中国水稻科学 ›› 2023, Vol. 37 ›› Issue (1): 45-54.DOI: 10.16819/j.1001-7216.2023.220109
唐杰1(), 龙湍2, 吴春瑜1, 李新鹏1, 曾翔1, 吴永忠1, 黄培劲1
收稿日期:
2022-01-09
修回日期:
2022-03-22
出版日期:
2023-01-10
发布日期:
2023-01-10
通讯作者:
唐杰
基金资助:
TANG Jie1(), LONG Tuan2, WU Chunyu1, LI Xinpeng1, ZENG Xiang1, WU Yongzhong1, HUANG Peijin1
Received:
2022-01-09
Revised:
2022-03-22
Online:
2023-01-10
Published:
2023-01-10
Contact:
TANG Jie
摘要: 目的 雄性不育是水稻杂种优势利用的基础。为进一步解析其调控机制,对一个雄性不育突变体进行了鉴定。方法 利用60Co-γ对籼稻品种93-11进行辐射诱变,从其后代中鉴定到一个雄性不育突变体tms3650。将籼稻明恢63作父本同突变体tms3650杂交构建F2和F3群体,采用图位克隆的方法对目的基因进行精细定位。结果 tms3650突变体其他农艺性状与野生型一致,但花药白绿且瘦小,花粉不能被1%碘-碘化钾溶液染成蓝黑色,穗子包颈,抽穗期延迟。遗传分析表明该突变体表型受一对隐性核基因控制。精细定位结果表明基因位于第3染色体长臂SSR标记RM15927和RM15934之间135.25 kb距离内,且与RM15931标记共分离。陵水冬季南繁鉴定发现,该突变体育性受光温环境影响,说明tms3650突变体的雄性育性在短日低温条件下发生了转育,是一个光温敏雄性不育突变体。结论 通过将定位位点与已报道的雄性不育基因比较,发现tms3650是一个新的基因位点,暂命名为TMS3650。
唐杰, 龙湍, 吴春瑜, 李新鹏, 曾翔, 吴永忠, 黄培劲. 水稻光温敏雄性不育突变体tms3650的鉴定和基因定位[J]. 中国水稻科学, 2023, 37(1): 45-54.
TANG Jie, LONG Tuan, WU Chunyu, LI Xinpeng, ZENG Xiang, WU Yongzhong, HUANG Peijin. Identification and Gene Mapping of a New Photo-thermo-sensitive Male Sterile Mutant tms3650 in Rice[J]. Chinese Journal OF Rice Science, 2023, 37(1): 45-54.
图1 野生型93-11和突变体tms3650表型鉴定 A?野生型93-11(左)和突变体tms3650(右)整株;B?野生型93-11(左)和突变体tms3650(右)的穗;C?野生型93-11(左)和突变体tms3650(右)小穗表型;D?野生型93-11(左)和突变体tms3650(右)花药表型;E?野生型93-11成熟花粉碘染结果;F?突变体tms3650成熟花粉碘染结果;G?突变体tms3650成熟花粉陵水转育后碘染结果。
Fig. 1. Phenotypic comparison of wild type 93-11 (WT)and tms3650. A, Wild type 93-11 (left) and tms3650 (right); B, Panicles of wild type 93-11 (left) and mutant tms3650 (right); C, Spikelets of wild type 93-11 (left) and mutant tms3650 (right); D, Anther of wild type 93-11(left) and mutant tms3650 (right); E, Pollen fertility of wild type; F, Pollen fertility of tms3650; G, Pollen fertility of mutant tms3650 after transplanting in Lingshui, Hainan.
育性 Fertility | 株系Line | 合计 Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | ||
可育花粉数Fertile pollen | 170 | 174 | 156 | 120 | 202 | 71 | 95 | 100 | 39 | 1127 |
不育花粉数Sterile pollen | 195 | 215 | 271 | 130 | 190 | 85 | 104 | 81 | 16 | 1287 |
自交收种Selfed seed | 240 | 200 | 300 | 320 | 380 | 117 | 194 | 220 | 90 | 2061 |
结实率Seed setting rate/% | 32.0 | 26.6 | 40.0 | 42.6 | 50.6 | 15.6 | 25.8 | 29.3 | 12.0 | 30.5 |
表1 突变体tms3650株系育性转换分析
Table 1. Fertility conversion analysis of mutant tms3650 lines.
