Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (6): 567-576.DOI: 10.16819/j.1001-7216.2016.6017
• Orginal Article • Next Articles
Xun-xia HU1, Chun-yang SHI1, Yan DING1, Ping ZHANG1, Yong-sheng GE1, Yu-jin LIU2,*(), Ze-gang WANG1, Cai-lin GE1,*()
Received:
2016-02-02
Revised:
2016-04-28
Online:
2016-11-10
Published:
2016-11-10
Contact:
Yu-jin LIU, Cai-lin GE
胡训霞1, 史春阳1, 丁艳1, 张萍1, 葛永胜1, 刘玉金2,*(), 王泽港1, 葛才林1,*()
通讯作者:
刘玉金,葛才林
基金资助:
CLC Number:
Xun-xia HU, Chun-yang SHI, Yan DING, Ping ZHANG, Yong-sheng GE, Yu-jin LIU, Ze-gang WANG, Cai-lin GE. Response of Gene Expression Related to Efficient Phosphorus Absorption and Utilization to Low-P Stress in Rice Roots[J]. Chinese Journal OF Rice Science, 2016, 30(6): 567-576.
胡训霞, 史春阳, 丁艳, 张萍, 葛永胜, 刘玉金, 王泽港, 葛才林. 水稻根系中磷高效吸收和利用相关基因表达对低磷胁迫的应答[J]. 中国水稻科学, 2016, 30(6): 567-576.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.6017
Gene ID 基因ID | 功能注释 Function annotation | 上游引物 Forward primer | 下游引物 Reverse primer |
---|---|---|---|
Os01g0239000 | PHR1 | 5'-CGCAAGGTGAAGGTGGACT-3' | 5'-CGATGTTGTGGCGAGTGAG-3' |
Os07g0614700 | SPX | 5'-CCCATCCAATGACCACC-3' | 5'-TTGAAAGCCAAAACACG-3' |
Os10g0116800 | PAP | 5'-ATCACTATGACTGGAGGGG-3' | 5'-TGTTTCTGCTGCTGATGTG-3' |
Os05g0192100 | APA | 5'-AGTAGCACAAAGCAGCAATA-3' | 5'-CGTTCAGCATCTCCGTC-3' |
Os01g0758300 | PEPC | 5'-TCCAAGCCGCCTTTAGAA-3' | 5'-ATCACGGTCTCCACCCATC-3' |
Os06g0324800 | MFS | 5'-CCCTACGATGGATACTGGC-3' | 5'-AGGATGAAGGTGGTGGTGTT-3' |
Os03g0150800 | QsPT2 | 5'-AGCAAGGTCGGGTGGAT-3' | 5'-GAAGGTGAGTGCGTAGAGC-3' |
Os08g0564000 | OsPT6 | 5'-GCCTGCTCTTCACCTTCC-3' | 5'-CCGACGACAACGACAAAA-3' |
Table 1 The primer sequences used for qRT-PCR verification.
Gene ID 基因ID | 功能注释 Function annotation | 上游引物 Forward primer | 下游引物 Reverse primer |
---|---|---|---|
Os01g0239000 | PHR1 | 5'-CGCAAGGTGAAGGTGGACT-3' | 5'-CGATGTTGTGGCGAGTGAG-3' |
Os07g0614700 | SPX | 5'-CCCATCCAATGACCACC-3' | 5'-TTGAAAGCCAAAACACG-3' |
Os10g0116800 | PAP | 5'-ATCACTATGACTGGAGGGG-3' | 5'-TGTTTCTGCTGCTGATGTG-3' |
Os05g0192100 | APA | 5'-AGTAGCACAAAGCAGCAATA-3' | 5'-CGTTCAGCATCTCCGTC-3' |
Os01g0758300 | PEPC | 5'-TCCAAGCCGCCTTTAGAA-3' | 5'-ATCACGGTCTCCACCCATC-3' |
Os06g0324800 | MFS | 5'-CCCTACGATGGATACTGGC-3' | 5'-AGGATGAAGGTGGTGGTGTT-3' |
Os03g0150800 | QsPT2 | 5'-AGCAAGGTCGGGTGGAT-3' | 5'-GAAGGTGAGTGCGTAGAGC-3' |
Os08g0564000 | OsPT6 | 5'-GCCTGCTCTTCACCTTCC-3' | 5'-CCGACGACAACGACAAAA-3' |
功能注释 Function annotation | 基因ID Gene ID | Log2倍数 Log2FC | P值 P-value |
