中国水稻科学 ›› 2020, Vol. 34 ›› Issue (4): 325-331.DOI: 10.16819/j.1001-7216.2020.0107
魏秀彩1,#, 刘金栋3,#, 刘利成2,4, 黎用朝1,2,4, 潘孝武1,2,4, 董铮2,4, 刘文强1,2,4, 熊海波2,4, 闵军2,4, 李小湘1,2,4,*()
收稿日期:
2020-01-19
修回日期:
2020-03-04
出版日期:
2020-07-10
发布日期:
2020-07-10
通讯作者:
李小湘
作者简介:
#共同第一作者
Xiucai WEI1,#, Jindong LIU3,#, Licheng LIU2,4, Yongchao LI1,2,4, Xiaowu PAN1,2,4, Zheng DONG2,4, Wenqiang LIU1,2,4, Haibo XIONG2,4, Jun MIN2,4, Xiaoxiang LI1,2,4,*()
Received:
2020-01-19
Revised:
2020-03-04
Online:
2020-07-10
Published:
2020-07-10
Contact:
Xiaoxiang LI
About author:
#These authors contributed equally to the work
摘要:
【目的】挖掘水稻抽穗期和产量相关性状新基因,并筛选携带有利等位基因的优良株系,为分子标记辅助育种提供新基因和优异种质。【方法】以多亲本重组自交系群体MAGIC-Hei群体为材料,分别于2017和2018年连续两年种植于湖南长沙开展抽穗期和产量性状表型调查,基于基因分型(genotyping by sequencing,GBS)技术进行全基因组关联分析发掘影响水稻抽穗期、单株有效穗数、每穗粒数、结实率、千粒重和单株产量性状QTL。【结果】在两个环境下共计检测到26个控制抽穗期和产量相关性状的QTL,分布于除第10染色体外的其他染色体上。其中,11个位点为新位点,1个新位点(qNTP9)在两年均被检测到,该位点受环境影响较小,可用于进一步的精细定位和基因克隆。根据抽穗期和产量性状表型数据,结合SNP基因型筛选到5个携带有利等位基因的优良株系,可用于将来的水稻高产育种。【结论】本研究发掘一批新的水稻抽穗期和产量相关性状QTL位点,可有效加速水稻遗传研究和高产育种进程。
中图分类号:
魏秀彩, 刘金栋, 刘利成, 黎用朝, 潘孝武, 董铮, 刘文强, 熊海波, 闵军, 李小湘. 基于MAGIC群体的水稻抽穗期和产量相关性状全基因组 关联分析[J]. 中国水稻科学, 2020, 34(4): 325-331.
Xiucai WEI, Jindong LIU, Licheng LIU, Yongchao LI, Xiaowu PAN, Zheng DONG, Wenqiang LIU, Haibo XIONG, Jun MIN, Xiaoxiang LI. Genome-wide Association Analysis of Rice Heading Date and Yield-related Traits Based on MAGIC Population[J]. Chinese Journal OF Rice Science, 2020, 34(4): 325-331.
性状 Trait | 年份 Year | 亲本 Parents | 多亲本高世代互交群体 MAGIC population | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | 平均值±标准差 Mean±SD | 变幅 Range | 变异系数 CV /% | |||
抽穗期 Heading date/d | 2017 | 93 | 79 | 99 | 120 | 84 | 125 | 88 | 95 | 93.03±5.15 | 83~106 | 5.53 | |
2018 | 94 | 80 | 106 | 122 | 90 | 118 | 91 | 96 | 99.98±8.89 ** | 76~114 | 8.89 | ||
单株有效穗数 No. of effective panicles | 2017 | 15 | 21 | 15 | 12 | 18 | 15 | 18 | 20 | 17.25±3.21 | 10~27 | 18.58 | |
2018 | 17 | 18 | 17 | 16 | 11 | 14 | 16 | 16 | 13.68±2.69 ** | 7~22 | 19.68 | ||
每穗粒数 Grain number per panicle | 2017 | 166 | 157 | 157 | 110 | 126 | 159 | 114 | 112 | 149.7±31.0 | 81~265 | 20.72 | |
2018 | 198 | 137 | 118 | 117 | 164 | 184 | 117 | 111 | 152.2±30.2 | 88~253 | 19.82 | ||
结实率 Seed setting rate/% | 2017 | 45.85 | 78.89 | 67.03 | 68.51 | 68.06 | 78.46 | 83.14 | 76.48 | 62.93±12.72 | 28.55~88.22 | 20.22 | |
2018 | 50.41 | 41.84 | 55.55 | 71.56 | 49.85 | 73.44 | 84.05 | 73.22 | 61.52±16.50 | 3.99~89.44 | 26.82 | ||
千粒重 1000-grain weight/g | 2017 | 20.42 | 15.7 | 24.65 | 24.91 | 26.45 | 13.2 | 24.52 | 22.83 | 22.23±2.76 | 15.96~30.89 | 12.43 | |
2018 | 22.50 | 15.66 | 24.5 | 24.84 | 27.29 | 12.55 | 25.38 | 22.5 | 21.81±2.77 ** | 14.74~32.29 | 12.68 | ||
单株产量 Grain yield per plant/g | 2017 | 24.07 | 38.88 | 35.38 | 23.69 | 46.49 | 26.79 | 34.20 | 44.83 | 34.92±9.47 | 11.56~62.96 | 27.12 | |
2018 | 32.38 | 26.38 | 26.66 | 30.75 | 25.34 | 23.52 | 37.77 | 30.30 | 27.81±10.49** | 1.14~67.73 | 37.70 |
表1 亲本和MAGIC群体在不同环境下抽穗期和产量相关性状的表现及变异系数
Table 1 Performance of parents and MAGIC populations for heading date and yield related traits.