育性 Fertility | 株系Line | 合计 Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | L6 | L7 | L8 | L9 | ||
可育花粉数Fertile pollen | 170 | 174 | 156 | 120 | 202 | 71 | 95 | 100 | 39 | 1127 |
不育花粉数Sterile pollen | 195 | 215 | 271 | 130 | 190 | 85 | 104 | 81 | 16 | 1287 |
自交收种Selfed seed | 240 | 200 | 300 | 320 | 380 | 117 | 194 | 220 | 90 | 2061 |
结实率Seed setting rate/% | 32.0 | 26.6 | 40.0 | 42.6 | 50.6 | 15.6 | 25.8 | 29.3 | 12.0 | 30.5 |
图2 野生型93-11和突变体tms3650品种真实性鉴定 泳道1~4为野生型93-11;泳道5~8为突变体tms3650。
Fig. 2. Authenticity identification of wild-type 93-11 and mutant tms3650. Lanes 1-4 are wild-type 93-11; Lanes 5-8 are mutant tms3650.
杂交组合 Cross combination | F1结实率 Seed-setting rate of F1/% | F2 | χ2 3:1 | χ20.05 | |
---|---|---|---|---|---|
野生型 Wild type plant | 突变体 Mutant plant | ||||
tms3650/93-11 | 58.13 | 79 | 31 | 0.44 | 3.841 |
tms3650/ZH11 | 76.92 | 56 | 14 | 0.70 | 3.841 |
tms3650/明恢63 tms3650/Minghui 63 | 75.19 | 186 | 61 | 0.01 | 3.841 |
表2 突变体tms3650的遗传分析
Table 2. Genetic analysis of mutant tms3650.
杂交组合 Cross combination | F1结实率 Seed-setting rate of F1/% | F2 | χ2 3:1 | χ20.05 | |
---|---|---|---|---|---|
野生型 Wild type plant | 突变体 Mutant plant | ||||
tms3650/93-11 | 58.13 | 79 | 31 | 0.44 | 3.841 |
tms3650/ZH11 | 76.92 | 56 | 14 | 0.70 | 3.841 |
tms3650/明恢63 tms3650/Minghui 63 | 75.19 | 186 | 61 | 0.01 | 3.841 |
图3 tms3650突变体的精细定位 A?突变基因初步定位在第3染色体;B?突变基因精细定位在135.25 kb区间;C?定位区间内24个候选基因。
Fig. 3. Fine mapping of tms3650 mutants. A, Preliminary mapping of TMS3650 on chromosome 3; B, Fine mapping of TMS3650 in the 135.25 kb range; C, Predicted 24 candidate genes.
序号 Serial number | 基因 Gene | 功能注释 Function annotation |
---|---|---|
1 | LOC_Os03g53570 | 反转录转座子蛋白 Retrotransposon protein, putative, unclassified, expressed |
2 | LOC_Os03g53580 | 表达蛋白 Expressed protein |
3 | LOC_Os03g53590 | 表达蛋白 Expressed protein |
4 | LOC_Os03g53600 | HTH DNA结合蛋白 HTH DNA-binding protein, putative, expressed |
5 | LOC_Os03g53610 | 晚期胚胎发育丰富的蛋白质 D-34 late embryogenesis abundant protein D-34, putative, expressed |
6 | LOC_Os03g53620 | 晚期胚胎发育丰富的蛋白质 D-34 late embryogenesis abundant protein D-34, putative, expressed |
7 | LOC_Os03g53630 | PHD锌指家族蛋白 PHD finger family protein, putative, expressed |
8 | LOC_Os03g53640 | 表达蛋白 Expressed protein |
9 | LOC_Os03g53650 | 半胱氨酸合酶 Cysteine synthase, putative, expressed |
10 | LOC_Os03g53660 | 含有肌球蛋白头部结构域的蛋白质 Myosin head domain containing protein, expressed |
11 | LOC_Os03g53670 | 含有YT521-B样家族结构域的蛋白质 YT521-B-like family domain containing protein, expressed |
12 | LOC_Os03g53680 | 表达蛋白 Expressed protein |
13 | LOC_Os03g53690 | 氧化还原酶,含有短链脱氢酶/还原酶家族结构域的蛋白质 Oxidoreductase, short chain dehydrogenase/reductase family domain containing protein, expressed |
14 | LOC_Os03g53700 | PHD锌指家族蛋白 PHD-finger domain containing protein, putative, expressed |
15 | LOC_Os03g53710 | 醛糖1-差向异构酶 Aldose 1-epimerase, putative, expressed |
16 | LOC_Os03g53720 | SRPK4蛋白 SRPK4, putative, expressed |
17 | LOC_Os03g53730 | 黄素蛋白wrbA Flavoprotein wrbA, putative, expressed |
18 | LOC_Os03g53740 | 表达蛋白 Expressed protein |
19 | LOC_Os03g53750 | 核前蛋白A识别因子 Nuclear prelamin A recognition factor, putative, expressed |
20 | LOC_Os03g53760 | 核前蛋白A识别因子 Nuclear prelamin A recognition factor, putative, expressed |
21 | LOC_Os03g53770 | 含有蛋白质的RNA识别基序 RNA recognition motif containing protein, putative, expressed |
22 | LOC_Os03g53780 | 铵转运体2 Ammonium transporter 2, putative, expressed |
23 | LOC_Os03g53790 | 周质β-葡萄糖苷酶前体 Periplasmic beta-glucosidase precursor, putative, expressed |
24 | LOC_Os03g53800 | 周质β-葡萄糖苷酶前体 Periplasmic beta-glucosidase precursor, putative, expressed |
表3 目标区域预测基因
Table 3. Predicted gene in target region.
