中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 143-155.DOI: 10.16819/j.1001-7216.2025.240402
• 综述与专论 • 下一篇
吴金水1,#, 唐江英1,#, 谭立1, 过志强1, 杨娟1, 张鑫臻1, 陈桂芳1, 王建龙1,2,*(), 施婉菊1,2,*(
)
收稿日期:
2024-04-03
修回日期:
2024-05-15
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email: wjl9678@126.com; swanju@126.com作者简介:
#共同第一作者
基金资助:
WU Jinshui1,#, TANG Jiangying1,#, TAN Li1, GUO Zhiqiang1, YANG Juan1, ZHANG Xinzhen1, CHEN Guifang1, WANG Jianlong1,2,*(), SHI Wanju1,2,*(
)
Received:
2024-04-03
Revised:
2024-05-15
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email: wjl9678@126.com; swanju@126.com
About author:
#These authors contributed equally to this work
摘要:
近年来,土壤中的砷污染问题日益严重。砷不仅对水稻的产量和品质产生负面影响,还通过食物链进入人体,严重威胁人类健康。因此,减少水稻中砷的积累已成为保障粮食质量安全和促进水稻产业发展亟待解决的问题。深入研究水稻对砷的吸收、转运与积累机制,并积极探索减少砷累积的农艺栽培措施,是解决稻米砷超标的有效途径。本文概述了水稻根部对土壤中不同形态砷的吸收及其在水稻植株内的转运与积累的生理及分子机制。从水稻品种、土壤理化性质、土壤养分和微生物等方面阐述了影响水稻砷吸收和积累的因素,并从水分和养分管理两方面重点概述了栽培措施对减少水稻砷吸收和积累的调控作用及机理。结合现有研究成果,对未来水稻砷污染防治的研究方向进行了展望,旨在为减少水稻籽粒砷含量的研究提供参考。
吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略[J]. 中国水稻科学, 2025, 39(2): 143-155.
WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju. Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies[J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155.
基因名称 Gene name | 类别 Category | 亚细胞定位 Subcellular localization | 主要表达部位 Main expression site | 生物学功能 Biological function | 参考文献Reference |
---|---|---|---|---|---|
OsNIP1;1 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 抑制As(III)转运 Inhibit As(III) transport | [ |
OsLsi1 (OsNIP2;1) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(III)吸收及DMA、MMA吸收与转运 Promote absorption and transport of As(III), DMA, and MMA | [ |
OsLsi2 (OsAT2) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、节 Root and node | 促进As(III)转运 Promote As(III) transport | [ |
OsLsi6 (OsNIP2;2) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 叶、穗 Leaf and panicle | 促进As(III)吸收 Promote As(III) absorption | [ |
OsNIP3;1 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 抑制As(III)装载进入木质部 Inhibit loading of As(III) into xylem | [ |
OsNIP3;2 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 侧根 Lateral root | 促进侧根吸收As(III) Promote lateral root absorption of As(III) | [ |
OsNIP3;3 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 抑制As(III)装载进入木质部 Inhibit loading of As(III) into xylem | [ |
OsPIP2;4 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPIP2;6 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPIP2;7 | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPT1 (OsPht1;1) | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)吸收和转运 Promote Absorption and transport of As(V) | [ |
OsPT4 (OsPht1;4) | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)吸收和转运Promote Absorption and transport of As(V) | [ |
OsPT8 (OsPht1;8) | ABC转运蛋白 ABC transporter | 细胞质膜 Cell plasma membrane | 根、叶、节 Root, leaf, and node | 促进As(V)吸收和转运 Promote absorption and transport of As(V) | [ |
OsABCC1 | MYB转录因子 MYB transcription factor | 液泡膜 Tonoplast | 节 Node | 抑制As转运 Inhibit As Transport | [ |
OsARM1 | 谷氧还蛋白 Glutaredoxin | 细胞核、细胞质膜 Nucleus and plasma membrane | 叶、根 Leaf and root | 抑制As(III)转运 Inhibit As(III) Transport | [ |
OsGrx_C7 | NRAMP | 细胞核 Cell nucleus | 根 Root | 抑制As(III)转运 Inhibit As(III) transport | [ |
OsNRAMP1 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(III)转运 Promote As(III) transport | [ |
OsHAC1;1 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III) Promote reduction of As(V) to As(III) | [ |
OsHAC1;2 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III) Promote reduction of As(V) to As(III) | [ |
OsHAC4 | MATE | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III),减少As(III)外排 Promote reduction of As(V) to As(III) and reduce As(III) efflux | [ |
OsMATE2 | WRKY | 细胞质膜 Cell plasma membrane | 根、生殖器官Root and reproductive organ | 促进As(V)的运输 Promote transport of As(V) | [ |
OsWRKY28 | 肽转运蛋白 Peptide transporter | 细胞核 Cell nucleus | 根 Root | 促进As(V)的运输 Promote transport of As(V) | [ |
OsPTR7 (OsNPF8;1) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 促进DMA 转运 Promote DMA transport | [ |
表1 参与水稻中砷吸收、转运及代谢的基因
Table 1. Genes involve in arsenic uptake, transport and metabolism in rice.
