Chinese Journal of Rice Science
• 综述与专论 • Previous Articles Next Articles
HUANG Qina1,2,# ;YANG Yang1,2,# ; SHI Yongfeng1; CHEN Jie1;WU Jianli1,*
Received:
1900-01-01
Revised:
1900-01-01
Online:
2010-03-10
Published:
2010-03-10
黄奇娜1,2,#;杨 杨1,2,#;施勇烽1;陈 洁1;吴建利1,*
HUANG Qina# ,YANG Yang,# ,SHI Yongfeng,CHEN Jie,WU Jianli. Recent Advances in Research on SpottedLeaf Mutants of Rice (Oryza sativa)[J]. Chinese Journal of Rice Science, DOI: 10.3969/j.issn.1001-7216.2010.02.02 .
黄奇娜,杨 杨,施勇烽,陈 洁,吴建利, . 水稻斑点叶变异研究进展[J]. 中国水稻科学, DOI: 10.3969/j.issn.1001-7216.2010.02.02 .
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.3969/j.issn.1001-7216.2010.02.02
[1]Wu C J, Bordeos A, Madamba M R S, et al. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Gen, 2008, 279: 605-619.
[2]Dietrich R A, Delaney T P, Uknes S J, et al. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565-577.
[3]Lorrain S, Vailleau F, Balague C, et al. Lesion mimic mutants: Keys for deciphering cell death and defense pathways in plants? Trends Plant Sci, 2003, 8: 263-271.
[4]Kiyosawa S. Inheritance of a particular sensitivity of the rice variety, SekiguchiAsahi, to pathogens and chemicals, and linkage relationship with blast resistance. Bull Nat Inst Agric Sci (Jpn): Ser D Physiol Genet, 1970, 21: 61-71.
[5]Bhat R N, Upadhyaya M, Chaudhury A, et al. Chemical and irradiation induced mutants and TILLING//Upadhyaya N M. Rice Functional Genomics: Challenges, Progress and Prospects. New York: Springer, 2007: 149-180.
[6]Wu J L, Lei C, Wu C, et al. Chemical and irradiationinduced mutants of indica rice IR64. Plant Mol Biol, 2005, 59: 85-97.
[7]Mittler R, Rizhsky L. Transgeneinduced lesion mimic. Plant Mol Biol, 2000, 44: 335-344.
[8]Krishnan A, Guiderdoni E, An G, et al. Mutant resources in rice for functional genomics. Plant Physiol, 2009, 149:165-170
[9]Ueno M, Shibata H, Kihara J, et al. Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J, 2003, 36: 215-228.
[10]Yoshimura A, Ideta O, Iwata N. Linkage map of phenotype and RFLP markers in rice. Plant Mol Biol, 1997, 35: 49-60.
[11]Yin Z, Chen J, Zeng L, et al. Characterizing rice lesion mimic mutants and identifying a mutant with broadspectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact, 2000, 13: 869-876.
[12]Yamanouchi U, Yano M, Lin H, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99(11): 7530-7535.
[13]Sanchez A C, Khush G S. Chromosomal localization of five mutant genes in rice, Oryza sativa, using primary trisomics. Plant Breeding, 2000, 119: 84-86.
[14]Singh K, Multani D S, Khush G S. A new spotted leaf mutant in rice. Rice Genet Newsl, 1995, 12: 192-193.
[15]Zeng L R, Yin Z, Chen J, et al. Fine genetic mapping and physical delimination of the lesion mimic gene Spl11 to a 160kb DNA segment of the rice genome. Mol Genet Gen, 2002, 268: 253-261
[16]Zeng L R, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a Ubox/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795-2808.
[17]Mizobuchi R, Hirabayashi H, Kaji R, et al. Differential expression of disease resistance in rice lesionmimic mutants. Plant Cell Rep, 2002, 21: 390-396.
[18]Mori M, Tomita C, Sugimoto K, et al. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activationtagging in rice. Plant Mol Biol, 2007, 63: 847-860.
[19]Qiao Y L, Jiang W Z, Lee J H, et al. SPL28 encodes a clathrinassociated adaptor protein complex 1, medium subunit μ1(AP1M1) and is responsible for spooted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 185(1): 258-274.
[20]Takahashi A, Kawasaki T, Henmi K, et al. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J, 1999, 17: 535-545.
[21]Takahashi A, Kawasaki T, Wong H L, et al. Hyperphosphorylation of a mitochondrial protein, prohibitin, is induced by calyculin A in a rice lesionmimic mutant cdr1. Plant Physiol, 2003, 132: 1861-1869.
[22]Campbell M A, Ronald P C. Characterization of four rice mutants with alterations in the defense response pathway. Mol Plant Pathol, 2005, 6: 11-21.
[23]Arase S, Zhao C M, Akimitsu K, et al. A recessive lesion mimic mutant of rice with elevated resistance to fungal pathogens. J Gen Plant Pathol, 2000, 66: 109-116.
[24]王建军, 朱旭东, 王友林, 等. 水稻类病斑突变体的生理与遗传分析. 植物生理与分子生物学报, 2004, 30: 331-338.
[25]王建军, 朱旭东, 王友林,等. 水稻类病斑突变体lrd40的抗病性与细胞学分析. 中国水稻科学, 2005, 19: 111-116.
[26]Jung Y H, Lee J H, Agrawal G K, et al. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defenseassociated signaling pathways. Plant Physiol Biochem, 2005, 43: 397-406.
[27]刘道峰, 程祝宽, 刘国庆, 等. 水稻类病变突变体lmi的鉴定及其基因定位. 科学通报, 2003, 48: 831-835.