序号 Serial number | 基因 Gene | 功能注释 Function annotation |
---|---|---|
1 | LOC_Os03g53570 | 反转录转座子蛋白 Retrotransposon protein, putative, unclassified, expressed |
2 | LOC_Os03g53580 | 表达蛋白 Expressed protein |
3 | LOC_Os03g53590 | 表达蛋白 Expressed protein |
4 | LOC_Os03g53600 | HTH DNA结合蛋白 HTH DNA-binding protein, putative, expressed |
5 | LOC_Os03g53610 | 晚期胚胎发育丰富的蛋白质 D-34 late embryogenesis abundant protein D-34, putative, expressed |
6 | LOC_Os03g53620 | 晚期胚胎发育丰富的蛋白质 D-34 late embryogenesis abundant protein D-34, putative, expressed |
7 | LOC_Os03g53630 | PHD锌指家族蛋白 PHD finger family protein, putative, expressed |
8 | LOC_Os03g53640 | 表达蛋白 Expressed protein |
9 | LOC_Os03g53650 | 半胱氨酸合酶 Cysteine synthase, putative, expressed |
10 | LOC_Os03g53660 | 含有肌球蛋白头部结构域的蛋白质 Myosin head domain containing protein, expressed |
11 | LOC_Os03g53670 | 含有YT521-B样家族结构域的蛋白质 YT521-B-like family domain containing protein, expressed |
12 | LOC_Os03g53680 | 表达蛋白 Expressed protein |
13 | LOC_Os03g53690 | 氧化还原酶,含有短链脱氢酶/还原酶家族结构域的蛋白质 Oxidoreductase, short chain dehydrogenase/reductase family domain containing protein, expressed |
14 | LOC_Os03g53700 | PHD锌指家族蛋白 PHD-finger domain containing protein, putative, expressed |
15 | LOC_Os03g53710 | 醛糖1-差向异构酶 Aldose 1-epimerase, putative, expressed |
16 | LOC_Os03g53720 | SRPK4蛋白 SRPK4, putative, expressed |
17 | LOC_Os03g53730 | 黄素蛋白wrbA Flavoprotein wrbA, putative, expressed |
18 | LOC_Os03g53740 | 表达蛋白 Expressed protein |
19 | LOC_Os03g53750 | 核前蛋白A识别因子 Nuclear prelamin A recognition factor, putative, expressed |
20 | LOC_Os03g53760 | 核前蛋白A识别因子 Nuclear prelamin A recognition factor, putative, expressed |
21 | LOC_Os03g53770 | 含有蛋白质的RNA识别基序 RNA recognition motif containing protein, putative, expressed |
22 | LOC_Os03g53780 | 铵转运体2 Ammonium transporter 2, putative, expressed |
23 | LOC_Os03g53790 | 周质β-葡萄糖苷酶前体 Periplasmic beta-glucosidase precursor, putative, expressed |
24 | LOC_Os03g53800 | 周质β-葡萄糖苷酶前体 Periplasmic beta-glucosidase precursor, putative, expressed |
图5 连锁标记RM15931亲本多态性鉴定 泳道1~9分别为tms3650、野香B、93-11、明恢63、GD-7S、隆科638S、博II B、H28B、R51084。
Fig. 5. Identification of parental polymorphism of linked markers RM15931. Lanes 1-9 are tms3650, Yexiang B, 93-11, Minghui 63, GD-7S, Longke 638S, Bo II B, H28B, R51084.