性状 Trait | 年份 Year | 亲本 Parents | 多亲本高世代互交群体 MAGIC population | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | 平均值±标准差 Mean±SD | 变幅 Range | 变异系数 CV /% | |||
抽穗期 Heading date/d | 2017 | 93 | 79 | 99 | 120 | 84 | 125 | 88 | 95 | 93.03±5.15 | 83~106 | 5.53 | |
2018 | 94 | 80 | 106 | 122 | 90 | 118 | 91 | 96 | 99.98±8.89 ** | 76~114 | 8.89 | ||
单株有效穗数 No. of effective panicles | 2017 | 15 | 21 | 15 | 12 | 18 | 15 | 18 | 20 | 17.25±3.21 | 10~27 | 18.58 | |
2018 | 17 | 18 | 17 | 16 | 11 | 14 | 16 | 16 | 13.68±2.69 ** | 7~22 | 19.68 | ||
每穗粒数 Grain number per panicle | 2017 | 166 | 157 | 157 | 110 | 126 | 159 | 114 | 112 | 149.7±31.0 | 81~265 | 20.72 | |
2018 | 198 | 137 | 118 | 117 | 164 | 184 | 117 | 111 | 152.2±30.2 | 88~253 | 19.82 | ||
结实率 Seed setting rate/% | 2017 | 45.85 | 78.89 | 67.03 | 68.51 | 68.06 | 78.46 | 83.14 | 76.48 | 62.93±12.72 | 28.55~88.22 | 20.22 | |
2018 | 50.41 | 41.84 | 55.55 | 71.56 | 49.85 | 73.44 | 84.05 | 73.22 | 61.52±16.50 | 3.99~89.44 | 26.82 | ||
千粒重 1000-grain weight/g | 2017 | 20.42 | 15.7 | 24.65 | 24.91 | 26.45 | 13.2 | 24.52 | 22.83 | 22.23±2.76 | 15.96~30.89 | 12.43 | |
2018 | 22.50 | 15.66 | 24.5 | 24.84 | 27.29 | 12.55 | 25.38 | 22.5 | 21.81±2.77 ** | 14.74~32.29 | 12.68 | ||
单株产量 Grain yield per plant/g | 2017 | 24.07 | 38.88 | 35.38 | 23.69 | 46.49 | 26.79 | 34.20 | 44.83 | 34.92±9.47 | 11.56~62.96 | 27.12 | |
2018 | 32.38 | 26.38 | 26.66 | 30.75 | 25.34 | 23.52 | 37.77 | 30.30 | 27.81±10.49** | 1.14~67.73 | 37.70 |
年份 Year | 性状 Trait | 抽穗期 Heading date | 单株有效穗数 No. of effective panicles(NTP) | 每穗粒数 Grain number per panicle(GNPP) | 结实率 Seed setting rate (SR) | 千粒重 1000-grain weight (GW) |
---|---|---|---|---|---|---|
2017 | 单株有效穗数NTP | -0.16* | ||||
每穗粒数GNPP | 0.08 | -0.34** | ||||
结实率SR | -0.41** | 0.06 | -0.18** | |||
千粒重GW | -0.08 | -0.16* | -0.30** | -0.01 | ||
单株产量YD | -0.37** | 0.43** | 0.19** | 0.63** | 0.10 | |
2018 | 单株有效穗数NTP | -0.25** | ||||
每穗粒数 GNPP | -0.11 | -0.25** | ||||
结实率SR | -0.23** | 0.15* | -0.03 | |||
千粒重 GW | -0.20** | 0.46** | -0.27** | 0.04 | ||
单株产量 YD | -0.42** | 0.46** | 0.25** | 0.77** | 0.16** |
表2 MAGIC群体抽穗期和产量性状间的相关性分析
Table 2 Correlation analysis on heading date and yield traits in MAGIC population.