---|---|---|---|
miR399 | osa-miR399d | 3.398±0.307 | 1.133×10-4 |
osa-miR399i | 2.572±0.173 | 8.032×10-5 | |
osa-miR399j | 3.184±0.115 | 1.027×10-6 | |
磷饥饿调控蛋白 Similar to phosphate starvation regulator protein (PHR1) | Os01g0239000 | 1.953±0.799 | 0.048 |
磷饥饿调控蛋白 Similar to phosphate starvation response regulator-like protein | Os02g0325600 | 2.144±0.080 | 4.665×10-4 |
SPX结构域 Oryza sativa SYG/PHO8/XPR1 (SPX) domain gene | Os06g0603600 | 1.412±0.271 | 9.934×10-4 |
SPX结构域 SPX N-terminal domain containing protein | Os07g0614700 | 4.475±0.241 | 2.628×10-4 |
Os10g0392600 | 2.218±0.263 | 4.952×10-5 | |
Os02g0202200 | 2.374±0.204 | 1.624×10-4 | |
磷酸盐1 Similar to PHO1-like protein | Os06g0493600 | 3.119±0.047 | 2.594×10-4 |
高亲和力磷载体2 High affinity phosphate transporter 2 (OsPht2) | Os03g0150800 | 1.395±0.426 | 1.964×10-3 |
磷载体6 Oryza sativa phosphate transporter 6 (OsPht6) | Os08g0564000 | 6.488±0.525 | 5.095×10-5 |
磷载体6 Similar to phosphate transporter 6(OsPht6-like) | Os04g0186400 | 1.297±0.119 | 0.040 |
紫色酸性磷酸酶 Purple acid phosphatase (PAP) | Os12g0576600 | 4.514±0.490 | 7.743×10-5 |
紫色酸性磷酸酶 Similar to purple acid phosphatase (PAP) | Os12g0637100 | 2.559±0.342 | 6.757×10-3 |
Os10g0116800 | 5.107±0.219 | 6.184×10-5 | |
Os11g0151700 | 3.024±0.376 | 3.155×10-3 | |
Os01g0776600 | 2.573±0.077 | 9.358×10-5 | |
紫色酸性磷酸酶 Purple acid phosphatase-like (PAP-like) | Os01g0941800 | 5.442±0.449 | 1.612×10-5 |
金属磷酸酯酶 Metallophosphoesterase domain protein (MPE) | Os07g0106000 | 3.055±0.603 | 2.646×10-4 |
植酸酶 Similar to Phytase (PA) | Os08g0280100 | 3.372±0.025 | 1.659×10-5 |
Os03g0848200 | 1.926±0.124 | 1.610×10-5 | |
酸性磷酸酶 Acid phosphatase (Class B) (APA) | Os05g0192100 | 1.353±0.075 | 1.420×10-3 |
磷酸烯醇式丙酮酸羧化酶 Similar toPhosphoenolpyruvate carboxylase (PEPC) | |||
Os01g0758300 | 1.791±0.860 | 0.017 | |
Os01g0110700 | 2.147±0.677 | 2.508×10-3 | |
C4-二羧酸转运/苹果酸转运蛋白 C4-dicarboxylate transporter/malic acid transport protein (C4-DT/MAT) | Os01g0226600 | 2.537±1.118 | 7.562×10-3 |
电压依赖阴离子通道1 Voltage-dependent anion channe1 (VDAC1) | Os01g0588200 | 1.276±0.240 | 4.216×10-4 |
协助转运超家族Major facilitator superfamily protein (MFS) | Os06g0324800 | 4.217±1.267 | 1.278×10-3 |
Os08g0409900 | 4.113±0.415 | 2.175×10-5 | |
Os08g0156600 | 3.465±0.131 | 4.637×10-5 |
Table 2 Effect of low-P stress on the expression of genes related to phosphorus starvation signals, phosphorus activation and high efficiency absorption.