[1] | 朱英国. 水稻雄性不育生物学[M]. 武汉: 武汉大学出版社, 2000. |
Zhu Y G. Biology of Cytoplasmic Male Sterility in Rice[M]. Wuhan: Wuhan University Press, 2000. (in Chinese) | |
[2] | 袁隆平. 水稻的雄性不孕性[J]. 科学通报, 1966(4): 185-188. |
Yuan L P. Male sterility of rice[J]. Science Bulletin, 1966(4): 185-188. (in Chinese with English abstract) | |
[3] | Darwin C. The Effects of Cross and Self Fertilization in the Vegetable Kingdom[M]. London: John Murray, 1876. |
[4] | 李晏军.中国杂交水稻技术发展研究(1964-2010)[D]. 南京: 南京农业大学, 2010. |
Li Y J.Research on the Development of Hybrid Rice Technology in China (1964-2010)[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese with English abstract) | |
[5] | 石明松. 对光照长度敏感的隐性雄性不育水稻的发现与初步研究[J]. 中国农业科学, 1985(2): 44-48. |
Shi M S. Discovery and preliminary research on recessive male sterile rice sensitive to light length[J]. Scientia Agricultura Sinica, 1985(2): 44-48. (in Chinese with English abstract) | |
[6] | 石明松. 晚粳自然两用系选育及应用初报[J]. 湖北农业科学, 1981(7): 3. |
Shi M S. Preliminary report on breeding and application of late japonica natural dual-purpose line[J]. Hubei Agricultural Science, 1981(7): 3. | |
[7] | 邓华凤, 舒福北, 袁定阳. 安农S-1的研究及其利用概况[J]. 杂交水稻, 1999, 14(3): 1-3. |
Deng H F, Shu F B, Yuan D Y. Research and utilization of Anong S-1[J]. Hybrid Rice, 1999, 14(3): 1-3. (in Chinese) | |
[8] | 杨远柱, 唐平徕, 杨文才, 刘爱民, 陈运泉, 凌文彬, 石天宝. 水稻广亲和温敏不育系株1S的选育及应用[J]. 杂交水稻, 2000, 15(2): 6-7. |
Yang Y Z, Tang P L, Yang W C, Liu A M, Chen Y Q, Ling W B, Shi T B. Breeding and application of 1S of the rice CMS line with broad compatibility and temperature sensitivity[J]. Hybrid Rice, 2000, 15(2): 6-7. (in Chinese with English abstract) | |
[9] | 斯华敏, 付亚萍, 刘文真, 孙宗修, 胡国成. 水稻光温敏雄性核不育系的系谱分析[J]. 作物学报, 2012, 38(3): 394-407. |
Si H M, Fu Y P, Liu W Z, Sun Z X, Hu G C. Pedigree analysis of photoperiod-thermo sensitive genic male sterile rice[J]. Acta Agronimica Sinica, 2012, 38(3): 394-407. (in Chinese with English abstract) | |
[10] | 张华丽, 陈晓阳, 黄建中, 鄂志国, 龚俊义, 舒庆尧. 中国两系杂交水稻光温敏核不育基因的鉴定与演化分析[J]. 中国农业科学, 2015, 48(1): 1-9. |
Zhang H L, Chen X Y, Huang J Z, E Z G, Gong J Y, Shu Q Y. Identification and evolution analysis of photo-thermos sensitive GS gene in Chinese two-line hybrid rice[J]. Scientia Agricultura Sinica, 2015, 48(1): 1-9. (in Chinese with English abstract) | |
[11] | 科技网. 2013年度国家科技奖励:民生类项目成果累累[J]. 科技风, 2013(24): 1. |
Science and Technology Network. 2013 National Science and Technology Awards: People's Livelihood Projects have achieved many achievements[J]. Science and Technology Wind, 2013(24): 1. (in Chinese) | |
[12] |
Chen L, Liu Y G. Male sterility and fertility restoration in crops[J]. Annual Review of Plant Biology, 2014, 65: 579-606.
DOI PMID |
[13] |
Fan Y R, Yang J Y, Mathioni S M, Yu J S, Shen J Q, Yang X F, Wang L, Zhang Q H, Cai Z X, Xu C G, Li X H, Xiao J H, Blake C,. Meyers, Zhang Q F. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149.
