 | 14.96 | Sasanishiki |
qCPV9 | 9 | C711 | - | G36 | E2 | 2.40 | 15.68 | -9.69 | Habataki |
qCPV10 | 10 | R716 | - | C16 | E1 | 2.38 | 12.82 | 15.08 | Sasanishiki |
qBDV1 | 1 | G393 | - | C813 | E1 | 2.51 | 8.86 | -11.74 | Habataki |
qBDV2 | 2 | R1843 | - | S2068 | E1 | 3.21 | 11.77 | 14.38 | Sasanishiki |
qBDV3 | 3 | C1351 | - | C1468 | E2 | 2.14 | 7.87 | -6.47 | Habataki |
qBDV4 | 4 | G264 | - | G177 | E1 | 2.96 | 10.55 | 12.93 | Sasanishiki |
E2 | 3.02 | 11.45 | 13.04 | Sasanishiki | |||||
qBDV5 | 5 | R3166 | - | R708 | E1 | 2.03 | 7.90 | -11.59 | Habataki |
qBDV7 | 7 | R2829 | - | R2401 | E1 | 2.98 | 17.66 | 8.97 | Sasanishiki |
E2 | 3.24 | 19.36 | 9.43 | Sasanishiki | |||||
qBDV8 | 8 | R2382 | - | S14074 | E1 | 2.82 | 10.45 | -11.47 | Habataki |
qBDV9 | 9 | G36 | - | R1146 | E2 | 5.21 | 22.47 | 12.74 | Sasanishiki |
qSBV2 | 2 | S2068 | - | C499 | E1 | 2.79 | 21.70 | -26.49 | Habataki |
qSBV5 | 5 | R708 | - | R372 | E2 | 2.29 | 9.39 | 11.84 | Sasanishiki |
qSBV7 | 7 | R2829 | - | R2401 | E1 | 3.90 | 14.99 | -19.42 | Habataki |
E2 | 2.84 | 18.41 | -13.72 | Habataki | |||||
qSBV9 | 9 | G36 | - | R1146 | E2 | 2.75 | 29.11 | -18.62 | Habataki |
qSBV10 | 10 | S2083 | - | R2174 | E1 | 2.80 | 10.50 | -17.12 | Habataki |
qSBV12 | 12 | C1336 | - | R367 | E2 | 2.73 | 11.73 | -10.91 | Habataki |
qCSV1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qCSV2 | 2 | S2068 | - | C499 | E1 | 2.13 | 13.66 | -11.18 | Habataki |
qCSV5 | 5 | R708 | - | R372 | E1 | 2.80 | 10.61 | 8.30 | Sasanishiki |
qCSV7 | 7 | R2829 | - | R2401 | E1 | 2.55 | 8.13 | 7.29 | Sasanishiki |
qCSV8 | 8 | R1943 | - | G278 | E1 | 2.15 | 8.13 | 7.29 | Sasanishiki |
qPeT1.1 | 1 | R1613 | - | S1778 | E2 | 2.81 | 13.44 | 6.50 | Sasanishiki |
qPeT1.2 | 1 | G393 | - | C813 | E1 | 2.70 | 12.75 | 0.10 | Sasanishiki |
qPeT8 | 8 | R2382 | - | S14074 | E1 | 3.49 | 20.47 | 0.13 | Sasanishiki |
QTL位点 Target QTL | 目标置换系 CSSLs | 南京市 Nanjing, Jiangsu Province | 金湖县 Jinhu, Jiangsu Province | |||
---|---|---|---|---|---|---|
平均值 Mean | P值 P-value | 平均值 Mean | P值 P-value | |||
qPC8 | Sasanishiki | 7.15 | 7.36 | |||
SL428 | 6.58 | 0.003** | 6.62 | 0.001** | ||
qAC4 | Sasanishiki | 14.18 | 14.32 | |||
SL414 | 13.15 | 0.004** | 13.06 | 0.002** | ||
qAC10 | Sasanishiki | 14.18 | 14.32 | |||
SL431 | 11.43 | 0.002** | 11.56 | 0.005** | ||
SL432 | 14.42 | 0.030* | 15.38 | 0.010** | ||
qPKV2 | Sasanishiki | 362.75 | 301.83 | |||
SL406 | 208.70 | 0.004** | 155.08 | 0.005** | ||
SL407 | 197.40 | 0.008** | 153.83 | 0.002** | ||
qPKV7 | Sasanishiki | 362.75 | 301.83 | |||
SL422 | 393.50 | 0.005** | 345.60 | 0.004** | ||
qHPV7 | Sasanishiki | 229.75 | 134.58 | 0.003** | ||
SL422 | 322.50 | 0.004** | 210.50 | 0.008** | ||
qCPV1 | Sasanishiki | 326.67 | 235.75 | |||
SL401 | 367.50 | 0.020* | 257.80 | 0.030* | ||
qBDV4 | Sasanishiki | 133.00 | 167.25 | |||
SL414 | 178.50 | 0.007** | 200.60 | 0.006** | ||
qBDV7 | Sasanishiki | 133.00 | 167.25 | |||
SL422 | 71.00 | 0.002** | 135.10 | 0.005** | ||
qSBV7 | Sasanishiki | -36.08 | -66.08 | |||
SL422 | -16.50 | 0.009** | -47.60 | 0.006** |
Table 4 Phenotypic differences between genetic background parent Sasanishiki and target CSSLs carrying rice quality traits QTLs across two environments.
