中国水稻科学 ›› 2020, Vol. 34 ›› Issue (4): 316-324.DOI: 10.16819/j.1001-7216.2020.9134
王广达1, 高鹏1,2, 杨文艳1, 崔傲1, 赵剑华1, 冯志明1,2, 曹文磊1,2, 陈宗祥1,2, 左示敏1,2,*()
收稿日期:
2019-12-13
修回日期:
2020-02-19
出版日期:
2020-07-10
发布日期:
2020-07-10
通讯作者:
左示敏
基金资助:
Guangda WANG1, Peng GAO1,2, Wenyan YANG1, Ao CUI1, Jianhua ZHAO1, Zhiming FENG1,2, Wenlei CAO1,2, Zongxiang CHEN1,2, Shimin ZUO1,2,*()
Received:
2019-12-13
Revised:
2020-02-19
Online:
2020-07-10
Published:
2020-07-10
Contact:
Shimin ZUO
摘要:
【目的】培育抗除草剂品种是水稻育种中的一个重要方向,开发高效的功能标记可以加快抗除草剂性状的筛选工作。【方法】利用开发的dCAPS和KASP分子标记对试验材料的基因型分型,另结合除草剂喷施试验进行表型鉴定。【结果】测序结果验证了前人发现的金粳818中乙酰乳酸合成酶(acetolactate synthase,ALS)基因第627位氨基酸由丝氨酸(serine,S)突变为天冬酰胺(asparagine,N)是其抗咪唑啉酮类除草剂的主要原因,本文将其命名为ALS627N。根据此变异位点的DNA序列差异,开发了两个新的功能标记dC-ALS-627和K-ALS-627,可有效区分ALS627N纯合型、杂合型及非突变纯合型。【结论】两个标记均可以广泛用于ALS627N基因的标记辅助选择育种,有助于加快培育抗咪唑啉酮类除草剂新品种,具有重要的实际应用价值。
中图分类号:
王广达, 高鹏, 杨文艳, 崔傲, 赵剑华, 冯志明, 曹文磊, 陈宗祥, 左示敏. 金粳818抗咪唑啉酮类除草剂基因的功能标记开发与应用[J]. 中国水稻科学, 2020, 34(4): 316-324.
Guangda WANG, Peng GAO, Wenyan YANG, Ao CUI, Jianhua ZHAO, Zhiming FENG, Wenlei CAO, Zongxiang CHEN, Shimin ZUO. Development and Utilization of Functional Markers for Imidazolinone Herbicides Resistance Gene in japonica Rice Variety Jinjing 818[J]. Chinese Journal OF Rice Science, 2020, 34(4): 316-324.
标记名称 Marker name | 引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|---|
dC-ALS-627 | ALS-F ALS-R dC-ALS-627-F | CTCGCCCAAACCCAGAAACC CACATACAAACATCATAGGCATACCACTC GAGCATGTGCTGCCTATGATCCTAA |
dC-ALS-627-R | TAGAGCACATACAAACATCAT | |
K-ALS-627 | K-ALS627N-HEX | GAAGGTCGGAGTCAACGGATT ATCATGTCCTTGAATGCGCCCCCAT |
K-ALS627S-FAM | GAAGGTGACCAAGTTCATGCT ATCATGTCCTTGAATGCGCCCCCAC | |
K-ALS627S-N | TGTTGGATATCATCGTCCCGCAC |
表1 本研究涉及的引物序列
Table 1 Primer sequences involved in this study.