年份 Year | 性状 Trait | 抽穗期 Heading date | 单株有效穗数 No. of effective panicles(NTP) | 每穗粒数 Grain number per panicle(GNPP) | 结实率 Seed setting rate (SR) | 千粒重 1000-grain weight (GW) |
---|---|---|---|---|---|---|
2017 | 单株有效穗数NTP | -0.16* | ||||
每穗粒数GNPP | 0.08 | -0.34** | ||||
结实率SR | -0.41** | 0.06 | -0.18** | |||
千粒重GW | -0.08 | -0.16* | -0.30** | -0.01 | ||
单株产量YD | -0.37** | 0.43** | 0.19** | 0.63** | 0.10 | |
2018 | 单株有效穗数NTP | -0.25** | ||||
每穗粒数 GNPP | -0.11 | -0.25** | ||||
结实率SR | -0.23** | 0.15* | -0.03 | |||
千粒重 GW | -0.20** | 0.46** | -0.27** | 0.04 | ||
单株产量 YD | -0.42** | 0.46** | 0.25** | 0.77** | 0.16** |
QTL | 年份 Year | 染色体 Chromosome | 区间 Interval | 等位基因 Allele | 峰值SNP Peak SNP | P值 P value | 贡献率 R2/% | 位点附近已知基因 Known gene near the locus |
---|---|---|---|---|---|---|---|---|
qHD2 | 2017 | 2 | 491 868-972 602 | T/C | rs2_636770 | 1.97×10-4 | 4.60 | |
qHD3 | 2017 | 3 | 1 195 479-1 817 619 | A/T | rs3_1777161 | 1.45×10-5 | 6.30 | OscpSRP43 |
2018 | 3 | 1 777 161-1 817 619 | A/T | rs3_1817619 | 3.24×10-4 | 4.29 | ||
qHD6 | 2017 | 6 | 1 589 993-3 932 840 | C/A | rs6_3582593 | 3.25×10-5 | 5.76 | HGW |
2018 | 6 | 3 582 592-3 582 593 | C/A | rs6_3582593 | 2.89×10-4 | 4.36 | ||
qHD7 | 2017 | 7 | 29 092 626-29 664 075 | A/G | rs7_29285337 | 3.14×10-4 | 4.30 | GHD7.1 |
2018 | 7 | 29 056 813-29 664 075 | T/C | rs7_29571005 | 1.41×10-6 | 7.85 | ||
qHD8 | 2017 | 8 | 4 604 002-7 672 471 | T/C | rs8_5217372 | 1.85×10-7 | 9.21 | DTH8 |
2018 | 8 | 3 955 562-7 672 471 | T/C | rs8_5217372 | 3.81×10-7 | 8.74 | ||
qHD12 | 2018 | 12 | 6 576 540-6 576 601 | G/A | rs12_6576540 | 9.29×10-4 | 3.63 |
表3 全基因组关联分析检测到与抽穗期显著关联的位点
Table 3 Loci significantly associated with heading date detected by genome-wide association analysis.
QTL | 年份 Year | 染色体 Chromosome | 区间 Interval | 等位基因 Allele | 峰值SNP Peak SNP | P值 P value | 贡献率 R2/% | 位点附近已知基因 Known gene near the locus |
---|---|---|---|---|---|---|---|---|
qHD2 | 2017 | 2 | 491 868-972 602 | T/C | rs2_636770 | 1.97×10-4 | 4.60 | |
qHD3 | 2017 | 3 | 1 195 479-1 817 619 | A/T | rs3_1777161 | 1.45×10-5 | 6.30 | OscpSRP43 |
2018 | 3 | 1 777 161-1 817 619 | A/T | rs3_1817619 | 3.24×10-4 | 4.29 | ||
qHD6 | 2017 | 6 | 1 589 993-3 932 840 | C/A | rs6_3582593 | 3.25×10-5 | 5.76 | HGW |
2018 | 6 | 3 582 592-3 582 593 | C/A | rs6_3582593 | 2.89×10-4 | 4.36 | ||
qHD7 | 2017 | 7 | 29 092 626-29 664 075 | A/G | rs7_29285337 | 3.14×10-4 | 4.30 | GHD7.1 |
2018 | 7 | 29 056 813-29 664 075 | T/C | rs7_29571005 | 1.41×10-6 | 7.85 | ||
qHD8 | 2017 | 8 | 4 604 002-7 672 471 | T/C | rs8_5217372 | 1.85×10-7 | 9.21 | DTH8 |
2018 | 8 | 3 955 562-7 672 471 | T/C | rs8_5217372 | 3.81×10-7 | 8.74 | ||