[28]王忠华, 贾育林. 水稻类病变突变体lmm1的诱发与初步分析. 核农学报, 2006, 20: 255-258.
[29]王忠华, 林卉, Valent B, 等. 水稻抗稻瘟病菌防卫反应的细胞学分析与防卫基因表达. 中国水稻科学, 2007, 21: 335-340.
[30]Wang L, Pei Z, Tian Y, et al. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375-384.
[31]Takahashi A, Agrawal G K, Yamazaki M, et al. Rice Pti1a negatively regulates RAR1dependent defense responses. Plant Cell, 2007, 19: 2940-2951.
[32]Buschges R, Hollricher K, Panstruga R, et al. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell, 1997, 88: 695-705.
[33]Malamy J, Carr J P, Klessig D F, Salicylic acid: A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 1990, 250: 1002-1004.
[34]Walbot V, Hoisington D A, Neuffer M G. Disease lesion mimics in maize//Kosuge T, Meredith C. Genetic Engineering of Plants. New York: Plenum, 1983: 431-442.
[35]Fuse T, Iba K, Satoh H, et al. Characterization of a rice mutant having an increased susceptibility to light stress at high temperature. Physiol Plant, 1993, 9: 799-804.
[36]Gray J, JanickBuckner D, Buckner B, et al. Lightdependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol, 2002, 30: 1894-1907.
[37]Hoisington D A, Neuffer M G, Walbot V. Disease lesion mimics in maize: Ⅰ. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev Biol, 1982, 93: 381-388.
[38]陈健, 赵增琳, 张世宏, 等. 一个水稻TDNA插入类病斑突变体的初步研究. 吉林农业大学学报, 2008, 30(2): 133-137.
[39]郝中娜, 张红志, 陶荣祥. 水稻类病斑突变体的初步研究. 核农学报, 2007, 21: 328332.
[40]Greenberg J T, Silverman F P, Liang H. Uncopling salisalicdependent cell death and defenserelated response from disease resistance in the Arabidopsis mutant acd5. Genetics, 2000, 156: 341-350.
[41]Bowling S A, Clarke J D, Liu Y, et al. The cpr5 mutant of Arabidopsis expresses both NPRldependent and NPRlindependent resistance. Plant Cell, 1997, 9: 1573-1584.
[42]Jambunathan N, Siani J M, McNellis T W. A humiditysensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell, 2001, 13: 2225-2240.
[43]Mach J M, Castillo A R, Hongstraten R, et al. The Arabidopsis accelerated cell death gene acd2 encodes red chlorophyll catabolite reductase and suppresses the spread of disease symptoms. Proc Natl Acad Sci USA, 2001, 265: 302-310.
[44]Rate D N, Cuenca J V, Bowman G R, et al. The gainoffunction Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell, 1999, 11: 1695-1708.
[45]Yu I C, Parker J, Bent F A. Geneforgene disease resistance without the hypersensitive response in Arabidopsis dnd1 mutant. Proc Natl Acad Sci USA, 1998, 95: 7819-7824.
[46]Balague C, Lin B, Alcon C, et al. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotidegated channel ion channel family. Plant Cell, 2003, 15: 365-379.
[47]Lee J C, Peter M E. Regulation of apoptosis by ubiquitination. Immunol Rev, 2003, 193: 39-47.
[48]Sullivan J A, Shirasu K, Dong X W. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet, 2003, 4: 885-898.
[49]VegaSanchez M E, Zeng L, Chen S, et al. SPIN1, a K homology domain protein negatively regulated and ubiquitinated by the E3 ubiquitin ligase SPL11, is involved in flowering time control in rice. Plant Cell, 2008, 20: 1456-1469.
[50]Dietrich R A, Richberg M H, Schmidt R, et al. A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685-694.
[51]Epple P, Mack A A, Morris V R F, et al. Antagonistic control of oxidative stressinduced cell death in Arabidopsis by two related plantspecific zinc finger proteins. Proc Natl Acad Sci USA, 2003, 100: 6831-6836.
[52]Kachroo A, Lapchyk L, Fukushige H, et al. Plastidial fatty acid signaling modulates salicylic acid and jasmonic acidmediated defense pathways in the Arabidopsis ssi2 mutant. Plant Cell, 2003, 15: 2952-2965.
[53]Kachroo A, Venugopal S C, Lapchyk L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 5152-5157.
[54]Huang L, Sun Q, Qin F, et al. Downregulation of a SILENT INFORMATION REGULATOR2related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol, 2007, 144: 1508-1519.
[55]Brodersen P, Petersen M, Pike H M, et al. Knockout of Arabidopsis acceleratedcelldeath11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev, 2002, 16: 490-502.
[56]Kachroo P, Shanklin J, Shah J, et al. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA, 2001, 98: 9448-9453.
[57]Hu G, Yamada K, Briggs S P, et al. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095-1105.
[58]Ishikawa A, Okamoto H, Iwasaki Y, et al. A deficiency of coproprophyrinogen: Ⅲ. oxidase causes lesion formation in Arabidopsis. Plant J, 2001, 27: 89-99.
[59]Gray J, Close P S, Briggs S P, et al. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell, 1997, 89: 25-31.
[60]Jabs T, Dietrich R A, Dangl J L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science, 1996, 273: 1853-1856.
[61]Zhang C, Czymmek K J, Shapiro A D. Nitric oxide does not trigger early programmed cell death events but may contribute to celltocell signaling governing progression of the Arabidopsis hypersensitive response. Mol Plant Microbe Interact, 2003, 16: 962-972.
[62]Delledonne M. NO news is good news for plants. Curr Opin Plant Biol, 2005, 8: 390-396. |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||