中国水稻科学 ›› 2015, Vol. 29 ›› Issue (5): 447-456.DOI: 10.3969/j.issn.1001G7216.2015.05.001
• • 下一篇
李小红, 施勇烽, 张晓波, 奉保华, 宋莉欣, 王惠梅, 徐霞, 黄奇娜, 郭丹, 吴建利*()
收稿日期:
2015-03-12
修回日期:
2015-03-24
出版日期:
2015-09-10
发布日期:
2015-09-10
通讯作者:
吴建利
作者简介:
*通讯录作者:E-mail:beishangd@163.com
基金资助:
Xiao-hong LI, Yong-feng SHI, Xiao-bo ZHANG, Bao-hua FENG, Li-xin SONG, Hui-mei WANG, Xia XU, Qi-na HUANG, Dan GUO, Jian-li WU*()
Received:
2015-03-12
Revised:
2015-03-24
Online:
2015-09-10
Published:
2015-09-10
Contact:
Jian-li WU
About author:
*Corresponding author:E-mailbeishangd@163.com
摘要:
通过双环氧丁烷 (diepoxybutane)诱变籼稻品种IR64获得遗传稳定的水稻褐色斑点叶突变体hm197。在自然条件下,该突变体褐色斑点自播种后10周开始于叶尖出现,而后慢慢扩散至全叶。遗传分析表明,该褐色斑点性状受一对隐性核基因控制,暂名splhm197,并将其定位在第4染色体长臂上140 kb的区段内。与野生型IR64相比,突变体株高、结实率和千粒重等农艺性状均显著下降。遮光处理表明,hm197褐色斑点的形成受自然光照的诱导。此外,hm197光合色素含量和光合效率也比野生型显著降低。组织化学分析表明,突变体中有过氧化氢和大量超氧阴离子O2 ?的沉积。与IR64相比,hm197叶片中清除氧自由基酶系统中SOD和APX活性极显著上升,其余均极显著下降,同时伴随总可溶蛋白含量下降以及MDA含量上升,hm197表现出早衰迹象。抗病性鉴定表明,与野生型相比突变体对白叶枯病菌的抗性显著增强。
中图分类号:
李小红, 施勇烽, 张晓波, 奉保华, 宋莉欣, 王惠梅, 徐霞, 黄奇娜, 郭丹, 吴建利. 水稻斑点叶突变体hm197的鉴定及其基因定位[J]. 中国水稻科学, 2015, 29(5): 447-456.
Xiao-hong LI, Yong-feng SHI, Xiao-bo ZHANG, Bao-hua FENG, Li-xin SONG, Hui-mei WANG, Xia XU, Qi-na HUANG, Dan GUO, Jian-li WU. Identification and Gene Mapping of a Spotted-leaf Mutant hm197 in Rice[J]. Chinese Journal OF Rice Science, 2015, 29(5): 447-456.
材料 Material | 株高 Plant height /cm | 有效穗数 No.of productive panicles | 穗长 Panicle length /cm | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
hm197 | 90.2 ± 0.9** | 24 ± 1.0 | 23.4 ± 0.5 | 68.7 ± 7.6** | 70.2 ± 1.3** | 18.8 ± 0.5** |
IR64 | 113.6 ± 0.3 | 22 ± 1.0 | 25.0 ± 1.0 | 102.2 ± 17.3 | 85.2 ± 3.2 | 24.4 ± 1.1 |
表1 突变体hm197和野生型IR64的农艺性状
Table 1 Performance of agronomic traits in the mutant hm197 and the wild type IR64.