基因名称 Gene name | 类别 Category | 亚细胞定位 Subcellular localization | 主要表达部位 Main expression site | 生物学功能 Biological function | 参考文献Reference |
---|---|---|---|---|---|
OsNIP1;1 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 抑制As(III)转运 Inhibit As(III) transport | [ |
OsLsi1 (OsNIP2;1) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(III)吸收及DMA、MMA吸收与转运 Promote absorption and transport of As(III), DMA, and MMA | [ |
OsLsi2 (OsAT2) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、节 Root and node | 促进As(III)转运 Promote As(III) transport | [ |
OsLsi6 (OsNIP2;2) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 叶、穗 Leaf and panicle | 促进As(III)吸收 Promote As(III) absorption | [ |
OsNIP3;1 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 抑制As(III)装载进入木质部 Inhibit loading of As(III) into xylem | [ |
OsNIP3;2 | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 侧根 Lateral root | 促进侧根吸收As(III) Promote lateral root absorption of As(III) | [ |
OsNIP3;3 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 抑制As(III)装载进入木质部 Inhibit loading of As(III) into xylem | [ |
OsPIP2;4 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPIP2;6 | 质膜内在蛋白 Integral plasma membrane protein | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPIP2;7 | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 调节As(III)的吸收与外排 Regulate absorption and efflux of As(III) | [ |
OsPT1 (OsPht1;1) | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)吸收和转运 Promote Absorption and transport of As(V) | [ |
OsPT4 (OsPht1;4) | 磷酸盐转运蛋白 Phosphate transporter | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)吸收和转运Promote Absorption and transport of As(V) | [ |
OsPT8 (OsPht1;8) | ABC转运蛋白 ABC transporter | 细胞质膜 Cell plasma membrane | 根、叶、节 Root, leaf, and node | 促进As(V)吸收和转运 Promote absorption and transport of As(V) | [ |
OsABCC1 | MYB转录因子 MYB transcription factor | 液泡膜 Tonoplast | 节 Node | 抑制As转运 Inhibit As Transport | [ |
OsARM1 | 谷氧还蛋白 Glutaredoxin | 细胞核、细胞质膜 Nucleus and plasma membrane | 叶、根 Leaf and root | 抑制As(III)转运 Inhibit As(III) Transport | [ |
OsGrx_C7 | NRAMP | 细胞核 Cell nucleus | 根 Root | 抑制As(III)转运 Inhibit As(III) transport | [ |
OsNRAMP1 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(III)转运 Promote As(III) transport | [ |
OsHAC1;1 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III) Promote reduction of As(V) to As(III) | [ |
OsHAC1;2 | 编码砷酸还原酶 Encoding arsenate reductase | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III) Promote reduction of As(V) to As(III) | [ |
OsHAC4 | MATE | 细胞质膜 Cell plasma membrane | 根 Root | 促进As(V)还原成As(III),减少As(III)外排 Promote reduction of As(V) to As(III) and reduce As(III) efflux | [ |
OsMATE2 | WRKY | 细胞质膜 Cell plasma membrane | 根、生殖器官Root and reproductive organ | 促进As(V)的运输 Promote transport of As(V) | [ |
OsWRKY28 | 肽转运蛋白 Peptide transporter | 细胞核 Cell nucleus | 根 Root | 促进As(V)的运输 Promote transport of As(V) | [ |
OsPTR7 (OsNPF8;1) | 水通道蛋白 Aquaporin | 细胞质膜 Cell plasma membrane | 根、地上部分 Root and shoot | 促进DMA 转运 Promote DMA transport | [ |
[1] | Mawia A M, Hui S Z, Zhou L, Li H J, Tabassum J, Lai C K, Wang J X, Shao G N, Wei X J, Tang S Q, Luo J, Hu S K, Hu P S. Inorganic arsenic toxicity and alleviation strategies in rice[J]. Journal of Hazardous Materials, 2021, 408: 124751. |
[2] | 陈世宝, 王萌, 李杉杉, 郑涵, 雷小琴, 孙晓艺, 王立夫. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41. |
Chen S B, Wang M, Li S S, Zheng H, Lei X Q, Sun X Y, Wang L F. Current status of and discussion on farmland heavy metal pollution prevention in China[J]. Earth Science Frontiers, 2019, 26(6): 35-41. (in Chinese with English abstract) | |
[3] | Islam S, Rahman M M, Islam M R, Naidu R. Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh[J]. The Science of the Total Environment, 2017, 601: 122-131. |
[4] | 徐长春, 郑戈, 林友华. “十三五”国家重点研发计划农田镉砷污染防治领域资助情况概述[J]. 农业环境科学学报, 2018, 37(7):1321-1325. |
Xu C C, Zheng G, Lin Y H. Brief introduction to research projects on prevention and control of cadmium and arsenic pollution in croplands supported by National Key R & D Program of China in 13th Five-Year Period[J]. Journal of Agro-Environment Science, 2018, 37(7): 1321-1325. (in Chinese with English abstract) | |