DOI PMID |
[14] | 梅明华, 陈亮, 章志宏, 李子银, 徐才国, 张启发. 农垦58S光敏不育基因突变位点的确定及pms3区间的进一步作图[J]. 中国科学: C辑, 1999, 29(3): 310-315. |
Mei M H, Chen L, Zhang Z H, Li Z Y, Xu C G, Zhang Q Q. Determination of mutation site of Nongken 58S photosensitive sterility gene and further mapping of pms3 intervals[J]. Science in China: Series C, 1999, 29(3): 310-315. (in Chinese with English abstract) | |
[15] | Ding J H, Lu Q, Ouyang Y D, Mao H L, Zhang P B, Yao J L, Xu C G, Li X H, Xiao J H, Zhang Q F. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences, 2012, 109(7): 2654-2659. |
[16] |
Zhou H, Liu Q J, Li J, Jiang D G, Zhou L Y, Wu P, Lu S, Li F, Zhu L Y, Liu Z L, Chen L T, Liu Y G, Zhuang C X. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660.
DOI PMID |
[17] | Huang T Y, Wang Z, Hu Y G, Shi S P, Peng T, Chu X D, Shi J, Xiang Z F, Liu D Y. Genetic analysis and primary mapping of pms4, a photoperiod-sensitive genic male sterility gene in rice (Oryza sativa)[J]. Rice Science, 2008(2): 153-156. |
[18] | 李莉, 邱牡丹, 李懿星, 张大兵, 宋书锋, 王天抗. 一种制备水稻光敏型雄性不育材料的方法及相关基因: CN113637700A[P]. 2021-11-12. |
Li L, Qiu M D, Li Y X, Zhang D B, Song S F, Wang T K. A method for preparing rice photosensitive male sterile material and related genes: CN113637700A[P]. 2021-11-12. (in Chinese) | |
[19] | Jiang S Y, Cai M, Ramachandran S. Oryza sativa myosin Xi B controls pollen development by photoperiod- sensitive protein localizations[J]. Development Biology, 2007, 304(2): 579 - 592. |
[20] |
Zhang H, Liang W Q, Yang X J, Luo X, Jiang N, Ma H, Zhang D B. Carbon starved anther encodes a MYB Domain Protein that regulates sugar partitioning required for rice pollen development[J]. The Plant Cell, 2010, 22(3): 672-689.
DOI PMID |
[21] | 李超, 徐建红. 水稻光温敏核不育的分子与表观调控机理[J]. 农业生物技术学报, 2016, 24(1): 115-124. |
Li C, Xu J H. Molecular and epigenetic regulation mechanisms of photothermo-sensitive genic sterility in rice[J]. Journal of Agricultural Biotechnology, 2016, 24(1): 115-124. (in Chinese with English abstract) | |
[22] | Wang J Z, Wang B, Xu W W. Tagging and mapping rice photoperiod sensitive genic male sterile gene with molecular markers[J]. Plant Genome, 1996, 51(3): 570-577. |
[23] | Pitnjam K, Chakhonkaen S, Toojinda T, Muangprom A. Identification of a deletion in tms2 and development of gene-based markers for selection[J]. Planta, 2008, 228(5), 813-822. |
[24] | Chutharat C, Ketsuwan C, Keasinee P, Sriprapai C, Numphet S, Kanidta S, Malinee S, Louise V. M, Johnathan A. N, Amorntip M, Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development[J]. PLoS ONE, 2014, 9(9): e106386. |
[25] |
Subudhi P K, Borkakati R P, Virmani S S, Huang N. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis[J]. Genome, 1997, 40(2): 188-194.
PMID |
[26] | Dong N V, Subudhi P K, Luong P N, Quang V D, Quy T D, Zheng H G, Wang B, H., Nguyen T. Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques[J]. Theoretical and Applied Genetics, 2000, 100(5): 727-734. |
[27] | Reddy O, Siddiq E A, Sarma N P, Ali J, Hussain A J, Nimmakayala P, Ramasamy P, Pammi S, Reddy A S. Genetic analysis of temperature-sensitive male sterility in rice[J]. Theoretical and Applied Genetics, 2000, 100(5): 794-801. |
[28] |
Wang Y G, Xing Q H, Deng Q Y, Liang F S, Yuan L P, Weng M L, Wang B. Fine mapping of the rice thermo-sensitive genic male-sterile gene tms5[J]. Theoretical and Applied Genetics, 2003, 107(5): 917-921.