材料 Material | 株高 Plant height /cm | 有效穗数 No.of productive panicles | 穗长 Panicle length /cm | 每穗实粒数 Filled grain number per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
hm197 | 90.2 ± 0.9** | 24 ± 1.0 | 23.4 ± 0.5 | 68.7 ± 7.6** | 70.2 ± 1.3** | 18.8 ± 0.5** |
IR64 | 113.6 ± 0.3 | 22 ± 1.0 | 25.0 ± 1.0 | 102.2 ± 17.3 | 85.2 ± 3.2 | 24.4 ± 1.1 |
播种后周数 Weeks after sowing | 材料 Material | 叶绿素a含量 Chlorophyll a content /(mg·g-1) | 叶绿素b含量 Chlorophyll b content /(mg·g-1) | 叶绿素a/b Chlorophyll a /Chlorophyll b | 类胡萝卜含量 Carotenoid content /(mg·g-1) |
---|---|---|---|---|---|
3 | hm197 | 3.05 ± 0.13 | 0.80 ± 0.06 | 3.81 ± 0.07 | 0.64 ± 0.05 |
IR64 | 2.93 ± 0.15 | 0.75 ± 0.03 | 3.90 ± 0.12 | 0.65 ± 0.03 | |
10 | hm197 | 2.29 ± 0.07** | 0.70 ± 0.01** | 3.28 ± 0.09 | 0.48 ± 0.01** |
IR64 | 3.13 ± 0.05 | 0.92 ± 0.02 | 3.41 ± 0.05 | 0.65 ± 0.01 | |
17 | hm197 | 1.82 ± 0.17** | 0.56 ± 0.06** | 3.27 ± 0.09** | 0.42 ± 0.04** |
IR64 | 3.44 ± 0.08 | 1.16 ± 0.04 | 2.97 ± 0.07 | 0.65 ± 0.03 |
表2 突变体hm197和野生型IR64不同时期叶片光合色素含量
Table 2 Pigment contents in leaves of hm197 and IR64 at different growing stages.
播种后周数 Weeks after sowing | 材料 Material | 叶绿素a含量 Chlorophyll a content /(mg·g-1) | 叶绿素b含量 Chlorophyll b content /(mg·g-1) | 叶绿素a/b Chlorophyll a /Chlorophyll b | 类胡萝卜含量 Carotenoid content /(mg·g-1) |
---|---|---|---|---|---|
3 | hm197 | 3.05 ± 0.13 | 0.80 ± 0.06 | 3.81 ± 0.07 | 0.64 ± 0.05 |
IR64 | 2.93 ± 0.15 | 0.75 ± 0.03 | 3.90 ± 0.12 | 0.65 ± 0.03 | |
10 | hm197 | 2.29 ± 0.07** | 0.70 ± 0.01** | 3.28 ± 0.09 | 0.48 ± 0.01** |
IR64 | 3.13 ± 0.05 | 0.92 ± 0.02 | 3.41 ± 0.05 | 0.65 ± 0.01 | |
17 | hm197 | 1.82 ± 0.17** | 0.56 ± 0.06** | 3.27 ± 0.09** | 0.42 ± 0.04** |
IR64 | 3.44 ± 0.08 | 1.16 ± 0.04 | 2.97 ± 0.07 | 0.65 ± 0.03 |
播种后周数 Weeks after sowing | 材料 Material | Pn /(μmol· m-2· s-1 ) | Tr /(mmol·m-2 ·s-1 ) | Gs /(mol·m-2 s-1 ) | Ci /(μmol·mol -1) |
---|---|---|---|---|---|
9 | hm197 | 24.80 ± 0.96** | 3.19 ± 0.08 | 0.066 ± 0.002 | 311.58 ± 21.51** |
IR64 | 28.06 ± 0.60 | 3.19 ± 0.06 | 0.069 ± 0.001 | 365.80 ± 26.38 | |
10 | hm197-spl | 15.63 ± 0.78** | 2.43 ± 0.07** | 0.047 ± 0.001** | 243.10 ± 37.43** |
hm197-no | 22.64 ± 0.66** | 2.60 ± 0.21** | 0.053 ± 0.005** | 339.31 ± 14.23** | |
IR64 | 24.38 ± 0.97 | 2.93 ± 0.10 | 0.059 ± 0.002 | 412.28 ± 19.88 | |
17 | hm197-fl | 10.19 ± 1.32** | 2.09 ± 0.28** | 0.046 ± 0.007** | 19.79 ± 4.46** |
hm197-sul | 12.03 ± 1.06** | 2.36 ± 0.15** | 0.053 ± 0.004** | 36.17 ± 4.07** | |
IR64-fl | 23.08 ± 1.67 | 3.09 ± 0.08 | 0.077 ± 0.003 | 172.11 ± 1.19 | |
IR64-sul | 16.88 ± 1.16 | 2.78 ± 0.20 | 0.064 ± 0.005 | 107.55 ± 4.72 |
表3 突变体hm197和野生型IR64不同时期叶片光合特性
Table 3 Photosynthetic parameters of hm197 and IR64 at different growing stages.