[5] | 何雪莲, 韦超前, 来楷迪, 段明宇. 耕地土壤重金属污染与修复技术研究进展[J]. 资源节约与环保, 2023(12): 141-148. |
He X L, Wei C Q, Lai K D, Duan M Y. Research progress of heavy metal pollution and remediation technology in cultivated land soil[J]. Resources Economization & Environmental Protection, 2023(12): 141-148. (in Chinese with English abstract) | |
[6] | Liu Q, Li Y. Nutrient and non-nutrient factors associated with the arsenic uptake and buildup in rice: A review[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 4798-4815. |
[7] | Bandumula N. Rice production in Asia: Key to global food security[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2018, 88(4): 1323-1328. |
[8] | 郑广杰, 叶昌, 朱均林, 陶怡, 肖德顺, 徐亚楠, 褚光, 徐春梅, 王丹英. 淹水胁迫下水稻种子和胚芽葡萄糖供应差异与胚芽存活的关系[J]. 中国水稻科学, 2024, 38(2): 172-184. |
Zheng G J, Ye C, Zhu J L, Tao Y, Xiao D S, Xu Y N, Chu G, Xu C M, Wang D Y. Relationship between embryo survival and glucose supply of rice seed and embryo under flooding stress[J]. Chinese Journal of Rice Science, 2024, 38(2): 172-184. (in Chinese with English abstract) | |
[9] | Sandhi A, Yu C X, Rahman M M, Amin M N. Arsenic in the water and agricultural crop production system: Bangladesh perspectives[J]. Environmental Science and Pollution Research, 2022, 29(34): 51354-51366. |
[10] | Zhu Y G, Xue X M, Kappler A, Rosen P B, Meharg A A. Linking genes to microbial biogeochemical cycling: Lessons from arsenic[J]. Environmental Science & Technology, 2017, 51(13): 7326-7339. |
[11] | Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q. Insights into conventional and recent technologies for arsenic bioremediation: A systematic review[J]. Environmental Science and Pollution Research, 2021, 28(15): 18870-18892. |
[12] | Mitra A, Chatterjee S, Moogouei R, Gupta D K. Arsenic accumulation in rice and probable mitigation approaches: A review[J]. Agronomy, 2017, 7(4): 67. |
[13] | Khan Z, Thounaojam T C, Upadhyaya H. Arsenic stress in rice (Oryza sativa) and its amelioration approaches[J]. Plant Stress, 2022, 4: 100076. |
[14] | 吴川, 安文慧, 薛生国, 江星星, 崔梦倩, 钱子妍. 土壤-水稻系统砷的生物地球化学过程研究进展[J]. 农业环境科学学报, 2019, 38(7): 1429-1439. |
Wu C, An W H, Xue S G, Jiang X X, Cui M Q, Qian Z Y. Arsenic biogeochemical processing in the soil-rice system[J]. Journal of Agro-Environment Science, 2019, 38(7): 1429-1439. (in Chinese with English abstract) | |
[15] | Ma J F, Yamaji N, Mitani N, Xu X Y, Su Y H, McGrath S P, Zhao F J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29): 9931-9935. |
[16] | Chen Y, Sun S K, Tang Z, Liu G, Moore K L, Maathuis F J M, Miller A J, McGrath S P, Zhao F J. The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice[J]. Journal of Experimental Botany, 2017, 68(11): 3007-3016. |
[17] | Mosa K A, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White J C, Dhankher O P. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants[J]. Transgenic Research, 2012, 21: 1265-1277. |
[18] | Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446: 1-21. |
[19] | Abedi T, Mojiri A. Arsenic uptake and accumulation mechanisms in rice species[J]. Plants, 2020, 9(2): 129. |
[20] | Ye Y, Li P, Xu T, Zeng L, Cheng D, Yang M, Luo J, Lian X M. OsPT4 contributes to arsenate uptake and transport in rice[J]. Frontiers in Plant Science, 2017, 8: 2197. |
[21] | Wang P, Zhang W, Mao C, Xu G, Zhao F J. The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice[J]. Journal of Experimental Botany, 2016, 67(21): 6051-6059. |
[22] | 王培培, 陈松灿, 朱永官, 孙国新. 微生物砷甲基化及挥发研究进展[J]. 农业环境科学学报, 2018, 37(7): 1377-1385. |
Wang P P, Chen S C, Zhu Y G, Sun G X. Advances in the research of arsenic methylation and volatilization by microorganisms[J]. Journal of Agro-Environment Science, 2018, 37(7): 1377-1385. (in Chinese with English abstract) | |
[23] | 赵方杰. 水稻砷的吸收机理及阻控对策[J]. 植物生理学报, 2014, 50(5): 569-576. |
Zhao F J. Mechanisms of arsenic uptake by rice and mitigation strategies[J]. Plant Physiology Journal, 2014, 50(5): 569-576. (in Chinese with English abstract) | |