DOI PMID |
[29] | Xu J J, Wang B H, Wu Y H, Du P N, Wang J, Wang M, Yi C D, Gu M H, Liang G H. Fine mapping and candidate gene analysis of ptgms2-1, the photoperiod-thermo-sensitive genic male sterile gene in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 122(2): 365-372 |
[30] | Lee D S, Chen L J, Suh H S. Genetic characterization and fine mapping of a novel thermo- sensitive genic male-sterile gene tms6 in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2005, 111: 1271-1277. |
[31] | Wang C H, Zhang P, Ma Z R, Zhang M Y, Sun G C, Ling D H. Development of a genetic marker linked to a new thermo-sensitive male sterile gene in rice(Oryza sativa L.)[J]. Euphytica, 2004, 140: 217-222. |
[32] | Liu X, Li X H, Zhang Xin, Wang S W. Genetic analysis and mapping of a thermosensitive genic male sterility gene, tms6(t), in rice(Oryza sativa L.)[J]. Genome, 2010, 53: 119-124. |
[33] | Hussain A J, Ali J, Siddiq E A, Gupta V S, Reddy U K, Ranjekar P K. Mapping of tms8 gene for temperature- sensitive genic male sterility (TGMS) in rice (Oryza sativa L.)[J]. Plant Breeding, 2012, 131: 42-47. |
[34] | Sheng Z H, Wei X J, Shao G N, Chen M L, Song J, Tang S Q, Luo J, Hu Y C, Hu P S, Chen L Y. Genetic analysis and fine mapping of tms9, a novel thermosensitive genic male-sterile gene in rice (Oryza sativa L.)[J]. Plant Breeding, 2013, 132(2): 159-164. |
[35] | Qi Y B, Liu Q L, Zhang L, Mao B Z, Yan D W, Jin Q S, He Z H. Fine mapping and candidate gene analysis of the novel thermo-sensitive genic male sterility tms9-1 gene in rice[J]. Theoretical & Applied Genetics, 2014, 127(5): 1173-1182. |
[36] | Li H, Yuan Z, Gema V B, Yang C Y, Liang W Q, Zong J, Wilson Z A, Zhang D B. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice[J]. Plant Physiology, 2011, 156(2): 615-630. |
[37] |
Yu J P, Han J J, Kim Y J, Song M, Yang Z, He Y, Fu R F, Luo Z J, Hu J P, Liang W Q, Zhang D B. Two rice receptor-like kinases maintain male fertility under changing temperatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12327-12332.
DOI PMID |
[38] | 李月灵. 水稻花粉壁发育相关基因OsACOS12和温敏核不育基因的克隆与功能分析[D]. 上海: 上海师范大学, 2017. |
Li Y L. Cloning and functional analysis of rice pollen wall development-related gene OsACOS12 and thermosensitive sterility gene[D]. Shanghai: Shanghai Normal University, 2017. | |
[39] |
Chang Z Y, Chen Z F, Wang N, Xie G, Lu J W, Yan W, Zhou J L, Tang X Y, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14145-14150.
PMID |
[40] | 李仕贵, 周开达, 朱立煌. 水稻温敏显性核不育基因的遗传分析和分子标记定位[J]. 科学通报, 1999, 44(9): 955-958. |
Li S G, Zhou K D, Zhu L H. Genetic analysis and molecular marker mapping of thermosensitive dominant sterility genes in rice[J]. Science Bulletin, 1999, 44(9): 955-958. (in Chinese with English abstract) | |
[41] | Koh H J, Son Y H, Heu M H, Lee H S, McCouch S R. Molecular mapping of a new genic male-sterility gene causing chalky endosperm in rice (Oryza sativa L.)[J]. Euphytica, 1999, 106(1): 57-62. |
[42] | Jia J H, Zhang D S, Li C Y, Qu X P, Wang S W, Chamarerk V, Nguyen H T, Wang B. Molecular mapping of the reverse thermo-sensitive genic male-sterile gene (rtms1) in rice[J]. Theoretical and Applied Genetics, 2001, 103(4): 607-612. |
[43] | Chen R Z, Zhao X, Shao Z, Wei Z, Wang Y Y, Zhu L L, Zhao J, Sun M X, He R F, He G C. Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility[J]. The Plant Cell, 2007, 19(3): 847-861. |
[44] | Zhou Y F, Zhang X Y, Xue Q Z. Fine mapping and candidate gene prediction of the photoperiod and thermo- sensitive genic male sterile gene pmsl(t) in rice[J]. Journal of Zhejiang University, 2011, 12: 436-447. |
[45] | Zhou H, Zhou M, Yang Y Z, Li J, Zhu L Y, Jiang D G, Dong J F, Liu Q J, Gu L F, Zhou L Y, Feng M J, Qin P, Hu X C, Song C L, Shi J F, Song X W, Ni E D, Wu X J, Deng Q Y, Liu Z L, Chen M S, Liu Y G, Cao X F, Zhuang C X, RNase ZS1 processes UbL40 mRNAs and controls thermosensitive genic male sterility in rice[J]. Nature Communications, 2014, 5(1): 4884. |
[46] |
龙湍, 安保光, 李新鹏, 张维, 李京琳, 杨瑶华, 曾翔, 吴永忠, 黄培劲. 籼稻93-11辐射诱变突变体库的创建及其筛选[J]. 中国水稻科学, 2016, 30(1): 44-52.
