Chinese Journal OF Rice Science ›› 2021, Vol. 35 ›› Issue (1): 11-18.DOI: 10.16819/j.1001-7216.2021.0503
• Research Papers • Previous Articles Next Articles
Tianshun ZHOU1,2, Dong YU1,3, Ling LIU1,2, Ning OUYANG1,2, Guilong YUAN1,3, Meijuan DUAN4,*(), Dingyang YUAN1,2,3,*(
)
Received:
2020-05-03
Revised:
2020-05-27
Online:
2021-01-10
Published:
2021-01-10
Contact:
Meijuan DUAN, Dingyang YUAN
周天顺1,2, 余东1,3, 刘玲1,2, 欧阳宁1,2, 袁贵龙1,3, 段美娟4,*(), 袁定阳1,2,3,*(
)
通讯作者:
段美娟,袁定阳
基金资助:
Tianshun ZHOU, Dong YU, Ling LIU, Ning OUYANG, Guilong YUAN, Meijuan DUAN, Dingyang YUAN. CRISPR/Cas9-mediatedEditing of AFP1Improves Rice Stress Tolerance[J]. Chinese Journal OF Rice Science, 2021, 35(1): 11-18.
周天顺, 余东, 刘玲, 欧阳宁, 袁贵龙, 段美娟, 袁定阳. 利用CRISPR/Cas9技术编辑AFP1基因提高水稻耐逆性[J]. 中国水稻科学, 2021, 35(1): 11-18.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2021.0503
名称 Name | 正向引物 Forward primer (5' - 3') | 反向引物 Reverse primer (5' - 3') |
---|---|---|
AFP1-T1 | ggcaCTGTGCGGCATCGGCAAGGG | aaacCCCTTGCCGATGCCGCACAG |
AFP1-T2 | gccgCTGTCGCTCGGCGGCCGGTT | aaacAACCGGCCGCCGAGCGACAG |
AFP1-J | GGCGGATTACTCGCTCGGTCAGTTCT | TGGAGAGAAGCGATGACGCACCTTCAAG |
Hpt | GACAGCGTCTCCGACCTGAT | CATCGCCTCGCTCCAGTCAAT |
Cas9 | CTCTTCCTTCCAAGTACGTG | GAAAGGTCGATACGAGTCTC |
OT1-1 | CAAACGCCAAGGCGGGAATGCAG | GTGCGCCGCGGCGCAGCTGTTG |
OT1-2 | GATCCATGTGGGCCCCACATGTC | CGCTGGTCCATCCTCTCGATC |
OT1-3 | GAAGTTCTTGCCGATGACCTCG | GACGAGTGAAGAGGAGGAGAC |
OT2-1 | CAATCAGTGTAAGCTTGCTCTAG | GGTGAAGTCACACAATTACTG |
OT2-2 | CTTCTTGCTTGGAGGAGCATG | CTCAGCTGCAACCTGTTAACG |
OT2-3 | CAAGGAGCGCCGTGTACCTCG | GTAGTCCAGCTTCAGCTTCAC |
Table 1 Primers used in this study.
名称 Name | 正向引物 Forward primer (5' - 3') | 反向引物 Reverse primer (5' - 3') |
---|---|---|
AFP1-T1 | ggcaCTGTGCGGCATCGGCAAGGG | aaacCCCTTGCCGATGCCGCACAG |
AFP1-T2 | gccgCTGTCGCTCGGCGGCCGGTT | aaacAACCGGCCGCCGAGCGACAG |
AFP1-J | GGCGGATTACTCGCTCGGTCAGTTCT | TGGAGAGAAGCGATGACGCACCTTCAAG |
Hpt | GACAGCGTCTCCGACCTGAT | CATCGCCTCGCTCCAGTCAAT |
Cas9 | CTCTTCCTTCCAAGTACGTG | GAAAGGTCGATACGAGTCTC |
OT1-1 | CAAACGCCAAGGCGGGAATGCAG | GTGCGCCGCGGCGCAGCTGTTG |
OT1-2 | GATCCATGTGGGCCCCACATGTC | CGCTGGTCCATCCTCTCGATC |
OT1-3 | GAAGTTCTTGCCGATGACCTCG | GACGAGTGAAGAGGAGGAGAC |
OT2-1 | CAATCAGTGTAAGCTTGCTCTAG | GGTGAAGTCACACAATTACTG |
OT2-2 | CTTCTTGCTTGGAGGAGCATG | CTCAGCTGCAACCTGTTAACG |
OT2-3 | CAAGGAGCGCCGTGTACCTCG | GTAGTCCAGCTTCAGCTTCAC |
靶位点 Target | 阳性植株Positive plants | 突变率 Mutant ratio/% | 突变基因型比率Mutant genotype ratio/% | ||||
---|---|---|---|---|---|---|---|
纯合突变率 Homozygote ratio | 杂合突变率Heterozygote ratio | 双等位突变率 Bi-allele ratio | 嵌合突变率 Chimera ratio | ||||
靶点1 Target 1 | 12 | 66.7 | 12.5 | 12.5 | 75.0 | 0.0 | |
靶点2 Target 2 | 12 | 75.0 | 22.2 | 22.2 | 44.4 | 11.1 |
Table 2 Mutant genotype ratios of T0 mutations.
