中国水稻科学 ›› 2020, Vol. 34 ›› Issue (4): 307-315.DOI: 10.16819/j.1001-7216.2020.0301
黄福灯1,#, 赵超越2,#, 吴鑫2, 贺焕焕2, 程方民2, 李春寿1,*(), 潘刚2
收稿日期:
2020-02-05
修回日期:
2020-04-10
出版日期:
2020-07-10
发布日期:
2020-07-10
通讯作者:
李春寿
作者简介:
#共同第一作者
基金资助:
Fudeng HUANG1,#, Chaoyue ZHAO2,#, Xin WU2, Huanhuan HE2, Fangmin CHENG2, Chunshou LI1,*(), Gang PAN2
Received:
2020-02-05
Revised:
2020-04-10
Online:
2020-07-10
Published:
2020-07-10
Contact:
Chunshou LI
About author:
#These authors contributed equally to this work
摘要:
【目的】叶片是水稻进行光合作用最重要的器官。叶色突变体是研究光合作用、叶绿素合成代谢和叶绿体发育的重要材料。【方法】利用60Co辐射诱变中籼恢复系自选1号,获得黄叶早衰突变体osyes1。幼苗期对突变体和野生型进行外源H2O2处理。抽穗期对突变体和野生型叶片进行超氧化物歧化酶活性、过氧化氢酶活性、活性氧含量、丙二醛含量、可溶性蛋白含量、叶绿素含量、净光合速率测定以及透射电镜观察。成熟期考查突变体和野生型的主要农艺性状。以osyes1/02428的F2群体中的隐性单株为作图群体,利用图位克隆方法定位OsYES1基因。【结果】osyes1的突变性状始于3~4叶期,水稻抽穗后,所有叶片均表现为黄叶衰老症状,致使突变体株高、穗长、每穗粒数及结实率极显著低于野生型对照。与野生型对照相比,突变体幼苗对外源H2O2更敏感。生理分析表明,孕穗期野生型倒3叶的叶绿素含量、过氧化物酶和过氧化氢酶活性极显著低于倒2叶和剑叶,而突变体的含量则极显著低于野生型且依次极显著降低;与野生型相比,突变体剑叶、倒2叶和倒3叶的丙二醛、H2O2和O2-含量极显著增加,而可溶性蛋白含量则相反。遗传分析表明,osyes1受一对隐性核基因控制,利用图位克隆技术将OsYES1基因定位于第7染色体短臂的RM21353与RM21384之间,物理距离为708 kb。【结论】由于osyes1叶片过早黄化衰老导致与产量相关的重要农艺性状显著下降。OsYES1基因定位在第7染色体两个SSR标记(RM21353和RM21384)之间的708 kb的物理区间内。
中图分类号:
黄福灯, 赵超越, 吴鑫, 贺焕焕, 程方民, 李春寿, 潘刚. 水稻黄叶早衰突变体osyes1的生理特性和基因定位[J]. 中国水稻科学, 2020, 34(4): 307-315.
Fudeng HUANG, Chaoyue ZHAO, Xin WU, Huanhuan HE, Fangmin CHENG, Chunshou LI, Gang PAN. Physiological Characters and Gene Mapping of a Yellow Leaf and Early-senescence Mutant osyes1 in Rice[J]. Chinese Journal OF Rice Science, 2020, 34(4): 307-315.
图1 突变体osyes1及其野生型的表型 A-幼苗期; B-开花期; C-开花期叶片; D-成熟期; F, 2, 3, 4分别代表剑叶、倒2叶、倒3叶和倒4叶; 标尺=10 cm。E和F-野生型叶肉细胞;G和H-突变体叶肉细胞。cl-叶绿体;nu-细胞核;sg-淀粉粒。标尺=1 μm。
Fig. 1. Phenotype of osyes1 and its WT plants at different growth stages. A, Seedling stage; B, Heading stage; C, Leaves at heading stage; D, Maturity stage; F, 2, 3 and 4 mean flag leaf, the 2nd, the 3rd and the 4th leaf from top, respectively; Bar=10 cm. Chloroplast ultrastructure of the wild-type (E, F) and osyes1(G, H). cl, Chloroplast; nu, Nucleus; sg, Starch granule; Bar=1 μm.
