Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (3): 273-282.DOI: 10.16819/j.1001-7216.2016.5128
• Orginal Article • Previous Articles Next Articles
Jun-feng PAN1,3, Bo WANG3, Ke-hui CUI2,3,*(), Jian-liang HUANG2,3, Li-xiao NIE2,3
Received:
2015-08-19
Revised:
2015-12-29
Online:
2016-05-10
Published:
2016-05-10
Contact:
Ke-hui CUI
About author:
# These authors contributed equally to this work;
潘俊峰1,3, 王博3, 崔克辉2,3,*(), 黄见良2,3, 聂立孝2,3
通讯作者:
崔克辉
作者简介:
# 共同第一作者;
基金资助:
CLC Number:
Jun-feng PAN, Bo WANG, Ke-hui CUI, Jian-liang HUANG, Li-xiao NIE. Effects of Nitrogen Application on Accumulation and Translocation of Non-structural Carbohydrates in Internodes and Sheaths of Rice[J]. Chinese Journal OF Rice Science, 2016, 30(3): 273-282.
潘俊峰, 王博, 崔克辉, 黄见良, 聂立孝. 氮肥对水稻节间和叶鞘非结构性碳水化合物积累转运特征的影响[J]. 中国水稻科学, 2016, 30(3): 273-282.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.5128
Fig. 1. Effects of nitrogen application rate on grain yield and its components of main stems. Values are means of three replicates±SE. Different letter represents significant difference at P<0.05 level. N1 and N2 refer to low and high nitrogen application rates. YD6,Yangdao 6; LYD9,Liangyoupeijiu. The same as below.
Fig. 2. Dynamic changes in areas of the top three leaves of main stem during grain filling under two nitrogen treatments. Values are means of three replicates±SE.*, ** indicate significance between the two N treatments at P< 0.05 and 0.01 levels, respectively. The same as in figures below.
部位 Plant part | NSC表观转运量(YD6) Apparent transferred mass of NSC/mg | NSC表观转运量(LYP9) Apparent transferred mass of NSC/mg | |||
---|---|---|---|---|---|
N1 | N2 | N1 | N2 | ||
倒1节间First internode from the top | 24.3 a* | 14.1 b | 8.6 a | 17.1 a | |
倒1叶鞘Flag leaf sheath | 23.4 a | 19.2 a | 22.9 a | 27.4 a | |
倒2节间 Second internode from the top | 39.5 a | -0.8 b | 25.6 a | 37.6 a | |
倒2叶鞘Second leaf sheath from the top | 49.9 a | 46.8 a | 95.3 a | 119.8 a | |
倒3节间Third internode from the top | 13.9 a | -16.2 b | 134.5 a | 128.3 a | |
倒3叶鞘Third leaf sheath from the top | 45.0 a | 30.4 a | 101.0 a | 93.7 a | |
总表观转运量 Apparent transferred mass of NSC | 196.8 a | 93.5 b | 387.9 a | 423.9 a |
Table 1 Apparent transferred mass of non-structual carbohydrates(NSC) from stems to grains in the top three internodes and leaf sheathes under two nitrogen treatments.