靶位点 Target | 阳性植株Positive plants | 突变率 Mutant ratio/% | 突变基因型比率Mutant genotype ratio/% | ||||
---|---|---|---|---|---|---|---|
纯合突变率 Homozygote ratio | 杂合突变率Heterozygote ratio | 双等位突变率 Bi-allele ratio | 嵌合突变率 Chimera ratio | ||||
靶点1 Target 1 | 12 | 66.7 | 12.5 | 12.5 | 75.0 | 0.0 | |
靶点2 Target 2 | 12 | 75.0 | 22.2 | 22.2 | 44.4 | 11.1 |
Fig. 1. Directed mutation of OsAFP1 using CRISPR/Cas9 technology. A, Design of mutated sites; B, Schematic diagram of CRISPR/Cas9 construction; Arrows represent amplification primers.
Fig. 3. Mutated types of T2 homozygous mutants. Rectangles are putative mutated proteins; Red shades indicate mutated protein regions and letters below are putative protein sequences;Inverted triangle and blue area represent target sites.WT, Wild type; KO1-KO6 indicate six homozygous mutants without exogenous genes.
Fig. 4. Phenotypic comparisons of afp1 knockdown mutants and the wildtype. A, Plant architectures; B, Panicle traits; C, Plant height; D, Panicle length; E, Effecttivepanicle per plant; F, Seed setting rate; G, Yield per plant;Mean±SE, n=3; * and ** represent significant difference between the mutant and the wild type at the 0.05 and 0.01 levels by t-test, respectively.HZ, Wild type Huazhan; KO, afp1knockdown mutants.
Fig. 5. ABA sensitivity of WT and mutants. A, Phenotype of seedlingsafter 3μmol/L ABA treatment; B, Length of root and shootafter 3μmol/L ABA treatment; C, Fresh weight of seedlings after 3μmol/L ABA treatment; D, Germination rate of seeds after 3μmol/L ABA treatment;Mean±SE, n=3; * and ** represent significant difference at the 0.05 and 0.01 levels by t-test, respectively.
Fig. 6. Identification of drought and osmotic stress tolerances. A, Phenotype of seedlings after drought treatment; B, Survival rate of seedlings after drought treatment; C, Phenotype of seedlings after osmotic stress treatment;D, Water loss rate of rice detached leaves;E, Fresh weight of seedlings after osmotic stress treatment; F, Length of root and shoot after osmotic stress treatment;Mean±SE, n=3; * and ** represent significant difference at the 0.05 and 0.01 levels by t-test, respectively.