[24] | Chen C, Li L Y, Wang Y F, Dong X Z, Zhao F J. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease[J]. The ISME Journal, 2023, 17(11): 1851-1861. |
[25] | Li R Y, Ago Y, Liu W J, Mitani N, Feldmann J, McGrath S P, Ma J F, Zhao F J. The rice aquaporin Lsi1 mediates uptake of methylated arsenic species[J]. Plant Physiology, 2009, 150(4): 2071-2080. |
[26] | Suriyagoda L D B, Dittert K, Lambers H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains[J]. Agriculture, Ecosystems & Environment, 2018, 253: 23-37. |
[27] | Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi R D, Trivedi P K. Expression in arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP 1, in arsenic transport and tolerance[J]. Plant, Cell & Environment, 2014, 37(1): 140-152. |
[28] | Srivastava S, Akkarakaran J J, Sounderajan S, Shrivastava M. Suprasanna P. Arsenic toxicity in rice (Oryza sativa L.) is influenced by sulfur supply: impact on the expression of transporters and thiol metabolism[J]. Geoderma, 2016, 270: 33-42. |
[29] | Chen Y, Han Y H, Cao Y, Zhu Y G, Rathinasabapathi B, Ma L Q. Arsenic transport in rice and biological solutions to reduce arsenic risk from rice[J]. Frontiers in Plant Science, 2017, 8: 245590. |
[30] | Sun S K, Chen Y, Che J, Konishi N, Tang Z, Miller A J, Ma J F, Zhao F J. Decreasing arsenic accumulation in rice by overexpressing Os NIP 1; 1 and Os NIP 3; 3 through disrupting arsenite radial transport in roots[J]. New Phytologist, 2018, 219(2): 641-653. |
[31] | Verma P K, Verma S, Tripathi R D, Chakrabarty D. A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance[J]. Ecotoxicology and Environmental Safety, 2020, 195: 110471. |
[32] | Geng A J, Lian W L, Wang Y H, Liu M H, Zhang Y, Wang X, Chen G. The molecular mechanism of the response of rice to arsenic stress and effective strategies to reduce the accumulation of arsenic in grain[J]. International Journal of Molecular Sciences, 2024, 25(5): 2861. |
[33] | Chen Y, Moore K L, Miller A J, McGrath S P, Ma J F, Zhao F J. The role of nodes in arsenic storage and distribution in rice[J]. Journal of Experimental Botany, 2015, 66(13): 3717-3724. |
[34] | Wang F Z, Chen M X, Yu L J, Xie L J, Yuan L B, Qi H, Xiao M, Guo W, Chen Z, Yi K, Zhang J, Qiu R, Shu W, Xiao S, Chen Q F. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice[J]. Frontiers in Plant Science, 2017, 8: 1868. |
[35] | Shi S L, Wang T, Chen Z R, Tang Z, Wu Z C, Salt D E, Chao D Y, Zhao F J. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiology, 2016, 172(3): 1708-1719. |
[36] | Xu J M, Shi S L, Wang L, Tang Z, Lv T T, Zhu X L, Ding X M, Wang Y F, Zhao F J, Wu Z. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice[J]. New Phytologist, 2017, 215(3): 1090-1101. |
[37] | Kamiya T, Islam R, Duan G, Uraguchi S, Fujiwara T. Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice[J]. Soil Science and Plant Nutrition, 2013, 59(4): 580-590. |
[38] | Cao Y, Sun D, Ai H, Mei H Y, Liu X, Sun S B, Xu G H, Liu Y G, Chen Y S, Ma L Q. Knocking out OsPT4 gene decreases arsenate uptake by rice plants and inorganic arsenic accumulation in rice grains[J]. Environmental Science & Technology, 2017, 51(21): 12131-12138. |
[39] | Wu Z C, Ren H Y, McGrath S P, Wu P, Zhao F J. Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice[J]. Plant Physiology, 2011, 157(1): 498-508. |
[40] | Wang P T, Xu X, Tang Z, Zhang W W, Huang X Y, Zhao F J. OsWRKY28 regulates phosphate and arsenate accumulation, root system architecture and fertility in rice[J]. Frontiers in Plant Science, 2018, 9: 1330. |
[41] | Das N, Bhattacharya S, Bhattacharyya S, Maiti M K. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice[J]. Plant Molecular Biology, 2018, 98: 101-120. |
[42] | Wang X, Peng B, Tan C, Ma L, Rathinasabapathi B. Recent advances in arsenic bioavailability, transport, and speciation in rice[J]. Environmental Science and Pollution Research, 2015, 22: 5742-5750. |