标记名称 Marker name | 引物名称 Primer name | 引物序列(5'-3') Primer sequence (5'-3') |
---|---|---|
dC-ALS-627 | ALS-F ALS-R dC-ALS-627-F | CTCGCCCAAACCCAGAAACC CACATACAAACATCATAGGCATACCACTC GAGCATGTGCTGCCTATGATCCTAA |
dC-ALS-627-R | TAGAGCACATACAAACATCAT | |
K-ALS-627 | K-ALS627N-HEX | GAAGGTCGGAGTCAACGGATT ATCATGTCCTTGAATGCGCCCCCAT |
K-ALS627S-FAM | GAAGGTGACCAAGTTCATGCT ATCATGTCCTTGAATGCGCCCCCAC | |
K-ALS627S-N | TGTTGGATATCATCGTCCCGCAC |
图2 两种标记的相关信息 灰色背景部分为非编码区序列;方框内连续的3个碱基为ALS第627位氨基酸的密码子,金粳818为AAT,9311和日本晴为AGT,分别编码氨基酸N和S;限制性核酸内切酶DdeⅠ的识别基序为CTNAG(N为任意碱基);在标记dC-ALS-627的引物dC-ALS-627-F中引入了突变碱基T(模板序列中的碱基为C,T和C均用下划线标注),当9311或日本晴模板序列中的碱基C被替换成T时,即在扩增产物中存在一个DdeⅠ的识别基序CTAAG,金粳818中则没有;在K-ALS-627标记中,引物K-ALS627N- HEX 的3'端末碱基为T,5'端连上HEX荧光标签序列(斜体部分),引物K-ALS627S- FAM的3'端末碱基为C,5'端连上FAM荧光标签序列(斜体部分);引物前端的箭头表示扩增的方向。
Fig. 2. Information of the two molecular markers. The gray background part is the non-coding region sequence. The three consecutive bases in the box are the codons of amino acids at position 627 of ALS, ‘AAT’ in Jinjing 818 and ‘AGT’ in 9311 and Nipponbare, encoding amino acid ‘N’ and ‘S’ respectively. The recognition sequence of restriction endonuclease DdeⅠ is ‘CTNAG’ (‘N’ for any base). The mutant base ‘T’ was introduced into primer dC-ALS-627-F of the marker dC-ALS-627 (The base in template sequenceis ‘C’, ‘T’ and ‘C’ are highlighted with an underline). When the base ‘C’ in the template sequence of 9311 or Nipponbare is replaced with ‘T’, there is a DdeⅠ recognition sequence ‘CTAAG’ in the amplification product, which doesn’t exist in Jinjing 818. In the marker K-ALS-627, primer K-ALS627N- HEX has a base ‘T’ at the 3'end, and a HEX fluorescent label sequence (in italics) at the 5'end, and primer K-ALS627S- FAM has a base ‘C’ at the 3'end, and a FAM fluorescent label sequence (in italics) at the 5' end. The arrow at the front of primers indicates the direction of amplification.
图3 三种分子标记检测结果 A图为dCAPS标记dC-ALS-627检测结果;B图为KASP标记K-ALS-627检测结果;C图为SSR标记RM7413检测结果。M1为20 bp DNA Ladder;M2为DL500 DNA标记;P1为金粳818,P2为南粳505,P3为华粳0029;1~3为南粳505/金粳818的杂交种,4~6为华粳0029/金粳818的杂交种。菱形代表无DNA模板的空白对照,正方形代表金粳818纯合基因型(变异位点碱基为A),圆圈代表南粳505和华粳0029纯合基因型(变异位点碱基为G),三角代表ALS基因的杂合带型(变异位点碱基为G/A)。
Fig. 3. Detection results of three molecular markers. A, Detection results of dC-ALS-627; B, Detection results of K-ALS-627; C, Detection results of RM7413. M1, 20 bp DNA Ladder, M2, DL500 DNA Marker; P1, Jinjing 818, P2, Nanjing 505, P3, Huajing 0029; 1-3, Hybrid of Nanjing 505 / Jinjing 818; 4-6, Hybrid of Huajing 0029 / Jinjing 818. The diamond represents a blank control without the DNA template; the square represents the homozygous genotype of Jinjing 818 (variation site base A); the circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G); and the triangle represents the heterozygous type of ALS gene (with a G/A mutation site base).
图4 dC-ALS-627和K-ALS-627标记对BC2F2水稻植株的基因型检测结果 A图为dC-ALS-627标记检测结果。M为DL1000 DNA标记;P1为金粳818,P2为南粳505,1~10为南粳505/金粳818的BC2F2部分单株带型。B图为K-ALS-627标记检测结果。黑色方框代表无DNA模板的空白对照,蓝色方框代表金粳818纯合基因型(变异位点碱基为A),黄色圆圈代表南粳505纯合基因型(变异位点碱基为G),绿色三角代表ALS基因的杂合带型(变异位点碱基为G/A)。
Fig. 4. Genotyping of BC2F2 generation rice plants using dC-ALS-627 and K-ALS-627 markers. A, Detection results of dC-ALS-627. M, DL1000 DNA marker; P1, Jinjing 818; P2, Nanjing 505; 1-10, Partial of BC2F2 individuals of Nanjing 505 / Jinjing 818.B, Detection results of K-ALS-627. The black box represents a blank control without the DNA template; the blue box represents the homozygous genotype of Jinjing 818 (variation site base A); the yellow circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G); and the green triangle represents the heterozygous type of ALS gene (with a G/A mutation site base).
图5 咪唑乙烟酸处理后的BC2F2水稻植株表型 P1为金粳818,P2为南粳505,1~10为南粳505/金粳818的部分BC2F2单株。
Fig. 5. Phenotypes of BC2F2 populations after treatment with imazethapyr. P1, Jinjing 818, P2, Nanjing 505. 1-10, Partial BC2F2 plants of Nanjing 505/ Jinjing 818.