部位 Plant part | NSC表观转运量(YD6) Apparent transferred mass of NSC/mg | NSC表观转运量(LYP9) Apparent transferred mass of NSC/mg | |||
---|---|---|---|---|---|
N1 | N2 | N1 | N2 | ||
倒1节间First internode from the top | 24.3 a* | 14.1 b | 8.6 a | 17.1 a | |
倒1叶鞘Flag leaf sheath | 23.4 a | 19.2 a | 22.9 a | 27.4 a | |
倒2节间 Second internode from the top | 39.5 a | -0.8 b | 25.6 a | 37.6 a | |
倒2叶鞘Second leaf sheath from the top | 49.9 a | 46.8 a | 95.3 a | 119.8 a | |
倒3节间Third internode from the top | 13.9 a | -16.2 b | 134.5 a | 128.3 a | |
倒3叶鞘Third leaf sheath from the top | 45.0 a | 30.4 a | 101.0 a | 93.7 a | |
总表观转运量 Apparent transferred mass of NSC | 196.8 a | 93.5 b | 387.9 a | 423.9 a |
部位 Plant part | NSC表观贡献率(YD6) Apparent contribution rate of NSC to grain yield/% | NSC表观贡献率(LYP9) Apparent contribution rate of NSC to grain yield/% | |||
---|---|---|---|---|---|
N1 | N2 | N1 | N2 | ||
倒1节间First internode from the top | 1.0 a | 0.2 b | 0.5 a | 0.3 a | |
倒1叶鞘Flag leaf sheath | 1.1 a | 0.4 a | 1.2 a | 0.8 a | |
倒2节间Second internode from the top | 1.7 a | -0.0 b | 1.3 a | 1.1 a | |
倒2叶鞘Second leaf sheath from the top | 2.3 a | 1.2 a | 5.1 a | 3.5 a | |
倒3节间Third internode from the top | 0.6 a | -0.2 b | 7.1 a | 3.7 b | |
倒3叶鞘Third leaf sheath from the top | 2.1 a | 0.7 a | 5.4 a | 2.7 a | |
总表观贡献率Total apparent contribution | 8.8 a | 2.2 b | 20.7 a | 12.1 b |
Table 2 Apparent contribution rates of transferred non-structual carbohydrates(NSC) to grain yield in the top three internodes and leaf sheathes under two nitrogen treatments.
部位 Plant part | NSC表观贡献率(YD6) Apparent contribution rate of NSC to grain yield/% | NSC表观贡献率(LYP9) Apparent contribution rate of NSC to grain yield/% | |||
---|---|---|---|---|---|
N1 | N2 | N1 | N2 | ||
倒1节间First internode from the top | 1.0 a | 0.2 b | 0.5 a | 0.3 a | |
倒1叶鞘Flag leaf sheath | 1.1 a | 0.4 a | 1.2 a | 0.8 a | |
倒2节间Second internode from the top | 1.7 a | -0.0 b | 1.3 a | 1.1 a | |
倒2叶鞘Second leaf sheath from the top | 2.3 a | 1.2 a | 5.1 a | 3.5 a | |
倒3节间Third internode from the top | 0.6 a | -0.2 b | 7.1 a | 3.7 b | |
倒3叶鞘Third leaf sheath from the top | 2.1 a | 0.7 a | 5.4 a | 2.7 a | |
总表观贡献率Total apparent contribution | 8.8 a | 2.2 b | 20.7 a | 12.1 b |
部位 Plant part | NSC表观转运量ATMNSC | NSC表观贡献率ACNSC | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
库容 Sink-capacity | 叶面积消减率 Reduced rate of leaf area | 一次枝梗数 Number of primary rachis branch | 库容 Sink-capacity | 叶面积消减率 Reduced rate of leaf area | 一次枝梗数 Number of primary rachis branch | |||||||||||||||
N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | |||||||||
倒1节间 First internode from the top | 0.65 | -0.90** | 0.04 | 0.11 | 0.42 | -0.09 | 0.52 | -0.94** | -0.74* | 0.23 | -0.50 | 0.06 | ||||||||
倒1叶鞘 Flag leaf sheath | -0.22 | 0.19 | -0.19 | 0.41 | -0.50 | 0.09 | -0.55 | 0.17 | 0.07 | 0.41 | -0.41 | 0.25 | ||||||||
倒2节间Second internode from the top | 0.90** | 0.40 | 0.03 | 0.68 | 0.52 | 0.76* | 0.86** | 0.39 | 0.11 | 0.68 | 0.55 | 0.78* | ||||||||
倒2叶鞘Second leaf sheath from the top | -0.02 | 0.21 | 0.84** | 0.74* | 0.75* | 0.71* | -0.32 | 0.16 | 0.89** | 0.61 | 0.63 | 0.72* | ||||||||
倒3节间Third internode from the top | 0.42 | 0.20 | 0.90** | 0.78* | 0.96** | 0.69 | -0.47 | 0.26 | 0.82* | 0.75* | 0.40 | 0.73* | ||||||||
倒3叶鞘Third leaf sheath from the top | -0.12 | 0.24 | 0.82* | 0.72* | 0.53 | 0.14 | -0.37 | 0.24 | 0.86** | 0.70 | 0.45 | 0.22 |
Table 3 Correlations between the reduced rate of leaf area(top three leaves), sink-capacity per panicle, number of primary rachis branch and non-structual carbohydrates(NSC) translocation traits under two nitrogen treatments.