qHD12 | 2018 | 12 | 6 576 540-6 576 601 | G/A | rs12_6576540 | 9.29×10-4 | 3.63 |
性状 Trait | QTL | 年份 Year | 染色体 Chr. | 区间 Interval/bp | 等位基因Allele | 峰值SNP Peak SNP | P值 P-value | 贡献率 R2/% | 位点附近基因 Gene nearby |
---|---|---|---|---|---|---|---|---|---|
单株有效穗数 No. of tillers per plant | qNTP2 | 2018 | 2 | 27 342 909–27 866 887 | G/A | rs2_27799677 | 3.49×10-4 | 6.08 | OsGRF10 |
qNTP7 | 2017 | 7 | 19 631 949–28 445 131 | G/A | rs7_19631949 | 1.16×10-4 | 6.84 | ||
qNTP9 | 2017 | 9 | 12 265 152–14 127 114 | C/T | rs9_12265152 | 2.16×10-4 | 6.28 | ||
2018 | 9 | 12 266 970–12 272 116 | C/G | rs9_12266970 | 8.16×10-4 | 5.31 | |||
每穗粒数 Grain number per panicle | qGNPP1.1 | 2017 | 1 | 6 388 045–6 419 185 | G/A | rs1_6388045 | 7.61×10-4 | 5.30 | OsSCAR1 |
qGNPP1.2 | 2017 | 1 | 42 038 276–42 110 528 | A/C | rs1_42038276 | 7.53×10-4 | 5.30 | ||
qGNPP3 | 2017 | 3 | 26 360 129–26 584 753 | G/T | rs3_26556040 | 1.12×10-5 | 9.19 | RGB1 | |
2018 | 3 | 26 360 129–26 584 753 | G/T | rs3_26556040 | 3.56×10-5 | 7.99 | |||
qGNPP4 | 2017 | 4 | 27 568 586–27 724 754 | C/A | rs4_27568586 | 6.61×10-4 | 5.42 | OsMKKK10, GPX1 | |
结实率 Seed setting rate | qSR2 | 2017 | 2 | 1 576 258–2 042 539 | T/C | rs2_2022085 | 5.00×10-4 | 5.71 | CAP1 |
qSR8 | 2017 | 8 | 6 256 114–8 323 064 | G/A | rs8_6256114 | 2.54×10-6 | 10.68 | SPL29 | |
2018 | 8 | 5 329 786–8 323 064 | G/A | rs8_6256114 | 6.58×10-6 | 9.89 | |||
qSR9 | 2018 | 9 | 14 813 317–15 691 090 | G/A | rs9_15627416 | 6.13×10-5 | 7.74 | ||
千粒重 1000-grain weight | qGW1 | 2017 | 1 | 7 569 628–9 712 079 | C/G | rs1_8577645 | 1.12×10-4 | 6.83 | OsDof2, OsSar1c |
qGW3 | 2017 | 3 | 16 975 669–17 039 466 | G/A | rs3_16975669 | 7.49×10-4 | 5.16 | GS3 | |
2018 | 3 | 13 733 085–17 285 992 | T/C | rs3_16842769 | 1.16×10-5 | 8.97 | |||
qGW5 | 2018 | 5 | 5 391 586–6 065 099 | T/C | rs5_6065099 | 8.15×10-4 | 5.13 | JMJ703 | |
qGW7 | 2018 | 7 | 20 500 034–28 901 978 | G/T | rs7_28901978 | 8.33×10-5 | 7.16 | ||
qGW8 | 2018 | 8 | 26 573 952–27 943 348 | C/A | rs8_26573952 | 2.84×10-4 | 6.06 | OsOTUB1, OsSPL16 | |
单株产量 Grain yield per plant | qYD1.1 | 2018 | 1 | 216 965–229 285 | C/G | rs1_216965 | 3.96×10-4 | 5.90 | OsDET1, OsLIR1 |
qYD1.2 | 2017 | 1 | 28 576 150–28 596 409 | A/G | S1_28576150 | 9.55×10-4 | 5.16 | ||
qYD7 | 2018 | 7 | 5 726 510–5 770 877 | G/T | S7_5769445 | 2.64×10-4 | 6.29 | ||
qYD11 | 2018 | 11 | 239 86 604–23 989 090 | A/G | rs11_23986604 | 6.11×10-4 | 5.52 | ||
qYD12 | 2017 | 12 | 17 618 079–19 072 396 | T/C | rs12_18120406 | 1.01×10-4 | 7.22 |
表4 全基因组关联分析检测到与产量性状显著关联的位点
Table 4 Loci significantly associated with the yield traits detected by genome-wide association analysis.