图6 利用dC-ALS-627和K-ALS-627标记筛选抗除草剂水稻资源 A图为dC-ALS-627标记检测结果。M为BM2000 DNA标记,J为金粳818,1~40分别为感咪唑啉酮类除草剂的常规粳稻禾粳1819、沭粳1901、华粳1803、南粳46、南粳52、武运粳23、镇稻11、镇稻14、镇稻18、淮稻5号、扬粳103、扬育粳2号、扬育粳3号、华粳8号、淮119、武运粳27号、武运粳32、武运粳80、扬农稻1号、盐粳11、盐粳13、盐粳15、盐粳16、盐粳6号、镇稻99、大粮202、泗稻12、泗稻15、新科稻21、徐稻5号、原旱稻3号、金粳18、金粳787、连粳10、连粳4号、苏垦118、苏秀867、扬粳818、武粳66、宁5718。B图为K-ALS-627标记检测结果。黑色方框代表无DNA模板的空白对照,蓝色方框代表金粳818纯合基因型(变异位点碱基为A),黄色圆圈代表感咪唑啉酮类除草剂品种的纯合基因型(变异位点碱基为G)。
Fig. 6. Screening herbicide resistant rice resources using dC-ALS-627 and K-ALS-627 markers. A, Detection results of dC-ALS-627. M, BM2000 DNA marker; J refers to Jinjing 818 and 1-40 refer to rice varieties sensitive to imidazolinone herbicides: Hejing 1819, Shujing 1901, Huajing 1803, Nanjing 46, Nanjing 52, Wuyunjing 23, Zhendao 11, Zhendao 14, Zhendao 14, Zhendao 18, Huaidao 5, Yangjing 103, Yangyujing 2, Yangyujing 3, Huajing 8, Huai 119, Wuyunjing 27, Wuyunjing 32, Wuyunjing 80, Yangnongdao 1, Yanjing 11, Yanjing 13, Yanjing 15, Yanjing 16, Yanjing 6, Zhendao 99, Daliang 202, Sidao 12, Sidao 15, Xinkedao 21, Xudao 5, Yuanhandao 3, Jinjing 18, Jinjing 787, Lianjing 10, Lianjing 4, Suken 118, Suxiu 867, Yangjing 818, Wujing 66, Ning 5718. B, Detection results of K-ALS-627. The black box represents a blank control without the DNA template; the blue box represents the homozygous genotype of Jinjing 818 (variation site base A); the yellow circle represents the homozygous genotypes of Nanjing 505 and Huajing 0029 (variation site base G).
[1] | 张云月, 卢宗志, 李洪鑫, 崔海兰. 杂草对乙酰乳酸合成酶抑制剂类除草剂抗药性的研究进展[J]. 杂草科学, 2013, 31(2): 1-5. |
Zhang Y Y, Lu Z Z, Li H X, Cui H N.Research progress on weed resistance to acetolactate synthase inhibitors[J]. Weed Science, 2013, 31(2): 1-5. (in Chinese with English abstract) | |
[2] | 李香菊, 梁帝允, 袁会珠. 除草剂科学使用指南[M]. 北京: 中国农业科学技术出版社, 2014. |
Li X J, Liang D Y, Yuan H Z.Guidelines for the Scientific Use of Herbicides[M]. Beijing: China Agricultural Science and Technology Press, 2014. (in Chinese) | |
[3] | Endo M, Osakabe K, Ono K, Handa H, Shimizu T, Toki S.Molecular breeding of a novel herbicide-tolerant rice by gene targeting[J]. Plant Journal, 2007, 52(1): 157-166. |
[4] | Sudianto E, Beng-Kah S, Ting-Xiang N, Saldain N E, Scott R C, Burgos N R.Clearfield rice: Its development, success, and key challenges on a global perspective[J]. Crop Protection, 2013, 49: 40-51. |
[5] | Burgos N R, Norsworthy J K, Scott R C, Smith K L.Red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas[J]. Weed Technology, 2008, 22: 200-208. |
[6] | Busconi M, Rossi D, Lorenzoni C, Baldi G, Fogher C.Spread of herbicide-resistant weedy rice(red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy[J]. Plant Biology, 2012, 14: 751-759. |
[7] | Délye C.Unravelling the genetic bases of non-target-site- based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade[J]. Pest Management Science, 2013, 69: 176-187. |
[8] | Délye C, Jasieniuk M, Le Corre V.Deciphering the evolution of herbicide resistance in weeds[J]. Trends in Genetics, 2013, 29: 649-658. |
[9] | Rey-Caballero J, Menéndez J, Osuna M D, Salas M, Torra J.Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas[J]. Pesticide Biochemistry and Physiology, 2017, 138: 57-65. |
[10] | Boutsalis P, Karotam J, Powles S B.Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii[J]. Pesticide Science, 1999, 55: 507-516. |
[11] | Tan S, Evans R, Singh B.Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops[J]. Amino Acids, 2006, 30: 195-204. |