播种后周数 Weeks after sowing | 材料 Material | Pn /(μmol· m-2· s-1 ) | Tr /(mmol·m-2 ·s-1 ) | Gs /(mol·m-2 s-1 ) | Ci /(μmol·mol -1) |
---|---|---|---|---|---|
9 | hm197 | 24.80 ± 0.96** | 3.19 ± 0.08 | 0.066 ± 0.002 | 311.58 ± 21.51** |
IR64 | 28.06 ± 0.60 | 3.19 ± 0.06 | 0.069 ± 0.001 | 365.80 ± 26.38 | |
10 | hm197-spl | 15.63 ± 0.78** | 2.43 ± 0.07** | 0.047 ± 0.001** | 243.10 ± 37.43** |
hm197-no | 22.64 ± 0.66** | 2.60 ± 0.21** | 0.053 ± 0.005** | 339.31 ± 14.23** | |
IR64 | 24.38 ± 0.97 | 2.93 ± 0.10 | 0.059 ± 0.002 | 412.28 ± 19.88 | |
17 | hm197-fl | 10.19 ± 1.32** | 2.09 ± 0.28** | 0.046 ± 0.007** | 19.79 ± 4.46** |
hm197-sul | 12.03 ± 1.06** | 2.36 ± 0.15** | 0.053 ± 0.004** | 36.17 ± 4.07** | |
IR64-fl | 23.08 ± 1.67 | 3.09 ± 0.08 | 0.077 ± 0.003 | 172.11 ± 1.19 | |
IR64-sul | 16.88 ± 1.16 | 2.78 ± 0.20 | 0.064 ± 0.005 | 107.55 ± 4.72 |
组合 Cross | F1 | F2 | P (3:1) | |||
---|---|---|---|---|---|---|
总植株数 Total no. of plant | 野生型表型单株数 No. of wild type plants | 突变表型单株数 No. of mutant type plants | ||||
hm197/CPSLO17 | 正常叶色Normal | 172 | 131 | 41 | 0.09 | 0.76 |
hm197/ Moroberekan | 正常叶色Normal | 336 | 260 | 76 | 1.02 | 0.31 |
表4 突变体hm197的遗传分析
Table 4 Genetic analysis of the mutant hm197.
组合 Cross | F1 | F2 | P (3:1) | |||
---|---|---|---|---|---|---|
总植株数 Total no. of plant | 野生型表型单株数 No. of wild type plants | 突变表型单株数 No. of mutant type plants | ||||
hm197/CPSLO17 | 正常叶色Normal | 172 | 131 | 41 | 0.09 | 0.76 |
hm197/ Moroberekan | 正常叶色Normal | 336 | 260 | 76 | 1.02 | 0.31 |
[1] | 黄奇娜, 杨杨, 施勇烽, 等. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24(2): 108-115. |
[2] | Hu G, Richter T E, Hulbert S H, et al.Disease lesion mimicry caused by mutations in the rust resistance gene rp1.Plant Cell, 1996, 8(8): 1367-1376. |
[3] | Dangl J L, Dietrich R A, Richberg M H.Death don't have no mercy: Cell death programs in plant-microbe interactions.Plant Cell, 1996, 8(10): 1793-1807. |
[4] | 王忠华, 贾育林. 水稻类病变突变体lmm1的诱发与初步分析. 核农学报, 2006, 20(4): 255-258. |
[5] | 王建军, 朱旭东, 王林友, 等. 水稻类病变突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19(2): 111-116. |
[6] | 陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41(1): 1-9. |
[7] | Dietrich R A,Richberg M H, Schmidt R, et al.A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death.Cell, 1997, 88(5): 685-694. |
[8] | Li Z, Zhang Y, Liu L, et al.Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa).Plant Physiol Biochem, 2014, 80: 300-307. |
[9] | 邱结华, 马宁, 蒋汉伟, 等. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28(4): 367-376. |
[10] | 刘林, 张迎信, 李枝, 等. 水稻类病变突变体g303的鉴定和基因定位.中国水稻科学, 2014, 28(5): 465-472. |
[11] | 韩雪颖, 杨勇, 余初浪, 等. 一个抗病性增强的水稻类病变突变体的蛋白质组学研究.中国水稻科学, 2014, 28(6): 559-569. |
[12] | Yamanouchi U, Yano M, Lin H, et al.A rice spotted leaf gene,SPL7, encodes a heat stress transcription factor protein.Proc Natl Acad Sci USA, 2002, 99(11): 7530-7535. |
[13] | Zeng L, Yin Z, Chen J, et al.Fine genetic mapping and physical delimitation of the lesion mimic gene SPL11 to a 160-kb DNA segment of the rice genome.Mol Genet Genom, 2002, 268(2): 253-261. |
[14] | Wang L, Pei Z, Tian Y, et al.OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation.Mol Plant Microbe Interact, 2005, 18(5): 375-384. |
[15] | Mori M, Tomita C, Sugimoto K, et al.Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice.Plant Mol Biol, 2007, 63(6): 847-860. |