[43] | Ye W L, Zhang J J, Fan T, Lu H J, Chen H Y, Li X D, Hua R M. Arsenic speciation in the phloem exudates of rice and its role in arsenic accumulation in rice grains[J]. Ecotoxicology and Environmental Safety, 2017, 143: 87-91. |
[44] | Tang Z, Chen Y, Chen F, Ji Y, Zhao F J. OsPTR7 (OsNPF8. 1), a putative peptide transporter in rice, is involved in dimethylarsenate accumulation in rice grain[J]. Plant and Cell Physiology, 2017, 58(5): 904-913. |
[45] | Jiang S, Shi C, Wu J. Genotypic differences in arsenic, mercury, lead and cadmium in milled rice (Oryza sativa L.)[J]. International Journal of Food Sciences and Nutrition, 2012, 63(4): 468-475. |
[46] | Samal A C, Bhattacharya P, Biswas P, Maity J P, Bundschuh J, Santra S C. Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water[J]. Journal of Hazardous Materials, 2021, 407: 124804. |
[47] | Norton G J, Pinson S R M, Alexander J, Mckay S, Hansen H, Duan G L, Islam M R, Islam S, Stroud J L, Zhao F J, McGrath S P, Zhu Y G, Lahner B, Yakubova E, Guerinot M L, Tarpley L, Eizenga G C, Salt D E, Meharg A A, Price A H. Variation in grain arsenic assessed in a diverse panel of rice (Oryza sativa) grown in multiple sites[J]. New Phytologist, 2012, 193(3): 650-664. |
[48] | Duan G L, Shao G S, Tang Z, Chen H P, Wang B X, Tang Z, Yang Y P, Liu Y C, Zhao F J. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 1-13. |
[49] | Norton G J, Duan G L, Lei M, Zhu Y G, Meharg A A, Price A H. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: influence of flowering time on genetic loci[J]. Annals of Applied Biology, 2012, 161(1): 46-56. |
[50] | 唐舒庭, 卢一铭, 肖盛柏, 崔浩, 魏世强. 稻田土壤砷, 镉复合污染阻控技术研究进展[J]. 环境科学, 2023, 44(10): 5704-5717. |
Tang S T, Lu Y M, Xiao S B, Cui H, Wei S Q. Research advances in barrier technology of paddy soil co-contaminated with As and Cd[J]. Environmental Science, 2023, 44(10): 5704-5717. (in Chinese with English abstract) | |
[51] | 何洋飘, 梁斌, 陈榜巧, 徐志强, 蒋卉. 成都平原东北部高地质背景下水稻土镉生物有效性及稻米中镉积累的影响因素[J]. 西南科技大学学报, 2022, 37(3): 38-43+97. |
He Y P, Liang B, Chen B Q, Xu Z Q, Jiang H. Effectiveness of cadmium bioavailability in paddy soil and effective factors of cadmium accumulation in rice in the high geological background of northeast chengdu plain[J]. Journal of Southwest University of Science and Technology, 2022, 37(3): 38-43+97. (in Chinese with English abstract) | |
[52] | Ahmed Z U, Panaullah G M, Gauch H, McCouch S R, Tyagi W, Kabir M S, Duxbury J M. Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh[J]. Plant and Soil, 2011, 338: 367-382. |
[53] | 杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492. |
Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathways to control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492. (in Chinese) | |
[54] | Syu C H, Huang C C, Jiang P Y, Lee C H, Lee D Y. Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils[J]. Journal of Hazardous Materials, 2015, 286: 179-186. |
[55] | Mlangeni A T. Methylation of arsenic in rice: Mechanisms, factors, and mitigation strategies[J]. Toxicology Reports, 2023, 11: 295-306. |
[56] | Arao T, Kawasaki A, Baba K, Mori S, Matsumoto S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice[J]. Environmental Science & Technology, 2009, 43(24): 9361-9367. |
[57] | Honma T, Ohba H, Kaneko-Kadokura A, Makino T, Nakamura K, Katou H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8): 4178-4185. |
[58] | Saifullah, Dahlawi S, Naeem A, Iqbal M, Farooq M A, Bibi S, Rengel Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review[J]. Chemosphere, 2018, 194: 171-188. |
[59] | Boorboori M R, Gao Y J, Wang H, Fang C X. Usage of Si, P, Se, and Ca decrease arsenic concentration/toxicity in rice[J]. Applied Sciences, 2021, 11(17): 8090. |
[60] | 刘晨通, 罗艳丽, 刘畅, 宋晴雯, 晁博, 董乐乐, 郑玉红. 砷和磷在灰漠土中的竞争吸附研究[J]. 环境污染与防治, 2023, 45(8): 1055-1062. |
Liu C T, Luo Y L, Liu C, Song Q W, Chao B, Dong L L. Competitive adsorption of arsenic and phosphorus in gray desert soil[J]. Environmental Pollution & Control, 2023, 45(8): 1055-1062. (in Chinese with English abstract) | |