DOI |
Long T, An B G, Li X P, Zhang W, Li J L, Yang Y H, Zeng X, Wu Y Z, Huang P J. Creation and screening of indica rice 93-11 radiation mutant mutant library[J]. Chinese Journal of Rice Science, 2016, 30(1): 44-52. (in Chinese with English abstract) | |
[47] | Zhao J, Long T, Wang Y F, Tong X H, Tang J, Li J L, Wang H M, Tang L Q, Li Z Y, Shu Y Z, Liu X X, Li S F, Liu H, Li J L, Wu Y Z, Zhang J. RMS2 encoding a gdsl lipase mediates lipid homeostasis in anthers to determine rice male fertility[J]. Plant Physiology, 2020, 182(4): 2047-2064. |
[48] |
李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
DOI |
Li J L, Li J L, Li X P, An B G, Zeng X, Wu Y Z, Huang P J, Long T. Creation and combining ability analysis of recessive genic sterile lines with a new ptc1 locus in rice[J]. Acta Agronimica Sinica, 2021, 47(11): 2173-2183. (in Chinese with English abstract) | |
[49] | 李京琳, 李新鹏, 龙湍, 安保光, 曾翔, 吴永忠, 黄培劲. 一个水稻MSP1突变体的鉴定和分析[J]. 植物生理学报, 2018, 54(3): 393-400. |
Li J L, Li X P, Long T, Bao A G, Zeng X, Wu Y Z, Huang P J. Identification and characterization of a rice MSP1 mutant[J]. Journal of Plant Physiology, 2018, 54(3): 393-400. (in Chinese with English abstract) | |
[50] |
Scott O R, Arnold J B. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues[J]. Plant Molecular Biology, 1985, 5: 69-76.
DOI PMID |
[51] |
Michelmore R. Molecular approaches to manipulation of disease resistance genes[J]. Annual Review of Phytopathology, 1995, 33: 393-427.
PMID |
[52] |
Orjuela J, Garavito A, Bouniol M. A universal core genetic map for rice[J]. Theoretical and Applied Genetics, 2010, 120, 563-572.
DOI PMID |
[53] | 林艳, 刘华清, 付艳萍, 吴明基. 利用TALEN技术编辑水稻光温敏核不育基因PMS3[J]. 福建农业学报, 2019, 34(4): 381-386. |
Lin Y, Liu H Q, Fu Y P, Wu M J. Using TALEN technology to edit rice photothermosensitive sterility gene PMS3[J]. Fujian Agricultural Journal, 2019, 34(4): 381-386. (in Chinese with English abstract) | |
[54] |
王芳权, 范方军, 夏士健, 宗寿余, 郑天清, 王军, 李文奇, 许扬, 陈智慧, 蒋彦婕, 陶亚军, 仲维功, 杨杰. 水稻光温敏核不育基因tms5与pms3的互作效应[J]. 作物学报, 2020, 46(3): 317-329.
DOI |
Wang F Q, Fan F J, Xia S J, Zong S Y, Zheng T Q, Wang J, Li W Q, Xu Y, Chen Z Z, Jiang Y J, Tao Y J, Zhong W G, Yang J. Interaction effect of the photothermo-sensitive gene tms5 and pms3 in rice[J]. Acta Agronomica Sinica, 2020, 46(3): 317-329. (in Chinese with English abstract) | |
[55] |
Ding J, Shen J, Mao H, Xie W, Li X, Zhang Q. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Molecular Plant, 2012, 5: 1210-1216.