功能注释 Function annotation | 基因ID Gene ID | Log2倍数 Log2FC | P值 P-value |
---|---|---|---|
miR399 | osa-miR399d | 3.398±0.307 | 1.133×10-4 |
osa-miR399i | 2.572±0.173 | 8.032×10-5 | |
osa-miR399j | 3.184±0.115 | 1.027×10-6 | |
磷饥饿调控蛋白 Similar to phosphate starvation regulator protein (PHR1) | Os01g0239000 | 1.953±0.799 | 0.048 |
磷饥饿调控蛋白 Similar to phosphate starvation response regulator-like protein | Os02g0325600 | 2.144±0.080 | 4.665×10-4 |
SPX结构域 Oryza sativa SYG/PHO8/XPR1 (SPX) domain gene | Os06g0603600 | 1.412±0.271 | 9.934×10-4 |
SPX结构域 SPX N-terminal domain containing protein | Os07g0614700 | 4.475±0.241 | 2.628×10-4 |
Os10g0392600 | 2.218±0.263 | 4.952×10-5 | |
Os02g0202200 | 2.374±0.204 | 1.624×10-4 | |
磷酸盐1 Similar to PHO1-like protein | Os06g0493600 | 3.119±0.047 | 2.594×10-4 |
高亲和力磷载体2 High affinity phosphate transporter 2 (OsPht2) | Os03g0150800 | 1.395±0.426 | 1.964×10-3 |
磷载体6 Oryza sativa phosphate transporter 6 (OsPht6) | Os08g0564000 | 6.488±0.525 | 5.095×10-5 |
磷载体6 Similar to phosphate transporter 6(OsPht6-like) | Os04g0186400 | 1.297±0.119 | 0.040 |
紫色酸性磷酸酶 Purple acid phosphatase (PAP) | Os12g0576600 | 4.514±0.490 | 7.743×10-5 |
紫色酸性磷酸酶 Similar to purple acid phosphatase (PAP) | Os12g0637100 | 2.559±0.342 | 6.757×10-3 |
Os10g0116800 | 5.107±0.219 | 6.184×10-5 | |
Os11g0151700 | 3.024±0.376 | 3.155×10-3 | |
Os01g0776600 | 2.573±0.077 | 9.358×10-5 | |
紫色酸性磷酸酶 Purple acid phosphatase-like (PAP-like) | Os01g0941800 | 5.442±0.449 | 1.612×10-5 |
金属磷酸酯酶 Metallophosphoesterase domain protein (MPE) | Os07g0106000 | 3.055±0.603 | 2.646×10-4 |
植酸酶 Similar to Phytase (PA) | Os08g0280100 | 3.372±0.025 | 1.659×10-5 |
Os03g0848200 | 1.926±0.124 | 1.610×10-5 | |
酸性磷酸酶 Acid phosphatase (Class B) (APA) | Os05g0192100 | 1.353±0.075 | 1.420×10-3 |
磷酸烯醇式丙酮酸羧化酶 Similar toPhosphoenolpyruvate carboxylase (PEPC) | |||
Os01g0758300 | 1.791±0.860 | 0.017 | |
Os01g0110700 | 2.147±0.677 | 2.508×10-3 | |
C4-二羧酸转运/苹果酸转运蛋白 C4-dicarboxylate transporter/malic acid transport protein (C4-DT/MAT) | Os01g0226600 | 2.537±1.118 | 7.562×10-3 |
电压依赖阴离子通道1 Voltage-dependent anion channe1 (VDAC1) | Os01g0588200 | 1.276±0.240 | 4.216×10-4 |
协助转运超家族Major facilitator superfamily protein (MFS) | Os06g0324800 | 4.217±1.267 | 1.278×10-3 |
Os08g0409900 | 4.113±0.415 | 2.175×10-5 | |
Os08g0156600 | 3.465±0.131 | 4.637×10-5 |
Fig. 2. Transcription level of phosphorus starvation signals, phosphorus activation and high efficiency absorption related gene changes with low-P treated time in YI2434 and TJ981 roots by qRT-PCR. A, B, C, D, E, F, G, H represent the genes of PHR1 (Os01g0239000), SPXs (Os07g0614700), PAPs (Os10g0116800), APA (Os05g0192100), PEPC (Os01g0758300), MFSs (Os06g0324800), OsPT2 (Os03g0150800), OsPT6 (Os08g0564000), respectively. *, **represent significant difference at P < 0.05 and P < 0.01, respectively.
Fig. 3. The acid phosphatase activity in YI2434 and TJ981 at 15 days after low-P treatment. *, **show significant difference at P < 0.05 and P < 0.01, respectively.
Fig. 4. Acid phosphatase activity secreted by roots in YI2434 and TJ981 at 15 days after low-P treatment. *, **shows significant difference at P < 0.05 and P < 0.01,respectively.