[12] | Zhou Q Y, Liu W P, Zhang Y S, Liu K K.Action mechanisms of acetolactate synthase-inhibiting herbicides[J]. Physical Chemistry Chemical Physics, 2007, 89: 89-96. |
[13] | Massa D, Krenz B, Gerhards R.Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and unknown mutations[J]. Weed Research, 2011, 51: 294-303. |
[14] | 张保龙, 王金彦, 陈天子, 凌溪铁. 粳稻的ALS突变型基因及其蛋白和应用: CN201710120061.5[P].2017-03-02. |
Zhang B L, Wang J Y, Chen T Z, Ling X T. Mutant ALS gene and its applications in japonica rice: CN201710120061.5[P].2017-03-02. (in Chinese) | |
[15] | 陈竹锋, 王承旭, 唐晓艳, 邓兴旺. 水稻抗除草剂蛋白及其在植物育种中的应用: CN201210037789. 9[P].2013-04-17. |
Chen Z F, Wang C X, Tang X Y, Deng X W. Rice herbicide resistant protein and application in breeding: CN201210037789.9[P].2013-04-17. (in Chinese) | |
[16] | 陈涛, 张善磊, 赵凌, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 赵春芳, 梁文化, 王才林. ALS抑制剂类除草剂抗性水稻功能标记的开发与验证[J]. 中国水稻科学, 2018, 32(1): 137-145 |
Chen T, Zhang S L, Zhao L, Zhang Y D, Zhu Z, Zhao Q Y, Zhou L H, Yao S, Zhao C F, Liang W H, Wang C L.Development and verification of a functional marker associated with resistance to ALS inhibitor herbicide[J]. Chinese Journal of Rice Science, 2018, 32(1): 137-145. (in Chinese with English abstract) | |
[17] | 王芳权, 杨杰, 范方军, 李文奇, 王军, 许扬, 朱金燕, 费云燕, 仲维功. 水稻抗咪唑啉酮类除草剂基因 ALS功能标记的开发与应用[J]. 作物学报, 2018, 44(3): 324-331. |
Wang F Q, Yang J, Fan F J, Li W Q, Wang J, Xu Y, Zhu J Y, Fei Y Y, Zhong W G.Development and application of the functional marker for imidazolinone herbicides resistant ALS gene in rice[J]. Acta Agronomica Sinica, 2018, 44(3): 324-331. (in Chinese with English abstract) | |
[18] | Li L, Liu J J, Xue X, Li C C, Yang Z F, Li T.CAPS/dCAPS Designer: A web-based high-throughput dCAPS marker design tool[J]. Science in China: Life Science, 2018, 61(8): 992-995. |
[19] | Kassa S, Raman B, Sarah H, Michael O.Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement[J]. Molecular Breeding, 2014, 33: 1-14. |
[20] | 费云燕, 杨杰, 范方军, 王芳权, 李文奇, 王军, 朱金燕, 仲维功. 水稻咪草烟抗性的遗传分析及其紧密连锁分子标记的筛选与应用[J]. 作物学报, 2018, 44(5): 716-722. |
Fei Y Y, Yang J, Fan F J, Wang F Q, Li W Q, Wang J, Zhu J Y, Zhong W G.Genetic analysis of imazethapyr resistance in rice and the closely linked marker selection and application[J]. Acta Agronomica Sinica, 2018, 44(5): 716-722. (in Chinese with English abstract) | |
[21] | Rajguru S N, Burgos N R, Shivrain V K, Stewart J M.Mutations in the red rice ALS associated with resistance to imazethapyr[J]. Weed Science, 2005, 53: 567-577. |
[22] | 任洪雷. 乙酰乳酸合成酶及ALS基因研究概述[J]. 中国农学通报, 2016, 32(26): 37-42. |
Ren H L.Acetolactatesynthase and ALS gene research[J]. Chinese Agricultural Science Bulletin, 2016, 32(26): 37-42. (in Chinese with English abstract) | |
[23] | 苏少泉. 抗咪唑啉酮类除草剂作物的发展与未来[J]. 现代农药, 2006, 5(1): 1-4. |
Su S Q.The development and future of imidazolinone herbicide-resistant crops[J]. Modern Agrochemicals, 2006, 5(1): 1-4. (in Chinese) | |
[24] | Yu Q, Powles S B.Resistance to AHAS inhibitor herbicides: Current understanding[J]. Pest Management Science, 2014, 70: 1340-1350. (in Chinese with English abstract) |
[25] | Guttieri M J, Eberlein C V, Thill D C.Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes[J]. Weed Science, 1995, 43: 175-178. |
[26] | Sibony M, Michel A, Haas H U, Rubin B, Hurle K.Sulfometuron-resistant Amaranthus retroflexus: Cross- resistance and molecular basis for resistance to acetolactate synthase-inhibiting herbicides[J]. Weed Research, 2001, 41: 509-522. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||