性状Trait | 2018 | 2019 | |||
---|---|---|---|---|---|
野生型WT | 突变体osyes1 | 野生型WT | 突变体osyes1 | ||
株高 Plant height / cm | 104.83±2.04 | 94.01±4.52** | 108.15±4.35 | 95.27±4.74** | |
穗长 Panicle length / cm | 24.04±1.64 | 19.72±1.28** | 24.78±1.43 | 19.13±1.76** | |
有效穗数 Effective panicle number | 8.14±1.14 | 9.17±2.11 | 8.53±1.78 | 9.15±1.87 | |
每穗粒数 Grain number per panicle | 174.97±8.88 | 119.03±10.25** | 175.24±7.99 | 118.48±8.94** | |
结实率 Seed-setting rate / % | 85.27±6.68 | 50.63±3.93** | 85.84±4.98 | 48.72±4.34** | |
千粒重 1000-grain weight / g | 22.63±0.48 | 21.66±2.10 | 22.87±0.75 | 21.69±1.71 |
表1 突变体及其野生型的主要农艺性状
Table 1 Main agronomic traits of osyes1 and its wild type (WT) plants.
性状Trait | 2018 | 2019 | |||
---|---|---|---|---|---|
野生型WT | 突变体osyes1 | 野生型WT | 突变体osyes1 | ||
株高 Plant height / cm | 104.83±2.04 | 94.01±4.52** | 108.15±4.35 | 95.27±4.74** | |
穗长 Panicle length / cm | 24.04±1.64 | 19.72±1.28** | 24.78±1.43 | 19.13±1.76** | |
有效穗数 Effective panicle number | 8.14±1.14 | 9.17±2.11 | 8.53±1.78 | 9.15±1.87 | |
每穗粒数 Grain number per panicle | 174.97±8.88 | 119.03±10.25** | 175.24±7.99 | 118.48±8.94** | |
结实率 Seed-setting rate / % | 85.27±6.68 | 50.63±3.93** | 85.84±4.98 | 48.72±4.34** | |
千粒重 1000-grain weight / g | 22.63±0.48 | 21.66±2.10 | 22.87±0.75 | 21.69±1.71 |
图2 H2O2胁迫下osyes1突变体及其野生型(WT)的表型 **在0.01水平上差异显著。
Fig. 2. Phenotype of osyes1 mutant and its wild type (WT) plants under H2O2 exposure. ** Significantly different at P<0.01 (t-test).
图3 孕穗期突变体osyes1及其野生型叶片的叶绿素含量及其净光合速率**在0.01水平上差异显著(t-test)。
Fig. 3. Chlorophyll (chl) levels and net photosynthetic rate of leaves in osyes1 and its WT plants at the booting stage. **Significantly different at P<0.01 (t-test).
图4 孕穗期突变体osyes1及其野生型叶片中的H2O2和O2-含量及抗氧化酶活性*在0.05水平上差异显著, **在0.01水平上差异显著(t-test)。
Fig. 4. H2O2 and O2- levels, and the activities of antioxidases in osyes1 and its WT plants at booting stage. *Significantly different at P<0.05, **Significantly different at P<0.01(t-test).
图5 孕穗期突变体osyes1及其野生型叶片的MDA和可溶性蛋白含量**在0.01水平上差异显著。
Fig. 5. MDA and soluble protein contents of leaves in osyes1 and its WT plants at booting stage. **Significantly different at P<0.01 (t-test).