[1] | 郭再华, 孟萌, 侯彦琳. 磷、砷双重胁迫对不同耐低磷水稻苗期生长及磷、砷吸收的影响. 应用与环境生物学报, 2009, 15(5): 596-601. |
Guo Z H, Meng M, Hou Y L.Effect of P and As couple stress on growth, and P and As absorption of different P-tolerant rice seedlings.Chin J Appl Environ Biol, 2009, 15(5): 596-601.(in Chinese with English abstract) | |
[2] | Xiao K, Katagi H, Harrison M, et al.Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M.truncatula. Plant Sci, 2006, 170(2): l91-202. |
[3] | 李俊艳, 胡红青, 李荣纪,等. 改性磷矿粉对油菜幼苗生长和土壤性质的影响. 植物营养与肥料学报, 2009, 15(2): 441-446. |
Li J Y, Hu Q H, Li R J, et al.Modified phosphate rock by γ-poly glutamic acid and its effects on the growth of rapeseed seedlings and soil properties.Plant Nutr Fert Sci, 2009, 15(2): 441-446.(in Chinese with English abstract) | |
[4] | 叶思诚, 谭晓风, 袁军. 植物低磷适应机制研究进展. 经济林研究, 2012, 30(2): 128-133. |
Ye S C, Tan X F, Yuan J.Advances in research on mechanism of plant acclimation to low phosphorus.Non For Res, 2012,30(2): 128-133.(in Chinese) | |
[5] | 胡慧蓉, 郭安, 王海龙. 我国磷资源利用现状与可持续利用的建议. 磷肥与复肥, 2007, 22(2): 1-5. |
Hu H R,Guo A, Wang H L.Present status of China's phosphorus resource utilization & some suggestions for sustainable development.Phos Com Fert, 2007, 22(2): 1-5.(in Chinese) | |
[6] | 王森, 朱昌雄, 耿兵. 土壤氮磷流失途径的研究进展. 中国农学通报, 2013, 29(33): 22-25. |
Wang S, Zhu C X,Geng B.Research advancement in loss pathways of nitrogen and phosphorus in soils.Chin Agric Sci Bull, 2013, 29(33): 22-25.(in Chinese with English abstract) | |
[7] | 付春平, 钟成华, 邓春光. 水体富营养化成因分析. 重庆建筑大学学报, 2005, 27(1): 128-131. |
Fu C P,Zhong C H, Deng C G.Analysis on cause of the eutrophication of water body.J Chongqing Archit Univ, 2005, 27(1): 128-131.(in Chinese with English abstract) | |
[8] | 李强, 许明祥, 齐治军, 等. 长期施用化肥对黄土丘陵区坡地土壤物理性质的影响. 植物营养与肥料学报, 2011, 17(1): 103-109. |
Li Q, Xu M X, Qi Z J, et al.Effects of long-term chemical fertilization on soil physical properties of slope lands in the loess hilly region.Plant Nutr Fert Sci, 2011, 17(1): 103-109.(in Chinese with English abstract) | |
[9] | 李德华, 向春雷, 姜益泉, 等. 低磷胁迫下水稻不同品种根系有机酸分泌的差异. 中国农业通报, 2005, 21(11): 186-188. |
Li D H, Xiang C L, Jiang Y Q, et al.Difference of organic acid secretion from roots of various rice varieties under the stress of low phosphorus.Chin Agric Sci Bull, 2005, 21(11): 186-188.(in Chinese with English abstract) | |
[10] | Panigrahy M, Rao D N, Sarla N.Molecular mechanisms in response to phosphate starvation in rice.Biotechnol Adv, 2009 27(4): 389-97 |
[11] | Cai H M, Xie W B, Zhu T, et al.Transcriptome response to phosphorus starvation in rice.Acta Physiol Plant, 2012, 34: 327-341. |
[12] | Li L, Liu C, Lian X.Gene expression profiles in rice roots under low phosphorus stress.Plant Mol Biol, 2010, 72(4-5): 423-432. |
[13] | Oono Y, Kawahara Y, Yazawa T, et al.Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles.Plant Mol Biol, 2013, 83: 523-537. |
[14] | 史春阳, 葛永胜, 胡训霞, 等. 不同基因型耐低磷水稻品种的筛选. 扬州大学学报(印刷中). |
Shi C Y, Ge Y S, Hu X X, et al. Screening of different low phosphorous tolerant genotypes rice varieties.J Yangzhou Univ(in press). | |
[15] | 汤绍虎, 罗充. 植物生理学实验教程. 第一版. 重庆: 西南师范大学出版社, 2012: 35-38. |
Tang S H, Luo C.Plant Physiology Experiments Tutorial. 1st edn. Chongqing: Southwest China Normal University Press, 2012: 35-38.(in Chinese) | |
[16] | Jain M, Nijhawan A, Tyagi A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR.Biochem Biophys Res Commun, 2006, 345(2): 646-651. |
[17] | McLachlan K D, Elliot D E, Marco D G, et al. Leaf acid phosphataseisozymes in the diagnosis of phosphorus status in field-grown wheat.Crop Pas Sci, 1987, 38(1): 1-13. |