[61] | Mlangeni A T, Perez M, Raab A, Krupp E M, Norton G J, Feldmann J. Simultaneous stimulation of arsenic methylation and inhibition of cadmium bioaccumulation in rice grain using zero valent iron and alternate wetting and drying water management[J]. The Science of The Total Environment, 2020, 711: 134696. |
[62] | Yang Y P, Zhang H M, Yuan H Y, Duan G L, Jin D C, Zhao F J, Zhu Y G. Microbe mediated arsenic release from iron minerals and arsenic methylation in rhizosphere controls arsenic fate in soil-rice system after straw incorporation[J]. Environmental Pollution, 2018, 236: 598-608. |
[63] | Amaral D C, Lopes G, Guilherme L R G, Seyfferth A L. A new approach to sampling intact Fe plaque reveals Si-induced changes in Fe mineral composition and shoot As in rice[J]. Environmental Science & Technology, 2017, 51(1): 38-45. |
[64] | Zandi P, Yang J J, Xia X, Barabasz-Krasny B, Możdżeń K, Puła J, Bloem E, Wang Y S, Hussain S, Hashemi S M, Różanowski B, Li Q. Sulphur nutrition and iron plaque formation on roots of rice seedlings and their consequences for immobilization and uptake of chromium in solution culture[J]. Plant and Soil, 2021, 462: 365-388. |
[65] | 周彩玉, 林隽, 唐钰焱, 刘必成, 曹梦华, 涂书新, 熊双莲. 硫肥对水稻幼苗生长及砷、镉和铬累积的影响[J]. 农业环境科学学报, 2024, 43(7): 1458-1467. |
Zhou C Y, Lin J, Tang Y Y, Liu B C, Cao M H, Tu S X, Xiong S L. Effects of sulfate fertilizer on the growth of rice seedlings and accumulation of As, Cd, and Cr in plants[J]. Journal of Agro-Environment Science, 2024, 43(7): 1458-1467. (in Chinese with English abstract) | |
[66] | 邹丽娜, 戴玉霞, 邱伟迪, 张舒, 赵佳伟, 唐先进, 施积炎, 徐建明. 硫素对土壤砷生物有效性与水稻吸收的影响研究[J]. 农业环境科学学报, 2018, 37(7): 1435-1447. |
Zou L N, Dai Y X, Qiu W D, Zhang S, Zhao J W, Tang X J, Shi J Y, Xu J M. Effect of sulfur on the bioavailability of arsenic in soil and its accumulation in rice plant (Oryza sativa L.)[J]. Journal of Agro-Environment Science, 2018, 37(7): 1435-1447. (in Chinese with English abstract) | |
[67] | 王锋, 张静, 周少余, 王鸿辉, 李建, 赵聪媛, 黄鹏, 陈铮. 水稻土中氮素对微生物固砷的扰动及效应机制[J]. 环境科学, 2022, 43(11): 4876-4887. |
Wang F, Zhang J, Zhou S Y, Wang H H, Li J, Zhao C Y, Huang P, Chen Z. Mechanism and environmental effect on nitrogen addition to microbial process of arsenic immobilization in flooding paddy soils[J]. Environmental Science, 2022, 43(11): 4876-4887. (in Chinese with English abstract) | |
[68] | 陈会巧. 长期培肥对稻田土壤氮循环功能微生物及功能水平网络关系的影响研究[D]. 兰州: 甘肃农业大学, 2023. |
Chen H Q. Effects of long-term fertilization on functional microorganisms of nitrogen cycle and network relationship of functional levels in paddy soil[D]. Lanzhou: Gansu Agricultural University, 2023. (in Chinese with English abstract) | |
[69] | 朱忆雯, 尹丹, 胡敏, 杜衍红, 洪泽彬, 程宽, 于焕云. 稻田土壤氮循环与砷形态转化耦合的研究进展[J]. 生态环境学报, 2023, 32(7): 1344-1354. |
Zhu Y W, Yin D, Hu M, Du Y H, Hong Z B, Cheng K, Yu H Y. Research progress on coupling of nitrogen cycle and arsenic speciation transformation in paddy soil[J]. Ecology and Environmental Sciences, 2023, 32(7): 1344-1354. (in Chinese with English abstract) | |
[70] | Lalith D B S, Klaus D, Hans L. Arsenic in rice soils and potential agronomic mitigation strategies to reduce arsenic bioavailability: A review[J]. Pedosphere, 2018, 28(3): 363-382. |
[71] | 王亚男, 曾希柏, 白玲玉, 苏世鸣, 吴翠霞. 外源砷在土壤中的老化及环境条件的影响[J]. 农业环境科学学报, 2018, 37(7): 1342-1349. |
Wang Y N, Zeng X B, Bai L Y, Su S M, Wu C X. The exogenous aging process in soil and the influences of environmental factors on aging[J]. Journal of Agro-Environment Science, 2018, 37(7): 1342-1349. (in Chinese with English abstract) | |
[72] | 吴希玮. 施用有机肥对双季稻砷积累的影响[D]. 武汉: 华中农业大学, 2023. |
Wu X W. The Effect of applying organic fertilizer on arsenic accumulation in double cropping rice[D]. Wuhan: Huazhong Agricultural University, 2023. (in Chinese with English abstract) | |
[73] | 黄思映, 杨旭, 钱久李, 黎华寿. 微生物影响稻田土壤中砷转化研究进展[J]. 土壤, 2021, 53(5): 890-898. |
Huang S Y, Yang X, Qian J L, Li H S. Advances in transformation of arsenic in paddy fields mediated by microorganisms[J]. Soils, 2021, 53(5): 890-898. (in Chinese with English abstract) | |
[74] | Chen J, Liu X, Song W, Zhou S. General managerial skills and corporate social responsibility[J]. Journal of Empirical Finance, 2020, 55: 43-59. |