组合 Cross | 野生型表型单株数 No. of WT-type plants | 突变表型单株数 No. of mutant-type plants | 植株总数 Total number of plants | χ23:1 | P值 P value |
---|---|---|---|---|---|
osyes1/自选1号 osyes1/Zixuan 1 | 596 | 191 | 687 | 0.22 | 0.64 |
osyes1/浙恢7954 osyes1/Zhehui 7954 | 814 | 279 | 1093 | 0.16 | 0.69 |
表2 突变体osyes1的遗传分析
Table 2 Genetic analysis of the mutant osyes1.
组合 Cross | 野生型表型单株数 No. of WT-type plants | 突变表型单株数 No. of mutant-type plants | 植株总数 Total number of plants | χ23:1 | P值 P value |
---|---|---|---|---|---|
osyes1/自选1号 osyes1/Zixuan 1 | 596 | 191 | 687 | 0.22 | 0.64 |
osyes1/浙恢7954 osyes1/Zhehui 7954 | 814 | 279 | 1093 | 0.16 | 0.69 |
基因登录号 | 功能注释 |
---|---|
GeneBank accession No. | Annotation |
LOC_Os07g17130 | 含蛋白质的FYVE锌指结构域 FYVE zinc finger domain containing protein |
LOC_Os07g17184 | 表达蛋白 Expressed protein |
LOC_Os07g17220 | 抗病蛋白 Disease resistance protein |
LOC_Os07g17230 | WRKY123 |
LOC_Os07g17250 | 抗病RPP13样蛋白1 Disease resistance RPP13-like protein 1 |
LOC_Os07g17280 | Ser/Thr蛋白磷酸酶家族蛋白 Ser/Thr protein phosphatase family protein |
LOC_Os07g17330 | B12D蛋白 B12D protein |
LOC_Os07g17350 | 转座子蛋白 Transposon protein |
LOC_Os07g17390 | 光系统Ⅱ的外周蛋白 PsbP |
LOC_Os07g17400 | 环状锌指蛋白 RING-type zinc finger protein |
LOC_Os07g17560 | 表达蛋白 Expressed protein |
LOC_Os07g17689 | 表达蛋白 Expressed protein |
LOC_Os07g17970 | 含AMP结合域的蛋白质 AMP-binding domain containing protein |
LOC_Os07g18050 | RNA结合基序蛋白 RNA-binding motif protein |
LOC_Os07g18070 | 表达蛋白 Expressed protein |
表3 定位区间内在叶中表达的基因功能注释
Table 3 Functional annotations of genes expressed in leaves within the target interval.
基因登录号 | 功能注释 |
---|---|
GeneBank accession No. | Annotation |
LOC_Os07g17130 | 含蛋白质的FYVE锌指结构域 FYVE zinc finger domain containing protein |
LOC_Os07g17184 | 表达蛋白 Expressed protein |
LOC_Os07g17220 | 抗病蛋白 Disease resistance protein |
LOC_Os07g17230 | WRKY123 |
LOC_Os07g17250 | 抗病RPP13样蛋白1 Disease resistance RPP13-like protein 1 |
LOC_Os07g17280 | Ser/Thr蛋白磷酸酶家族蛋白 Ser/Thr protein phosphatase family protein |
LOC_Os07g17330 | B12D蛋白 B12D protein |
LOC_Os07g17350 | 转座子蛋白 Transposon protein |
LOC_Os07g17390 | 光系统Ⅱ的外周蛋白 PsbP |
LOC_Os07g17400 | 环状锌指蛋白 RING-type zinc finger protein |
LOC_Os07g17560 | 表达蛋白 Expressed protein |
LOC_Os07g17689 | 表达蛋白 Expressed protein |
LOC_Os07g17970 | 含AMP结合域的蛋白质 AMP-binding domain containing protein |
LOC_Os07g18050 | RNA结合基序蛋白 RNA-binding motif protein |
LOC_Os07g18070 | 表达蛋白 Expressed protein |
[1] | Okita T W, Sun J, Sakulringharoj C, Choi S B, Edwards G E, Kato C, Ito H, Matsui H.Increasing rice productivity and yield by manipulation of starch synthesis[J]. Novartis Foundation Symposium, 2001, 236: 135-146. |
[2] | Julius B T, Leach K A, Tran T M, Mertz R A, Braun D M.Sugar transporters in plants: New insights and discoveries[J]. Plant and Cell Physiology, 2017, 58(9): 1442-1460. |
[3] | 刘道宏. 植物叶片的衰老. 植物生理学通讯[J]. 1983(2): 14-19. |
Liu D H.Plant leaf senescence.Plant Physiology Communications, 1983(2): 14-19. (in Chinese) | |