[1] | Akram R, Fahad S, Masood N, Fahad S, Masood N, Rasool A, Ijaz M, Ihsan M Z, Maqbool M M, Ahmad S, Hussain S, Ahmed M, Kaleem S, Sultana S R, Mubeen M, Saud S, Kamran M, Nasim W.Advances in Rice Research for Abiotic Stress Tolerance[M]. Cambridge: Woodhead Publishing, 2019: 69-85. |
[2] | Boyer J S.Plant productivity and environment[J]. Science, 1982, 218: 443-448. |
[3] | Pauwels L, Barbero G F, Geerinck J, Tilleman S, Grunewald W, Pérez A C, Chico J M, Bossche R V, Sewell J, Gil E, García-Casado G, Witters E, Inzé D, Long J A, De Jaeger G, Solano R, Goossens A.NINJA connects the co-repressor TOPLESS to jasmonatesignaling[J]. Nature, 2010, 464(7289): 788-791. |
[4] | Huang M D, Wu W L.Overexpression of TMAC2, a novel negative regulator of abscisic acid and salinity responses, has pleiotropic effects in Arabidopsis thaliana[J]. Plant Molecular Biology, 2007, 63(4): 557-569. |
[5] | Chang G X, Wang C T, Kong X X, Chen Q, Yang Y P, Hu X Y.AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2018, 501(1): 232-238. |
[6] | Chang G X, Yang W J, Zhang Q L, Huang J L, Yang Y P, Hu X Y. ABI5-BINDING PROTEIN2coordinates CONSTANS to delay flowering by recruiting the transcriptional corepressor TPR2[J]. Plant Physiology, 2019, 179(2): 477-490. |
[7] | 安敏敏, 杨立明, 罗玉明. AFP2基因调控拟南芥茉莉酸合成与开花时间的分析[J]. 分子植物育种, 2019, 17(10): 3259-3266. |
An M M, Y L M, Luo Y M. Analysis of the role of AFP2gene in regulating jasmonic acid biosynthesis and flowering time of Arabidopsis[J]. Molecular Plant Breeding, 2019, 17(10): 3259-3266. (in Chinese with English abstract) | |
[8] | Tang N, Ma S Q, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H Z, Xiao J H, Li X H, Xiong L Z.MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice[J]. The Plant Cell, 2016, 28(9): 2161-2177. |
[9] | Ma S, Tang N, Li X, Xie Y J, Xiang D H, Fu J, Shen J Q, Yang J, Tu H F, Li X H, Hu H H, Xiong L Z.Reversible histone H2BMonoubiquitinationfine-tunes abscisic acid signaling and drought response in rice[J]. Molecular Plant, 2019, 12(2): 263-277. |
[10] | Liu X, Baird W V.Identification of a novel gene, HaABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid[J]. American Journal of Botany, 2004, 91(2): 184-191. |
[11] | Wu J, Seng S S, Carianopol C, Sui J J, Yang Q Y, Zhang F Q, Jiang H R, He J N, Yi M F.Cloning and characterization of a novel Gladiolus hybridusAFP family gene (GhAFP-like) related to corm dormancy[J]. Biochemical and Biophysical Research Communications, 2016, 471(1): 198-204. |
[12] | Miao C B, Xiao L H, Hua K, Zou C S, Zhao Y, Bressan R A, Zhu J K.Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity[J]. Proceedings of the National Academy of Sciences, 2018, 115(23): 6058-6063. |
[13] | Lou D J, Wang H P, Liang G, Yu D Q.OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice[J]. Frontiers in Plant Science, 2017, 8: 993. |
[14] | Cui Y T, Hu X M, Liang G H, Feng A H, Wang F M, Ruan S, Dong G J, Shen L, Zhang B, Chen D D,Zhu L,Hu J,Lin Y J,Guo L B,Matsuoka M,Qian Q. Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9[J]. Plant Biotechnology Journal, 2020, 18(10): 1987-1989. |
[15] | Zhou T S, Yu D, Dong H, Sun Z Z, Tan Y N, Sun X W, Sheng X B, Duan M J, Yuan D Y.Genome-Wide Identification and Expression Profile of NINJA and AFP Genes in Rice[J]. International Journal of Advances in Biology, 2020, 23(1): 171-182. |
[16] | Ma X L, Zhang Q Y, Zhu Q L, Liu W, Chen Y, Qiu R, Wang B, Yang Z F, Li H Y, Lin Y R, Xie Y Y, Shen R X, Chen S F, Wang Z, Chen Y L, Guo J X, Chen L T, Zhao X C, Dong Z C, Liu Y G.A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284. |
[17] | Liang G, Zhang H M, Lou D J, Yu D Q.Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing[J]. Scientific Reports, 2016, 6: 21451. |
[18] | Wang Y P, Cheng X, Shan Q W, Zhang Y, Liu J X, Gao C X.Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951. |
[19] | Li J Y, Sun Y W, Du J L, Zhao Y D, Xia L Q.Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529. |
[20] | 王影, 李相敢, 邱丽娟. CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展[J]. 植物学报, 2018, 53(4): 521-541. |
Wang Y, Li X G, Qiu L J.Research progress in off-target in CRISPR/Cas9 genome editing[J]. Chinese Bulletin of Botany, 2018, 53(4): 521-541. (in Chinese with English abstract) | |
[21] | Garcia M E, Lynch T, Peeters J, Snowden C, Finkelstein R.A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings[J]. Plant Molecular Biology, 2008, 67(6): 643-658. |
[22] | Lopez-Molina L, Mongrand S, Kinoshita N, Chua N H.AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation[J]. Genes & Development, 2003, 17(3): 410-418. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||