部位 Plant part | NSC表观转运量ATMNSC | NSC表观贡献率ACNSC | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
库容 Sink-capacity | 叶面积消减率 Reduced rate of leaf area | 一次枝梗数 Number of primary rachis branch | 库容 Sink-capacity | 叶面积消减率 Reduced rate of leaf area | 一次枝梗数 Number of primary rachis branch | |||||||||||||||
N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | N1 | N2 | |||||||||
倒1节间 First internode from the top | 0.65 | -0.90** | 0.04 | 0.11 | 0.42 | -0.09 | 0.52 | -0.94** | -0.74* | 0.23 | -0.50 | 0.06 | ||||||||
倒1叶鞘 Flag leaf sheath | -0.22 | 0.19 | -0.19 | 0.41 | -0.50 | 0.09 | -0.55 | 0.17 | 0.07 | 0.41 | -0.41 | 0.25 | ||||||||
倒2节间Second internode from the top | 0.90** | 0.40 | 0.03 | 0.68 | 0.52 | 0.76* | 0.86** | 0.39 | 0.11 | 0.68 | 0.55 | 0.78* | ||||||||
倒2叶鞘Second leaf sheath from the top | -0.02 | 0.21 | 0.84** | 0.74* | 0.75* | 0.71* | -0.32 | 0.16 | 0.89** | 0.61 | 0.63 | 0.72* | ||||||||
倒3节间Third internode from the top | 0.42 | 0.20 | 0.90** | 0.78* | 0.96** | 0.69 | -0.47 | 0.26 | 0.82* | 0.75* | 0.40 | 0.73* | ||||||||
倒3叶鞘Third leaf sheath from the top | -0.12 | 0.24 | 0.82* | 0.72* | 0.53 | 0.14 | -0.37 | 0.24 | 0.86** | 0.70 | 0.45 | 0.22 |
[1] | Cook J H, Yoshida S.Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant.Proc Crop Sci Soc Jpn, 1972, 41(2): 226-234. |
[2] | Pan J F, Cui K H, Wei D, et al.Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under two nitrogen levels.Physiol Plant, 2011, 141(4): 321-331. |
[3] | 潘俊峰, 崔克辉, 向镜, 等. 不同库容量类型基因型水稻茎鞘非结构性碳水化合物积累转运特征.华中农业大学学报, 2015, 34(1): 9-15. |
Pan J F, Cui K H, Xiang J, et al.Characteristics of non-structural carbohydrate accumulation and translocation in rice genotypes with various sink-capacity.J Huazhong Agric Univ, 2015, 34(1): 9-15.(in Chinese with English abstract) | |
[4] | 王志琴, 杨建昌, 朱庆森, 等. 水稻抽穗期茎鞘中储存的可用性糖与籽粒充实的关系. 江苏农学院学报, 1997, 18(4): 13-17. |
Wang Z Q, Yang J C, Zhu Q S, et al.Relation of the usable carbohydrate reserved in stems and sheaths at heading stage with grain filling in rice plants.J Jiangsu Agric Coll, 1997, 18(4): 13-17.(in Chinese with English abstract) | |
[5] | Fu J, Huang Z H, Wang Z Q, et al.Pre-anthesis non-structural carbohydrate reserve in the stem enhances the sink strength of inferior spikelets during grain filling of rice.Field Crops Res, 2011, 123(2): 170-182 |
[6] | Kashiwagi T, Ishimaru K.Identification and functional analysis of a locus for improvement of lodging resistance in rice.Plant Physiol, 2004, 134(2): 676-683. |
[7] | Perez C M, Palmiano E, Baun L C, et al.Starch metabolism in the leaf sheaths and culm of rice.Plant Physiol, 1971, 47(3): 404-408. |
[8] | He H Y, Koike M, Ishimaru T, et al.Temporal and spatial variations of carbohydrate content in rice leaf sheath and their varietal differences.Plant Prod Sci, 2005, 8(5): 546-552. |
[9] | Ishimaru K, Kosone M, Sasaki H, et al.Leaf contents differ depending on the position in a rice leaf sheath during sink-source transition.Plant Physiol Biochem, 2004, 42(11): 855-860. |
[10] | Isopp H, Frehner M, Almeida J P F, et al. Nitrogen plays a major role in leaves when source-sink relations change: C and N metabolism in Loliumperenne growing under free air CO2 enrichment.Aust J Plant Physiol, 2000, 27(9): 851-858. |