性状 Trait | QTL | 年份 Year | 染色体 Chr. | 区间 Interval/bp | 等位基因Allele | 峰值SNP Peak SNP | P值 P-value | 贡献率 R2/% | 位点附近基因 Gene nearby |
---|---|---|---|---|---|---|---|---|---|
单株有效穗数 No. of tillers per plant | qNTP2 | 2018 | 2 | 27 342 909–27 866 887 | G/A | rs2_27799677 | 3.49×10-4 | 6.08 | OsGRF10 |
qNTP7 | 2017 | 7 | 19 631 949–28 445 131 | G/A | rs7_19631949 | 1.16×10-4 | 6.84 | ||
qNTP9 | 2017 | 9 | 12 265 152–14 127 114 | C/T | rs9_12265152 | 2.16×10-4 | 6.28 | ||
2018 | 9 | 12 266 970–12 272 116 | C/G | rs9_12266970 | 8.16×10-4 | 5.31 | |||
每穗粒数 Grain number per panicle | qGNPP1.1 | 2017 | 1 | 6 388 045–6 419 185 | G/A | rs1_6388045 | 7.61×10-4 | 5.30 | OsSCAR1 |
qGNPP1.2 | 2017 | 1 | 42 038 276–42 110 528 | A/C | rs1_42038276 | 7.53×10-4 | 5.30 | ||
qGNPP3 | 2017 | 3 | 26 360 129–26 584 753 | G/T | rs3_26556040 | 1.12×10-5 | 9.19 | RGB1 | |
2018 | 3 | 26 360 129–26 584 753 | G/T | rs3_26556040 | 3.56×10-5 | 7.99 | |||
qGNPP4 | 2017 | 4 | 27 568 586–27 724 754 | C/A | rs4_27568586 | 6.61×10-4 | 5.42 | OsMKKK10, GPX1 | |
结实率 Seed setting rate | qSR2 | 2017 | 2 | 1 576 258–2 042 539 | T/C | rs2_2022085 | 5.00×10-4 | 5.71 | CAP1 |
qSR8 | 2017 | 8 | 6 256 114–8 323 064 | G/A | rs8_6256114 | 2.54×10-6 | 10.68 | SPL29 | |
2018 | 8 | 5 329 786–8 323 064 | G/A | rs8_6256114 | 6.58×10-6 | 9.89 | |||
qSR9 | 2018 | 9 | 14 813 317–15 691 090 | G/A | rs9_15627416 | 6.13×10-5 | 7.74 | ||
千粒重 1000-grain weight | qGW1 | 2017 | 1 | 7 569 628–9 712 079 | C/G | rs1_8577645 | 1.12×10-4 | 6.83 | OsDof2, OsSar1c |
qGW3 | 2017 | 3 | 16 975 669–17 039 466 | G/A | rs3_16975669 | 7.49×10-4 | 5.16 | GS3 | |
2018 | 3 | 13 733 085–17 285 992 | T/C | rs3_16842769 | 1.16×10-5 | 8.97 | |||
qGW5 | 2018 | 5 | 5 391 586–6 065 099 | T/C | rs5_6065099 | 8.15×10-4 | 5.13 | JMJ703 | |
qGW7 | 2018 | 7 | 20 500 034–28 901 978 | G/T | rs7_28901978 | 8.33×10-5 | 7.16 | ||
qGW8 | 2018 | 8 | 26 573 952–27 943 348 | C/A | rs8_26573952 | 2.84×10-4 | 6.06 | OsOTUB1, OsSPL16 | |
单株产量 Grain yield per plant | qYD1.1 | 2018 | 1 | 216 965–229 285 | C/G | rs1_216965 | 3.96×10-4 | 5.90 | OsDET1, OsLIR1 |
qYD1.2 | 2017 | 1 | 28 576 150–28 596 409 | A/G | S1_28576150 | 9.55×10-4 | 5.16 | ||
qYD7 | 2018 | 7 | 5 726 510–5 770 877 | G/T | S7_5769445 | 2.64×10-4 | 6.29 | ||
qYD11 | 2018 | 11 | 239 86 604–23 989 090 | A/G | rs11_23986604 | 6.11×10-4 | 5.52 | ||
qYD12 | 2017 | 12 | 17 618 079–19 072 396 | T/C | rs12_18120406 | 1.01×10-4 | 7.22 |
品系 Line | 性状 Trait | 染色体 Chr. | 区间 Interval/bp | 有利等位基因 Favorable allele | SNP基因型对照 SNP genotype control | 2017 2018 | |
---|---|---|---|---|---|---|---|
GID4170482 | 单株有效穗数 NTP | 9 | 12 265 152–14 127 114 | C/T | TGCGC/TGTGC | 27 | 22 |
抽穗期 HD / d | 6 | 1 589 993–3 932 840 | C/A | TGCCC/CGACC | 87 | 92 | |
GID4172993 | 每穗粒数 GNPP | 3 | 26 360 129–26 584 753 | G/T | AGGGT/CCTCC | 249 | 204 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | T/C | GGTGC/GGCGC | 90 | 92 | |
GID4173982 | 结实率 SR / % | 8 | 5 329 786–8 323 064 | G/A | TAGGG/TAACC | 84.12 | 81.27 |
抽穗期 HD / d | 6 | 1 589 993–3 932 840 | C/A | TGCCC/CGACC | 85 | 86 | |