[4] | Thomas H, Smart C M.Crops that stay green[J]. Annals of Applied Biology, 1993, 123: 193-219. |
[5] | 何冰, 刘玲珑, 张文伟, 万建民. 植物叶色突变体. 植物生理学通讯[J]. 2006, 42: 1-9 |
HE B, Liu L L, Zhang W W, Wan J M.Plant leaf color mutants[J]. Plant Physiology Communications, 2006, 42: 1-9. (in Chinese) | |
[6] | Ougham H, Hörtensteiner S, Armstead I, Donnison I, King I, Thomas H, Mur L.The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence[J]. Plant Biology (Stuttg), 2008(Suppl 1): 4-14. |
[7] | 杜文凯,袁素霞,胡凤荣. 植物叶色突变分子机制的研究进展[J]. 分子植物育种, 2019, 17(6): 1888-1897. |
Du W K, Yuan S X, Hu F R.Research progress on molecular mechanisms of the leaf color mutation[J]. Molecular Plant Breeding, 2019, 17(6): 1888-1897. (in Chinese with English abstract) | |
[8] | Peng Y L, Zou T, Li L M, Tang S W, Li Q, Zhang J, Chen Y J, Wang X C, Yang G T, Hu Y G.Map-based cloning and functional analysis of YE1 in rice, which is involved in light-dependent chlorophyll biogenesis and photoperiodic flowering pathway[J]. International Journal of Molecular Science, 2019, 20(3): 758. |
[9] | Chen N G, Wang P R, Li C M, Wang Q, Pan J H, Xiao F L, Wang Y, Zhang K, Li C X, Yang B, Sun C H, Deng X J.A single nucleotide mutation of IspE gene participating in the MEP pathway for isoprenoid biosynthesis causes green-revertible yellow leaf phenotype in rice[J]. Plant and Cell Physiology, 2018, 59(9): 1905-1917. |
[10] | Sheng Z H, Lü Y S, Li W, Luo R J, Wei X J, Xie L H, Jiao G L, Shao G N, Wang J L, Tang S Q, Hu P S.Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice(Oryza sativa L.)[J/OL]. PLoS ONE, 2017, 12(5): e0177989. |
[11] | Zhou Y, Gong Z Y, Yang Z F, Yuan Y, Zhu J Y, Wang M, Yuan F H, Wu S J, Wang Z Q, Yi C D, Xu T H, Ryom M, Gu M H, Liang G H.Mutation of the light-induced yellow leaf 1 gene, which encodes a geranylgeranyl reductase, affects chlorophyll biosynthesis and light sensitivity in rice[J/OL]. PLoS ONE, 2013, 8(9): e75299. |
[12] | Murashige T, Skoog F.A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15: 473-497. |
[13] | Yang X, Gong P, Li K Y, Huang F D, Cheng F M, Pan G.A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany, 2016, 67(9): 2761-2776. |
[14] | 龚盼, 黎坤瑜, 黄福灯, 韦荔全, 杨茜, 程方民, 潘刚. 水稻叶片早衰突变体ospls3的生理特征和基因定位[J]. 作物学报, 2016, 42(5): 667-674. |
Gong P, Li K Y, Huang F D, Wei L Q, Yang X, Cheng F M, Pan G.Physiological characteristics and gene mapping of a precocious leaf senescence mutant ospls3 in rice[J]. Acta Agronomica Sinica, 2016, 42(5): 667-674. (in Chinese with English abstract) | |
[15] | Gong P, Luo Y M, Huang F D, Chen Y D, Zhao C Y, Wu X, Li K Y, Yang X, Cheng F M, Xiang X, Wu C Y, Pan G.Disruption of a Upf1-like helicase-encoding gene OsPLS2 triggers light-dependent premature leaf senescence in rice[J]. Plant Molecular Biology, 2019, 100(1-2): 133-149. |
[16] | Pan G, Si P, Yu Q, Tu J M, Powles S.Non-target site mechanism of metribuzin tolerance in induced tolerant mutants of narrow-leafed lupin(Lupinus angustifolius L.)[J]. Crop and Pasture Science, 2012, 63(5): 452-458 |