[11] | Takahashi T, Chevalier P M, Rupp R A.Storage and remobilization of soluble carbohydrates after heading in different plant parts of a winter wheat cultivar.Plant Prod Sci, 2001, 4(3):160-165. |
[12] | Sugimura Y, Michiyama H, Hirano T.Involvement of α-amylase genes in starch degradation in rice leaf sheaths at the post-heading stage.Plant Prod Sci, 2015, 18(3): 277-283. |
[13] | 李国辉, 钟旭华, 田卡, 等. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理. 中国农业科学, 2013, 46(7): 1323-1334. |
Li G H, Zhong X H, Tian K, et al.Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms.Sci Agric Sin, 2013, 46(7): 1323-1334.(in Chinese with English abstract) | |
[14] | 曾建敏, 崔克辉, 黄见良, 等. 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007, 33(7):1168-1176. |
Zeng J M, Cui K H, Huang J L, et al.Responses of physio-biochemical properties to n-fertilizer application and its relationship with nitrogen use efficiency in rice (Oryza sativa L.).Acta Agron Sin, 2007, 33(7): 1168-1176.(in Chinese with English abstract) | |
[15] | Scofield G N, Ruuska S A, Aoki N, et al.Starch storage in the stems of wheat plants: Localization and temporal changes. Ann Bot (Lond), 2009, 103(6): 859-868. |
[16] | Fukushima A, Akita S.Varietal differences of the course and differentiation time of large vascular bundles in the rachis of rice.Jpn J Crop Sci, 1997, 66(1): 24-28. |
[17] | Liu G L, Mei H W, Yu X Q, et al.QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.).Plant Sci, 2008, 174(1): 71-77. |
[18] | Ruuska S A, Lewis D C, Kennedy G, et al.Large-scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate in reproductive-stage wheat.Plant Mol Biol, 2008, 66(1-2): 15-32. |
[19] | 郭兆武, 萧浪涛, 罗孝和, 等. 超级杂交稻“两优培九”剑叶叶鞘的光合功能. 作物学报, 2007, 33(9): 1508-1515. |
Guo Z W, Xiao L T, Luo X H, et al.Photosynthetic function of the flag leaf sheath for super hybrid rice Liangyoupeijiu.Acta Agron Sin, 2007, 33(9): 1508-1515.(in Chinese with English abstract) | |
[20] | Nagata K, Yoshinaga S, Takanashi J, et al.Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice cultivar Takanari, a cultivar bearing a large number of spikelets.Plant Prod Sci, 2001, 4(3): 173-183. |
[21] | Hirano T, Saito Y, Ushimaru H, et al.The effect of the amount of nitrogen fertilizer on starch metabolism in leaf sheath of japonica and indica rice varieties during the heading period.Plant Prod Sci, 2005, 8(2): 122-130. |
[22] | 潘俊峰,李国辉,崔克辉. 水稻茎鞘非结构性碳水化合物再分配及其在稳产和抗逆中的作用. 中国水稻科学, 2014, 28(4): 335-342. |
Pan J F, Li G H, Cui K H.Re-partitioning of non-structural carbohydrates in rice stems and their roles in increasing yield stability and stress tolerance.Chin J Rice Sci, 2014, 28(4): 335-342. (in Chinese with English abstract) | |
[23] | Gebbing T, Schnyder H.Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat.Plant Physiol, 1999, 121(3): 871-878. |
[24] | 薛艳凤, 郎有忠, 吕川根, 等. 两优培九及其父本扬稻6号抽穗后叶片与根系衰老特点的研究. 扬州大学学报:农业与生命科学版, 2009, 29(3): 7-11. |
Xue Y F, Lang Y Z, Lv C G, et al.Study on leaf and root senescence of Liangyoupeijiu and it's male parent Yangdao 6 after heading.J Yangzhou Univ, 2009, 29(3): 7-11.(in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||