[75] | Srivastava P K, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi R D. Biological removal of arsenic pollution by soil fungi[J]. Science of the Total Environment, 2011, 409(12): 2430-2442. |
[76] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
Yang X L, Wang B, Wang B F, Zhang Z S, Zhang Z L, Yang L T, Cheng J P, Li Y. Effects of different water management on yield and rice quality of dry-seeded rice[J]. Chinese Journal of Rice Science, 2023, 37(3): 285-294. (in Chinese with English abstract) | |
[77] | Norton G J, Adomako E E, Deacon C M, Carey A M, Price A H, Meharg A A. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species[J]. Environmental Pollution, 2013, 177: 38-47. |
[78] | 顾国平, 项佳敏, 章明奎. 秸秆还田和水分管理方式对土壤砷形态及水稻砷吸收的影响[J]. 江西农业学报, 2020, 32(8): 89-95. |
Gu G P, Xiang J M, Zhang M K. Effects of straw returning and water management methods on arsenic forms in soil and arsenic uptake by rice plant[J]. Acta Agriculturae Jiangxi, 2020, 32(8): 89-95. (in Chinese with English abstract) | |
[79] | Norton G J, Shafaei M, Travis A J, Deacon C M, Danku J, Pond D, Cochrane N, Lockhart K, Salt D, Zhang H, Dodd I C, Hossain M, Islam M R, Price A H. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality[J]. Field Crops Research, 2017, 205: 1-13. |
[80] | Harine I J, Islam M R, Hossain M, Afroz H, Jahan R, Siddique A B, Uddin S, Hossain M A, Alamri S, Siddiqui M H, Henry R J. Arsenic accumulation in rice grain as influenced by water management: Human health risk assessment[J]. Agronomy, 2021, 11(9): 1741. |
[81] | Majumdar A, Upadhyay M K, Giri B, Yadav P, Moulick D, Sarkar S, Thakur B K, Sahu K, Srivastava A K, Buck M, Tibbett M, Jaiswal M K, Roychowdhury T. Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability[J]. Journal of Hazardous Materials, 2024, 466: 133610. |
[82] | Li C Y, Carrijo D R, Nakayama Y, Linquist B A, Green P G, Parikh S J. Impact of alternate wetting and drying irrigation on arsenic uptake and speciation in flooded rice systems[J]. Agriculture, Ecosystems & Environment, 2019, 272: 188-198. |
[83] | Cao Z Z, Pan J Y, Yang Y J, Cao Z Y, Xu P, Chen M, Guan M X. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111208. |
[84] | Shehzad M T, Sabir M, Saifullah, Siddique A B, Rahman M M, Naidu R. Impact of water regimes on minimizing the accumulation of arsenic in rice (Oryza sativa L.)[J]. Water, Air, & Soil Pollution, 2022, 233(9): 383. |
[85] | 杨扬, 高莉莉, 张慧, 吕晓. 不同淹水处理对水稻体内砷富集的影响[J]. 湖北农业科学, 2020, 59(23): 58. |
Yang Y, Gao L L, Zhang H, Lu X. The effect of flooded treatment on the enrichment of arsenic in rice[J]. Hubei Agricultural Sciences, 2020, 59(23): 58. (in Chinese with English abstract) | |
[86] | 张雨婷. 水分管理对土壤-水稻系统镉砷迁移转化过程的影响[D]. 荆州: 长江大学, 2023. |
Zhang Yuting. Effects of water management on the migration and transformation of cadmium and arsenic in soil-rice system[D]. Jingzhou: Yangtze University, 2023. (in Chinese with English abstract) | |
[87] | Moreno-Jiménez E, Meharg A A, Smolders E, Manzano R, Becerra D, Sánchez-Llerena J, Albarrán Á, López-Piñero A. Sprinkler irrigation of rice fields reduces grain arsenic but enhances cadmium[J]. Science of the Total Environment, 2014, 485, 468-473. |
[88] | Singh S B, Srivastava P K. Bioavailability of arsenic in agricultural soils under the influence of different soil properties[J]. SN Applied Sciences, 2020, 2(2): 153. |
[89] | Chattopadhyay A, Singh A P, Kasote D, Sen I, Regina A. Effect of phosphorus application on arsenic species accumulation and co-deposition of polyphenols in rice grain: Phyto and food safety evaluation[J]. Plants, 2021, 10(2): 281. |
[90] | Lee C H, Wu C H, Syu C H, Jiang P Y, Huang C C, Lee D Y. Effects of phosphorous application on arsenic toxicity to and uptake by rice seedlings in As- contaminated paddy soils[J]. Geoderma, 2016, 270: 60. |
[91] | Chen G N, Du Y H, Fang L P, Wang X Q, Liu C P, Yu H Y, Feng M, Chen X, Li F B. Distinct arsenic uptake feature in rice reveals the importance of N fertilization strategies[J]. Science of the Total Environment, 2023, 854: 158801. |