GID4173992 | 千粒重 GW / g | 3 | 13 733 085–17 285 992 | G/A | GCGTT/ATATG | 26.88 | 29.34 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | C/T | GGTGC/GGCGC | 84 | 87 | |
GID4171060 | 单株产量 YD / g | 12 | 17 618 079–19 072 396 | T/C | CGTTC/CGCTT | 46.90 | 67.73 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | C/T | GGTGC/GGCGC | 85 | 94 |
表5 双基因(抽穗期和产量因子)聚合的优异株系
Table 5 Excellent lines with two genes (heading date and yield factors) polymerization.
品系 Line | 性状 Trait | 染色体 Chr. | 区间 Interval/bp | 有利等位基因 Favorable allele | SNP基因型对照 SNP genotype control | 2017 2018 | |
---|---|---|---|---|---|---|---|
GID4170482 | 单株有效穗数 NTP | 9 | 12 265 152–14 127 114 | C/T | TGCGC/TGTGC | 27 | 22 |
抽穗期 HD / d | 6 | 1 589 993–3 932 840 | C/A | TGCCC/CGACC | 87 | 92 | |
GID4172993 | 每穗粒数 GNPP | 3 | 26 360 129–26 584 753 | G/T | AGGGT/CCTCC | 249 | 204 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | T/C | GGTGC/GGCGC | 90 | 92 | |
GID4173982 | 结实率 SR / % | 8 | 5 329 786–8 323 064 | G/A | TAGGG/TAACC | 84.12 | 81.27 |
抽穗期 HD / d | 6 | 1 589 993–3 932 840 | C/A | TGCCC/CGACC | 85 | 86 | |
GID4173992 | 千粒重 GW / g | 3 | 13 733 085–17 285 992 | G/A | GCGTT/ATATG | 26.88 | 29.34 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | C/T | GGTGC/GGCGC | 84 | 87 | |
GID4171060 | 单株产量 YD / g | 12 | 17 618 079–19 072 396 | T/C | CGTTC/CGCTT | 46.90 | 67.73 |
抽穗期 HD / d | 8 | 4 604 002–7 672 471 | C/T | GGTGC/GGCGC | 85 | 94 |
[1] | 肖国樱, 肖友伦, 李锦江, 邓力华, 翁绿水, 孟秋成, 于江辉. 高效是当前水稻育种的主导目标[J]. 中国水稻科学, 2019, 33(4): 287-292. |
Xiao G Y, Xiao Y L, Li J J, Deng L H, Weng L S, Meng Q C, Yu J H.High efficiency is a dominant target for current rice breeding[J]. Chinese Journal of Rice Science, 2019, 33(4): 287-292. (in Chinese with English abstract) | |
[2] | 胡时开, 苏岩, 叶卫军, 郭龙彪. 水稻抽穗期遗传与分子调控机理研究进展[J]. 中国水稻科学, 2012, 26(3): 373-382. |
Hu S K, Su Y, Ye W J, Guo L B.Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2012, 26(3): 373-382. (in Chinese with English abstract) | |
[3] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣. 中国水稻遗传学研究进展与分子设计育种[J]. 中国科学: 生命科学, 2019, 49(10): 1185-1212. |
Guo T, Yu H, Qiu J, Li J Y, Han B, Lin H X.Advances in rice genetics and breeding by molecular design in China[J]. Science in China: Life Science, 2019, 49(10): 1185-1212. (in Chinese) | |
[4] | Liu J D, He Z H, Rasheed A, Wen W, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C.Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.)[J/OL]. BMC Plant Biology, 2017, 17(1): 220. |
[5] | Bandillo N, Raghavan C, Muyco P A, Sevilla M A L, Lobina L T, Dilla-Ermita C J, Tung C W, McCouch S, Thomson M, Mauleon R, Singh R K, Gregorio G, Redoña E, Leung H. Multi-parent advanced generation inter-cross (MAGIC) populations in rice: Progress and potential for genetics research and breeding[J]. Rice, 2013, 6(1): 11. |
[6] | Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E.A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species[J/OL].PloS ONE, 2011, 6(5): e19379. |
[7] | Raghavan C, Mauleon R, Lacorte V, Jubay M, Zaw H, Bonifacio J, Sing R K, Huang B E, Leung H.Approaches in characterizing genetic structure and mapping in a rice multiparental population[J]. Genes Genomes and Genetics, 2017, 7(6): 1721-1730. |