DOI PMID |
[56] | Li H J, Kim Y J, Yang L, Liu Z, Zhang J, Shi H T, Huang G Q, Persson S, Zhang D B, Liang W Q. Grass-specific EPAD1 is essential for pollen exine patterning in rice[J]. The Plant Cell, 2020, 32(12): 3961-3977. |
[57] | Yang Z F, Sun L P, Zhang P P, Zhang Y X, Yu P, Liu L, Abbas A, Xiang X J, Wu W X, Zhan X D, Cao L Y, Cheng S H. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice[J]. The Plant Journal, 2019, 99(5): 844-861. |
[58] | Yu J, Meng Z L, Liang W Q,. Behera S, Kudla J, Matthew R T, Luo Z J, Chen M J, Xu D W, Zhao G C, Wang J, Zhang S Y, Kim Y J, Zhang D B. A rice Ca2+ binding protein is required for tapetum function and pollen formation[J]. Plant Physiology, 2016, 172(3): 1772-1786. |
[59] | Nonomura K I, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice[J]. The Plant Cell, 2007, 19(8): 2583-2594. |
[1] | 刘淑丽, 张瑞, 王洋, 陈英龙, 韦还和, 侯红燕, 戴其根. 外源物质对水稻盐胁迫缓解效应研究进展[J]. 中国水稻科学, 2023, 37(1): 1-15. |
[2] | 袁洋, 敖和军, 周仲华, 应杰政, 张健, 倪深. 水稻杂种偏分离位点SegD8的精细定位[J]. 中国水稻科学, 2023, 37(1): 37-44. |
[3] | 张露, 梁青铎, 吴龙龙, 黄晶, 田仓, 张均华, 曹小闯, 朱春权, 孔亚丽, 金千瑜, 朱练峰. 减氮和增氧灌溉对水稻产量和氮素利用的影响[J]. 中国水稻科学, 2023, 37(1): 78-88. |
[4] | 巫明明, 曾维, 翟荣荣, 叶靖, 朱国富, 俞法明, 张小明, 叶胜海. 水稻耐盐分子机制与育种研究进展[J]. 中国水稻科学, 2022, 36(6): 551-561. |
[5] | 李小秀, 吕启明, 袁定阳. OsNramp5基因变异影响水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2022, 36(6): 562-571. |
[6] | 张元野, 尹丽颖, 李荣田, 何明良, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制Rc基因恢复红稻[J]. 中国水稻科学, 2022, 36(6): 572-578. |
[7] | 毛慧, 彭彦, 毛毕刚, 韶也, 郑文杰, 胡黎明, 周凯, 赵炳然. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析[J]. 中国水稻科学, 2022, 36(6): 579-585. |
[8] | 史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较[J]. 中国水稻科学, 2022, 36(6): 601-610. |
[9] | 魏晓东, 张亚东, 宋雪梅, 陈涛, 朱镇, 赵庆勇, 赵凌, 路凯, 梁文化, 赫磊, 黄胜东, 谢寅峰, 王才林. 高产粳稻品种南粳晶谷的光合生理特性研究[J]. 中国水稻科学, 2022, 36(6): 611-622. |
[10] | 马静静, 潘妍妍, 杨孙玉悦, 王嘉琦, 蒋冬花. 硫藤黄链霉菌St-79对水稻白叶枯病的防效和促生作用[J]. 中国水稻科学, 2022, 36(6): 623-638. |
[11] | 唐若迪, 陈超. 外包服务对中老年劳动力参与水稻生产的影响[J]. 中国水稻科学, 2022, 36(6): 647-655. |
[12] | 伏荣桃, 王剑, 陈诚, 赵黎宇, 陈雪娟, 卢代华. 水稻幼穗响应稻曲病菌毒素胁迫早期的转录组分析[J]. 中国水稻科学, 2022, 36(5): 447-458. |
[13] | 尹丽颖, 张元野, 李荣田, 何明良, 王芳权, 许扬, 刘欣欣, 潘婷婷, 田晓杰, 卜庆云, 李秀峰. 利用CRISPR/Cas9技术创制高效抗除草剂水稻[J]. 中国水稻科学, 2022, 36(5): 459-466. |
[14] | 朱春权, 魏倩倩, 党彩霞, 黄晶, 徐青山, 潘林, 朱练峰, 曹小闯, 孔亚丽, 项兴佳, 刘佳, 金千瑜, 张均华. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫[J]. 中国水稻科学, 2022, 36(5): 476-486. |
[15] | 陈红阳, 贾琰, 赵宏伟, 瞿炤珺, 王新鹏, 段雨阳, 杨蕊, 白旭, 王常丞. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响[J]. 中国水稻科学, 2022, 36(5): 487-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||