[92] | Lin Z J, Wang X, Wu X, Liu D H, Yin Y, Zhang Y, Xiao S, Xing B. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 2018, 243: 1015-1025. |
[93] | Zhang X, Yang Y Q, Fu Q L, Hu H Q, Zhu J, Liu M X. Comparing effects of ammonium and nitrate nitrogen on arsenic accumulation in brown rice and its dynamics in soil-plant system[J]. Journal of Soils and Sediments, 2021, 21(7): 2650-2658. |
[94] | 田华, 唐正明, 段美洋, 钟克友, 黎国喜, 唐湘如. 氮磷钾硅肥对香稻培杂软香产量及品质的影响[J]. 中国农学通报, 2008, 12: 499-504. |
Tian H, Tang Z M, Duan M Y, Zhong K Y, Li G X, Tang X R. Effect of nitrogen, phosphorus, potassium and silicon on yield and quality of peizaruanxiang[J]. Chinese Agricultural Science Bulletin, 2008, 12: 499-504. (in Chinese with English abstract) | |
[95] | 龚金龙, 张洪程, 龙厚元, 胡雅杰, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 水稻中硅的营养功能及生理机制的研究进展[J]. 植物生理学报, 2012, 48(1): 1-10. |
Gong J L, Zhang H C, Long H Y, Hu Y J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Progress in research of nutrition functions and physiological mechanisms of silicon in rice[J]. Plant Physiology Journal, 2012, 48(1): 1-10. (in Chinese with English abstract) | |
[96] | 吴家梅, 官迪, 陈山, 谢运河, 陈锦, 龙世平, 纪雄辉. 硅肥等量施用对土壤砷赋存形态和水稻吸收砷的影响[J]. 环境科学研究, 2023, 36(9): 1746-1754. |
Wu J M, Guan D, Chen S, Xie Y H, Chen J, Long S P, Ji X H. Effects of equal amount of silicon fertilizer on soil arsenic speciation and arsenic uptake by rice[J]. Research of Environmental Sciences, 2023, 36(9): 1746-1754. (in Chinese with English abstract) | |
[97] | 李林峰, 文伟发, 徐梓盛, 陈勇, 李奇, 李义纯. 施硅对水稻铁膜砷固定和体内砷转运的影响[J]. 环境科学, 2023, 44(5): 2899-2907. |
Li L F, Wen W F, Xu Z C, Chen Y, Li Q, Li Y C. Effects of silicon application on arsenic sequestration in iron plaque and arsenic translocation in rice[J]. Environmental Science, 2023, 44(5): 2899-2907. (in Chinese with English abstract) | |
[98] | Lee C H, Huang H H, Syu C H, Lin T H, Lee D Y. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application[J]. Journal of Hazardous Materials, 2014, 276: 253-261. |
[99] | Dwivedi S, Kumar A, Mishra S, Sharma P, Sinam G, Bahadur L, Goyal V, Jain N, Tripathi R D. Orthosilicic acid (OSA) reduced grain arsenic accumulation and enhanced yield by modulating the level of trace element, antioxidants, and thiols in rice[J]. Environmental Science and Pollution Research, 2020, 27: 24025-24038. |
[100] | Zhang S, Geng L P, Fan L M, Zhang M, Zhao Q L, Xue P X, Liu W J. Spraying silicon to decrease inorganic arsenic accumulation in rice grain from arsenic- contaminated paddy soil[J]. Science of the Total Environment, 2020, 704: 135239. |
[101] | 史高玲, 周东美, 余向阳, 娄来清, 童非, 樊广萍, 刘丽珠, 高岩. 水稻和小麦累积镉和砷的机制与阻控对策[J]. 江苏农业学报, 2021, 37(5): 1333-1343. |
Shi G L, Zhou D M, Yu X Y, Lou L Q, Tong F, Fan G P, Liu L Z, Gao Y. Mechanisms of cadmium and arsenic accumulation in rice and wheat and related mitigation strategies[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(5): 1333-1343. (in Chinese with English abstract) |
[1] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170. |
[2] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展[J]. 中国水稻科学, 2025, 39(2): 171-186. |
[3] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196. |
[4] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208. |
[5] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216[J]. 中国水稻科学, 2025, 39(2): 209-219. |
[6] | 徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系[J]. 中国水稻科学, 2025, 39(2): 231-244. |
[7] | 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10. |
[8] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[9] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[10] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[11] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[12] | 陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100. |
[13] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
[14] | 王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127. |
[15] | 江敏, 王广伦, 李明璐, 苗波, 李明煊, 石春林. 基于模型的水稻高温热害风险评估与动态预警[J]. 中国水稻科学, 2025, 39(1): 128-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||