QTL位点 Target QTL | 目标置换系 CSSLs | 南京市 Nanjing, Jiangsu Province | 金湖县 Jinhu, Jiangsu Province | |||
---|---|---|---|---|---|---|
平均值 Mean | P值 P-value | 平均值 Mean | P值 P-value | |||
qPC8 | Sasanishiki | 7.15 | 7.36 | |||
SL428 | 6.58 | 0.003** | 6.62 | 0.001** | ||
qAC4 | Sasanishiki | 14.18 | 14.32 | |||
SL414 | 13.15 | 0.004** | 13.06 | 0.002** | ||
qAC10 | Sasanishiki | 14.18 | 14.32 | |||
SL431 | 11.43 | 0.002** | 11.56 | 0.005** | ||
SL432 | 14.42 | 0.030* | 15.38 | 0.010** | ||
qPKV2 | Sasanishiki | 362.75 | 301.83 | |||
SL406 | 208.70 | 0.004** | 155.08 | 0.005** | ||
SL407 | 197.40 | 0.008** | 153.83 | 0.002** | ||
qPKV7 | Sasanishiki | 362.75 | 301.83 | |||
SL422 | 393.50 | 0.005** | 345.60 | 0.004** | ||
qHPV7 | Sasanishiki | 229.75 | 134.58 | 0.003** | ||
SL422 | 322.50 | 0.004** | 210.50 | 0.008** | ||
qCPV1 | Sasanishiki | 326.67 | 235.75 | |||
SL401 | 367.50 | 0.020* | 257.80 | 0.030* | ||
qBDV4 | Sasanishiki | 133.00 | 167.25 | |||
SL414 | 178.50 | 0.007** | 200.60 | 0.006** | ||
qBDV7 | Sasanishiki | 133.00 | 167.25 | |||
SL422 | 71.00 | 0.002** | 135.10 | 0.005** | ||
qSBV7 | Sasanishiki | -36.08 | -66.08 | |||
SL422 | -16.50 | 0.009** | -47.60 | 0.006** |
[1] | 黄发松, 孙宗修, 胡培松, 唐绍清. 食用稻米品质形成研究的现状与展望. 中国水稻科学, 1998, 12(3): 172-176. |
Huang F S, Sun Z X, Hu P S, Tang S Q.Present situations and prospects for the research on rice grain quality forming.Chin J Rice Sci, 1998, 12(2):172-176. (in Chinese with English abstract) | |
[2] | 包劲松. 稻米淀粉品质遗传与改良研究进展. 分子植物育种, 2007, 5(F11): 1-20. |
Bao J S.Progress in studies on inheritance and improvement of rice starch quality.Mol Plant Breeding, 2007, 5(F11): 1-20. (in Chinese with English abstract) | |
[3] | 陈书强. 粳稻米蒸煮食味品质与其他品质性状的典型相关分析. 西北农业学报, 2015, 24(1): 60-67. |
Cheng S Q.Canonical correlation between cooking, eating quality and other quality traits in japonica rice.Acta Agric Boreali-Occ Sin, 2015, 24(1): 60-67. (in Chinese with English abstract) | |
[4] | 朱满山, 汤述翥, 顾铭洪. RVA谱在稻米蒸煮食用品质评价及遗传育种方面的研究进展. 中国农学通报, 2005, 21(8): 59-64. |
Zhu M S, Tang S Z, Gu M H.Progresses in the study on the assessing, genetic and breeding of the rice starch RVA profile in rice quality.Chin Agric Sci Bull, 2005, 21(8): 59-64. (in Chinese with English abstract) | |
[5] | 张启莉, 谢黎虹, 李仕贵, 胡培松. 稻米蛋白质与蒸煮食味品质的关系研究进展. 中国稻米, 2012, 18(4): 1-6. |
Zhang Q L, Xie L H, Li S G, Hu P S.Progress in the Study on the relationship between protein and eating and cooking quality of rice.China Rice, 2012, 18(4): 1-6. (in Chinese) | |
[6] | 黎用朝, 李小湘. 影响稻米品质的遗传和环境因素研究进展. 中国水稻科学, 1998, 12: 56-62. |
Li Y C, Li X X.Advances in studies on genetic and environmental factors influencing rice grain quality.Chin J Rice Sci, 1998, 12: 56-62. (in Chinese with English abstract) | |
[7] | Tan Y F, Sun M, Xing Y Z, Hua J P, Sun X L, Zhang Q F, Corke H.Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid.Theor Appl Genet, 2001, 103(6-7): 1037-1045. |
[8] | 吴长明, 孙传清, 付秀林, 王象坤, 李自超, 张强. 稻米品质性状与产量性状及籼粳分化度的相互关系研究. 作物学报, 2003, 29(6): 822-828. |