[17] | Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G, Wang C, Qian L L, Li X, Yu Q B, Liu H J, Chen D H, Gao J H, Huang H, Shi T L, Yang Z N.Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology, 2004, 135(3): 1198-1205. |
[18] | Lim P O, Kim H J, Nam H G.Leaf senescence[J]. Annual Review of Plant Biology, 2007, 58: 115-136. |
[19] | Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R.Reactive oxygen species homeostasis and signaling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33(4): 453-467. |
[20] | Jajic I, Sarna T, Strzalka K.Senescence, stress, and reactive oxygen species[J]. Plants(Basel), 2015, 4(3): 393-411. |
[21] | Rogers H, Munné-Bosch S.Production and scavenging of reactive oxygen species and redox signaling during leaf and flower senescence: Similar but different[J]. Plant Physiology, 2016, 171(3): 1560-1568. |
[22] | 华春, 王仁雷. 杂交稻及其三系叶片衰老过程中SOD、CAT活性和MDA含量的变化[J]. 西北植物学报, 2003, 23(3): 406-409. |
Hua C, Wang R L.Changes of SOD and CAT activities and MDA content during senescence of hybrid rice and three lines leaves[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(3): 406-409. (in Chinese with English abstract) | |
[23] | Wu X Y, Kuai B K, Jia J Z, Jing H C.Regulation of leaf senescence and crop genetic improvement[J]. Journal of Integrative Plant Biology, 2012, 54(12): 936-952. |
[24] | Gregersen P L, Culetic A, Boschian L, Krupinska K.Plant senescence and crop productivity[J]. Plant Molecular Biology, 2013, 82(6): 603-622. |
[25] | Woo H R, Kim H J, Lim P O, Nam H G.Leaf senescence: systems and dynamics aspects[J]. Annual Review of Plant Biology, 2019, 70: 347-376. |
[26] | Bengoa Luoni S, Astigueta F H, Nicosia S, Moschen S, Fernandez P, Heinz R.Transcription factors associated with leaf senescence in crops[J]. Plants(Basel), 2019, 8(10): 411. |
[27] | Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B.A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice[J]. Plant Physiology, 2006, 141(4): 1376-1388. |
[28] | Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi-Shinozaki K.OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes[J]. Plant Physiology, 2013, 161(3): 1202-1216. |
[29] | Shim Y, Kang K, An G, Paek N C.Rice DNA-binding one zinc finger 24 (OsDOF24) delays leaf senescence in a jasmonate-mediated pathway[J]. Plant and Cell Physiology, 2019, 60(9): 2065-2076. |
[30] | Han M, Kim C Y, Lee J, Lee S K, Jeon J S.OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice[J]. Molecules and Cells, 2014, 37(7): 532-539. |
[31] | Na J K, Kim J K, Kim D Y, Assmann S M.Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis[J]. Journal of Experimental Botany, 2015, 66(13): 4023-4033. |
[32] | Zhang B Y, Jia J H, Yang M, Yan C V, Han Y Z.Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis[J]. Molecules and Cells, 2012, 34(4): 367-374. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||