[8] | Zhao K, Tung C W, Eizenga G C, Wright M H, Ali M L, Price A H, Norton G J, Islam M R, Reynoldas A, Mezey J, McClung A, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011, 2: 467. |
[9] | McCouch S R. Gene nomenclature system for rice[J]. Rice, 2008, 1(1): 72-84. |
[10] | 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2012, 26(4): 393-400. |
Duan H, Yang J C.Research advances in the effect of high temperature on rice and its mechanism[J]. Chinese Journal of Rice Science, 2012, 26(4): 393-400. (in Chinese with English abstract) | |
[11] | Lü X G, Shi Y F, Xu X, Wei Y L, Wang H M, Zhang X B, Wu J L.Oryza sativa chloroplast signal recognition particle 43(OscpSRP43) is required for chloroplast development and photosynthesis[J/OL]. PloS ONE, 2015, 10(11): e0143249. |
[12] | Li J, Chu H W, Zhang Y H, Mou T M, Wu C Y, Zhang Q, Xu J.The rice HGW gene encodes a ubiquitin-associated (UBA) domain protein that regulates heading date and grain weight[J]. PloS ONE, 2012, 7(3): e34231. |
[13] | Liu T M, Liu H Y, Zhang H, Xing Y Z.Validation and characterization of Ghd7.1, a major quantitative trait locus with pleiotropic effects on spikelets per panicle, plant height, and heading date in rice (Oryza sativa L.)[J]. Journal of Integrative Plant Biology, 2013, 55(10): 917-927. |
[14] | Wei X J, Xu J F, Guo H N, Jing L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q,Wan J M.DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously[J]. Plant Physiology, 2010, 153(4): 1747-1758. |
[15] | Bai J T, Zhu X D, Wang Q, Zhang J, Chen H Q, Dong G J, Zhu l, Zheng H K, Xie Q J, Nian J Q, Chen F, Fu Y, Qian Q, Zou J R. Rice TUTOU1 encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development[J]. Plant Physiology, 2015, 169(2): 1179-1191. |
[16] | Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H.Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice[J]. Molecular Plant, 2018, 11(6): 860-873. |
[17] | Passaia G, Caverzan A, Fonini L S, Carvalho F, Silveira J A G, Margis-Pinheiro M. Chloroplastic and mitochondrial GPX genes play a critical role in rice development[J]. Biologia Plantarum, 2014, 58(2): 375-378. |
[18] | Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura K, Wabiko H.Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice[J]. Plant Physiology, 2013, 162(2): 858-871. |
[19] | Iwamoto M, Tagiri A.MicroRNA-targeted transcription factor gene RDD1 promotes nutrient ion uptake and accumulation in rice[J]. The Plant Journal, 2016, 85(4): 466-477. |
[20] | Tian L H, Dai L L, Yin Z J, Fukuda M, Kumamaru T, Dong X B, Xu X P, Qu L Q.Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm[J]. Journal of Experimental Botany, 2013, 64(10): 2831-2845. |
[21] | Liu H H, Guo S Y, Xu Y Y, Li C H, Zhang Z Y, Zhang D J, Xu S J, Zhang C, Chong K.OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology, 2014, 165(1): 160-174. |