[16] | Yuan Y,Zhong S, Li Q, et al.Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility.Plant Biotechnol J, 2007, 5(2): 313-324. |
[17] | Takahashi A, Agrawal G K, Yamazaki M, et al.Rice Pti1a negatively regulates RAR1-dependent defense responses.Plant Cell, 2007, 19(9): 2940-2951. |
[18] | Kim J A, Cho K, Singh R, et al.Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance.Mol Cells, 2009, 28(5): 431-439. |
[19] | Qiao Y, Jiang W, Lee J, et al.SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa).New Phytol, 2010, 185(1): 258-274. |
[20] | Fujiwara T,Maisonneuve S, Isshiki M, et al.Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice.J Biol Chem, 2010, 285(15): 11308-11313. |
[21] | Sun C, Liu L, Tang J, et al.RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice.J Genet Genom, 2011, 38(1): 29-37. |
[22] | Tang J, Zhu X, Wang Y, et al.Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice.Plant J, 2011, 66(6): 996-1007. |
[23] | Liu X, Li F, Tang J, et al.Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice.PLoS One, 2012, 7(11): e50089. |
[24] | Chen X,Hao L, Pan J, et al.SPL5, a cell death and defense-related gene, encodes a putative splicing factor 3b subunit 3 (SF3b3) in rice.Mol Breeding, 2012, 30(2): 939-949. |
[25] | Undan J R, Tamiru M, Abe A, et al.Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L.).Genes Genet Syst, 2012, 87(3): 169-179. |
[26] | Jiao B B, Wang J J, Zhu X D, et al.A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice.Mol Plant, 2012, 5(1): 205-217. |
[27] | Lin A, Wang Y, Tang J, et al.Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice.Plant Physiol, 2012, 158(1): 451-464. |
[28] | Sakuraba Y, Rahman M L, Cho S H, et al.The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions.Plant J, 2013, 74(1): 122-133. |
[29] | Fekih R, Tamiru M, Kanzaki H, et al. The rice (Oryza sativa L.,) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genom, 2014, doi: 10,1007/s00438-014-0944-z. |
[30] | Shen H, Shi Y, Feng B, et al.Identification and genetic analysis of a novel rice spotted-leaf mutant with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae.J Integr Agric, 2014, 13(4): 713-721. |
[31] | Feng B H, Yang Y, Shi Y F, et al.Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae.J Integr Plant Biol, 2013, 55(5): 473-483. |
[32] | Wu C,Bordeos A, Madamba M R, et al.Rice lesion mimic mutants with enhanced resistance to diseases.Mol Genet Genom, 2008, 279(6): 605-619. |
[33] | Romero Puertas M C, Rodríguez Serrano M, Corpas F J, et al. Cadmium-induced subcellular accumulation of and H2O2 in pea leaves.Plant Cell Environ, 2004, 27(9): 1122-1134. |
[34] | Lichtenthaler H K.Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes.Method Enzymol, 1987, 148: 350-382. |
[35] | Amante-Bordeos A, Sitch L A, Nelson R, et al.Transfer of bacterial blight and blast resistance from the tetraploid wild rice Oryza minuta to cultivated rice, Oryza sativa.Theor Appl Genet, 1992, 84(3-4): 345-354. |
[36] | 卢扬江, 康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47-48. |
[37] | 施勇烽, 陈洁, 刘文强, 等. 一个新的水稻卷叶突变体的遗传分析与基因定位. 中国科学: C 辑, 2009, 39(4): 407-412. |
[38] | Li J, Shan L, Zhou J M, et al.Overexpression of Pto induces a salicylate-independent cell death but inhibits necrotic lesions caused by salicylate-deficiency in tomato plants.Mol Plant Microbe Interact, 2002, 15(7): 654-661. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||