Wu C M, Sun C Q, Fu X L, Wang X K, Li Z C, Zhang Q.Study on the relationship between quality, yield characters or indica-japonica differentiation in rice(Oryza sativa L.). Acta Agron Sin, 2003, 29(6):822-828. (in Chinese with English abstract) | |
[9] | Lanceras J C, Huang Z L, Naivikul O, Vanavichit A, Ruanjaichon V, Tragoonrung S.Mapping of genes for cooking and eating qualities in Thai jasmine rice(KDML105).DNA Res, 2000, 7(2): 93-101. |
[10] | Bao J S, Corke H, He P, Zhu L H.Analysis of quantitative trait loci for starch properties of rice based on an RIL population.Acta Bota Sin, 2003, 45(8): 986-994. |
[11] | 张巧凤, 张亚东, 朱镇, 赵凌, 赵庆勇, 许凌, 王才林. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL 定位分析. 中国水稻科学, 2007, 21(6): 591-598. |
Zhang Q F, Zhang Y D, Zhu Z, Zhao L, Zhao Q Y, Xu L, Wang C L.Analysis of inheritance and QTLs of rice starch viscosity(RVA profile) characteristics.Chin J Rice Sci, 2007, 21(6): 591-598. (in Chinese with English abstract) | |
[12] | Leng Y J, Xue D W, Yang Y L, Hu S K, Su Y, Huang L C, Wang L, Zheng T T, Zhang G H, Hu J, Gao Z Y, Guo L B, Qian Q, Zeng D L.Mapping of QTLs for eating and cooking quality-related traits in rice(Oryza sativa L.). Euphytica, 2014, 197(1): 99-108. |
[13] | 翁建峰, 万向元, 吴秀菊, 王海莲, 翟虎渠, 万建民. 利用CSSL 群体研究稻米AC和PC相关QTL表达稳定性. 作物学报, 2006, 32(1): 14-19. |
Weng J F, Wan X Y, Wu X J, Wang H L, Zhai H Q, Wan J M.Stable expression of QTL for AC and PC of milled rice(Oryza sativa L.) using a CSSL population. Acta Agrono Sin, 2006, 32(1): 14-19. (in Chinese with English abstract) | |
[14] | 杨亚春, 倪大虎, 宋丰顺, 李莉, 陆徐忠, 李泽福, 杨剑波. 不同生态环境下稻米淀粉RVA 谱特征值的QTL 定位分析. 作物学报, 2012, 38(2): 264-274. |
Yang Y C, Ni D H, Song F S, Li L, Lu X Z, Li Z F, Yang J B.Identification of QTL for rice starch RVA profile properties under different ecological sites.Acta Agron Sin, 2012, 38(2): 264-274. (in Chinese with English abstract) | |
[15] | 张昌泉, 胡冰, 朱孔志, 张华, 冷亚麟, 汤述翥, 顾铭洪, 刘巧泉. 利用重测序的水稻染色体片段置换系定位控制淀粉黏滞性谱QTL. 中国水稻科学, 2013, 27(1): 56-64. |
Zhang C Q, Hu B, Zhu K Z, Zhang H, Leng Y L, Tang S Z, Gu M H, Liu Q Q.Mapping of QTLs for rice RVA properties using high-throughput re-scquenced chromosome segment substitution lines.Chin J Rice Sci, 2013, 27(1): 56-64. (in Chinese with English abstract) | |
[16] | Ando T, Yamamoto T, Shimizu T, Ma X F, Shomura A, Takeuchi Y, Liu S Y, Yano M.Genetic dissection and pyramiding of quantitative traits for panicle architecture by using chromosomal segment substitution lines in rice.Theor Appl Genet, 2008, 116(6): 881-890. |
[17] | Brabender M.The new MICRO-VISCO-AMYLO-GRAPH: Comparison of some results with those of the Viscograph. American Association of Cereal Chemists Annual Meeting, Minneapoils, 1998. |
[18] | Wang S, Basten J, Zeng Z.Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007. |
[19] | McCouch S R. Gene nomenclature system for rice.Rice, 2008, 1(1):72-84. |
[20] | 包劲松, 夏英武. 基因型×环境互作效应对籼稻蒸煮食用品质的影响. 浙江大学学报, 2000, 26(2): 29-35. |
Bao J S, Xia Y W.Effects of genotype × environment interaction on eating and cooking quality of indica rice.J Zhejiang Univ, 2000, 26(2): 29-35. (in Chinese with English abstract) | |