[22] | Zang G C, Zou H Y, Zhang Y C, Xiang Z, Huang J L, Luo L, Wang C P, Lei K R, Li X Y, Song D M, Din A U, Wang G X.The de-etiolated 1 homolog of Arabidopsis modulates the ABA signaling pathway and aba biosynthesis in rice[J]. Plant Physiology, 2016, 171(2): 1259-1276. |
[23] | Yang C, Hu H T, Ren H Y, Kong Y Z, Lin H W, Guo J F, Wang L L, He Y, Ding X M, Grabsztunowicz M, Mulo P, Chen T, Liu Y, Wu Z C, Wu Y R, Mao C Z, Wu P, Mo X R.LIGHT-INDUCED RICE1 regulates light-dependent attachment of LEAF-TYPE FERREDOXIN-NADP+ OXIDOREDUCTASE to the thylakoid membrane in rice and Arabidopsis[J]. Plant Cell, 2016, 28(3): 712-728. |
[24] | Cui X K, Jin P, Cui X, Gu L F, Lu Z K, Xue Y M, Wei L Y, Qi J F, Song X W, Luo M, An G, Cao X F.Control of transposon activity by a histone H3K4 demethylase in rice[J]. Proceedings of the National Academy of Sciences of USA, 2013, 110(5): 1953-1958. |
[25] | Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D.Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research, 2017, 27(9): 1142-1156. |
[26] | Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[27] | Utsunomiya Y, Samejima C, Takayanagi Y, Lzawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Lwasaki Y.Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions[J]. The Plant Journal, 2011, 67(5): 907-916. |
[28] | Wang Z H, Wang Y, Hong X, Hu D H, Liu C X, Yang J, Li Y, Huang Y Q, Feng Y Q, Gong H Y, Li Y, Fang G, Tang H R, Li Y S.Functional inactivation of UDP-N- acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice[J]. Journal of Experimental Botany, 2015, 66(3): 973-987. |
[29] | Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F.GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[1] | 刘忠奇, 张海清, 贺记外, 桂金鑫. 成熟期水稻种子脱水速率全基因组关联分析[J]. 中国水稻科学, 2024, 38(2): 150-159. |
[2] | 王婧莹, 赵广欣, 邱冠凯, 方军. 水稻抽穗期途径基因的磷酸化、泛素化研究进展[J]. 中国水稻科学, 2022, 36(3): 215-226. |
[3] | 王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展[J]. 中国水稻科学, 2021, 35(3): 207-224. |
[4] | 张立成, 李懿星, 王天抗, 邱牡丹, 宋书锋, 董皓, 李磊, 刘建丰, 李莉. 水稻抽穗期基因OsDof6功能的初步研究[J]. 中国水稻科学, 2020, 34(5): 397-405. |
[5] | 刘小云, 李晓, 李腾飞, 苏鲁方. 水稻OsENO2-2基因过表达对水稻抽穗期的影响[J]. 中国水稻科学, 2018, 32(1): 12-22. |
[6] | 王军, 朱金燕, 陶亚军, 周勇, 范方军, 李文奇, 王芳权, 仲维功, 杨杰, 梁国华. 基于重测序的染色体片段代换系定位水稻抽穗期QTL[J]. 中国水稻科学, 2017, 31(4): 364-370. |
[7] | 叶卫军, 胡时开, 吴立文, 郭龙彪, 钱前. 水稻迟抽穗突变体dth9的遗传分析与基因定位[J]. 中国水稻科学, 2016, 30(3): 232-238. |
[8] | 王军, 朱金燕, 周勇, 杨杰, 范方军, 李文奇, 王芳权, 仲维功, 梁国华. 不同温光条件下水稻抽穗期QTL的定位与分析[J]. 中国水稻科学, 2016, 30(3): 247-255. |
[9] | 占小登,于萍,林泽川,陈代波,沈希宏,张迎信,付君林,程式华* ,曹立勇*. 利用大粒籼/小粒粳重组自交系定位水稻生育期及产量相关性状QTL[J]. 中国水稻科学, 2014, 28(6): 570-580. |
[10] | 曲丽君1,2,张宏军2,项超2,王辉3,夏加发3,李泽福3,高用明2,*,石英尧1,*. 杂交稻“大青棵”现象遗传基础剖析[J]. 中国水稻科学, 2013, 27(6): 559-568. |
[11] | 何云丽,叶乃忠,郝明,罗丽华,肖应辉*. 多环境下早籼稻重组自交系群体的抽穗期QTL分析[J]. 中国水稻科学, 2013, 27(4): 389-397. |
[12] | 陈俊宇,王凯,龚俊义,樊叶杨,黄得润,庄杰云*. RFT1与Hd1所在区间对水稻抽穗期、株高和千粒重的作用[J]. 中国水稻科学, 2013, 27(2): 117-121. |
[13] | 戴高兴1,2,杨占烈1,3,邓国富2,张迎信1,王会民1,翟荣荣1,曹立勇1,* ,程式华1,*. 超级杂交稻协优9308重组自交系主茎叶片数的动态QTL分析[J]. 中国水稻科学, 2012, 26(3): 291-296. |
[14] | 胡时开,苏岩,叶卫军,郭龙彪*. 水稻抽穗期遗传与分子调控机理研究进展[J]. 中国水稻科学, 2012, 26(3): 373-382. |
[15] | 郭梁,张振华,庄杰云*. 水稻抽穗期QTL及其与产量性状遗传控制的关系[J]. 中国水稻科学, 2012, 26(2): 235-245. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||