[21] | 孙亚伟. 水稻染色体单片段代换系农艺性状分析及QTL定位. 扬州:扬州大学, 2009. |
Sun Y W.QTL mapping for agronomic traits in chromosome segment substitution lines of rice. Yangzhou: Yangzhou University, 2009. (in Chinese with English abstract) | |
[22] | 彭军成. 水稻精米蛋白质含量精细定位分析. 扬州: 扬州大学, 2011. |
Peng J C.Fine-mapping analysis for protein content of milled rice. Yangzhou: Yangzhou University, 2011. (in Chinese) | |
[23] | Zhang W W, Bi J C, Chen L M, Zheng L N, Ji S L, Xia Y M, Zhao Z G, Wang Y H, Liu L L, Jiang L, Wan J M.QTL mapping for crude protein and protein fraction contents in rice(Oryza sativa L.). J Cereal Sci, 2008, 48(2): 539-547. |
[24] | Wang L Q, Liu W J, Xu Y, He Y Q, Luo L J, Xiang Y Z, Xu C G, Zhang Q F.Genetic basis of 17 traits and viscosity parameters characterizing the eating and cooking quality of rice grain.Theor Appl Genet, 2007, 115(4): 463-476. |
[25] | 邵昕, 陈忠明, 刘正辉, 丁承强, 唐设, 李刚华, 王绍华, 丁艳锋. 越光/9311染色体片段置换系的构建及稻米黏滞性谱特征值QTL分析. 分子植物育种, 2015, 13(2): 261-268. |
Shang X, Chen Z M, Liu Z H, Ding C Q, Tang S, Li G H, Wang S H, Ding Y F.QTL Mapping for rice RVA properties using chromosome segment substitution lines derived from a cross between Koshihikari and 9311.Mol Plant Breeding, 2015, 13(2): 261-268. (in Chinese with English abstract) | |
[26] | Cho Y C, Suh J P, Yoon M R, Baek M K, Won Y J, Lee J H, Park H S, Baek S H,Lee J H.QTL mapping for paste viscosity characteristics related to eating quality and QTL-NIL development in japonica rice(Oryza sativa L.). Plant Breeding&Biotechnol, 2013, 1(4): 333-346. |
[27] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q.Progress in the allelic variation ofWx gene and its application in rice breeding. Chin J Rice Sci, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[28] | Zheng L N, Zhang W W, Liu S J, Liu X, Chen L M, Chen X G,Ma J, Chen W W, Zhao Z G, Jiang L, Wan J M.Genetic relationship between grain chalkiness, protein content, and paste viscosity properties in a backcross inbred population of rice.J Cereal Sci, 2012, 56(2): 153-160. |
[29] | Liu X L, Wan X Y, Ma X D, Wan J M.Dissecting the genetic basis for the effect of rice chalkiness, amylose content, protein content, and rapid viscosity analyzer profile characteristics on the eating quality of cooked rice using the chromosome segment substitution line population across eight environments.Genome, 2011, 54(1): 64-80. |
[30] | Peng J H, Ronin Y, Fahima T, Röder M S, Li Y C, Nevo E, Korol A.Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci, 2003, 100(5): 2489-2494. |
[31] | Tanksley S, Nelson J.Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTL from unadapted germplasm into elite breeding lines.Theor Appl Genet, 1996, 92(2): 191-203. |
[32] | 钱春荣, 冯延江, 杨静, 刘海英, 金正勋. 水稻籽粒蛋白质含量选择对杂种早代蒸煮食味品质的影响. 中国水稻科学, 2007, 21(3): 323-326. |
Qian C R, Feng Y J, Yang J, Liu H Y, Jin Z X.Effects of protein content selection on cooking and eating properties of rice in early-generation of crosses.Chin J Rice Sci, 2007, 21(3): 323-326. (in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||