[18] | Ni J J, Wu P, Luo A C, et al.Low phosphorus effects of the metabolism on rice seedlings.Commun Soil Sci Plan Anal, 1996, 27(18): 3073-3084. |
[19] | Hou Q Z, Yi Y Z, Si Q H, et al.Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol, 2010, 167(15): 1289-1297. |
[20] | Doerner P.Phosphate starvation signaling: A threesome controls systemic Pi homeostasis.Curr Opin Plant Biol, 2008, 11: 536-540. |
[21] | 严宽, 王昌全, 李焕秀,等. 磷水平对杂交水稻及其亲本根系酸性磷酸酶活性的影响. 中国水稻科学, 2010, 24(1): 43-48. |
Yan K, Wang C Q, Li H X, et al.Effects of phosphorus level on the activity of acid phosphatase in roots of hybrid rice and its parents.Chin J Rice Sci, 2010, 24(1): 43-48.(in Chinese with English abstract) | |
[22] | Schenk G,Miti C N, Hanson G R, et al.Purple acid phosphatase: A journey into the function and mechanism of a colorful enzyme.Coordin Chem Rev, 2013, 257(2): 473-482. |
[23] | 苏顺宗, 刘丹, 吴玲, 等. 玉米低磷响应基因ZmPAP18 的表达特征与序列变异分析. 分子植物育种, 2013, 11(4): 509-516. |
Su S Z, Liu D, Wu L, et al.Expression and sequence variation analysis of a low-phosphorus responsive gene ZmPAP18 in maize. Mol Plant Breeding, 2013, 11(4):509-516.(in Chinese with English abstract) | |
[24] | Lung S C, Leung A, Kuang R, et al.Phytase activity in tobacco (Nicotianatabacum) root exudates is exhibited by a purple acid phosphatase. Phytochem, 2008, 69(2): 509-516. |
[25] | 杨建峰, 贺立源. 缺磷诱导植物分泌低分子量有机酸的研究进展. 安徽农业科学, 2006, 34(20): 5171-5175. |
Yang J F, He L Y.Research advance in the exudation ofprganic acid in phosphorus-deficient plant.J Anhui Agric Sci ,2006, 34(20): 5171-5175.(in Chinese with English abstract) | |
[26] | 陈声奇, 陈爱珠, 周畅. 植物忍耐低磷胁迫机理的研究进展. 湖南农业科学, 2007(2): 43-46. |
Chen S Q, Chen A Z, Zhou C. Current Research on adaptation mechanisms of plants to phosphorus deficiency stress. Agri Sci Hunan, 2007(2): 43-46.(in Chinese ) | |
[27] | Liu F, Wang Z Y, Ren H Y, et al. OsSPX1 suppresses the function of OsPHR2 in the regulation ofexpression of OsPT2 and phosphate homeostasis in shoots of rice. Plant J, 2010, 62(3): 508-517. |
[28] | Ai P, Sun S, Zhao J, et al.Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation. Plant J, 2009, 57(5): 798-809. |
[29] | Wu P,Shou H X, Xu G H, et al.Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis.Curr Opin Plant Biol, 2013, 16: 1-8. |
[30] | Reddy V S, Shlykov M A, Castillo R, et al.The major facilitator superfamily (MFS) revisited.FEBS J, 2012, 279(11): 2022-2035. |
[31] | 李永夫, 金松恒, 叶正钱,等. 低磷胁迫对山核桃幼苗根系形态和生理特征的影响. 浙江林学院学报, 2010, 27(2):239-245. |
Li Y F,Jin S H, Ye Z Q, et al.Root morphology and physiological characteristics in Carya cathayensis seedlings with low phosphorus stress.J Zhejiang Coll, 2010, 27(2): 239-245.(in Chinese with English abstract) | |
[32] | 李锋, 李木英, 潘晓华,等. 不同水稻品种幼苗适应低磷胁迫的根系生理生化特性. 中国水稻科学, 2004, 18(1): 48-52. |
Li F,Li M Y, Pan X X, et al.Biochemical and physiological characteristics in seedlings roots of different rice cultivars under low-phosphorus stress.Chin J Rice Sci, 2004, 18(1): 48-52.(in Chinese with English abstract) |
[1] | GUO Zhan, ZHANG Yunbo. Research Progress in Physiological,Biochemical Responses of Rice to Drought Stress and Its Molecular Regulation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 335-349. |
[2] | WEI Huanhe, MA Weiyi, ZUO Boyuan, WANG Lulu, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, HUO Zhongyang, DAI Qigen. Research Progress in the Effect of Salinity, Drought, and Their Combined Stresses on Rice Yield and Quality Formation [J]. Chinese Journal OF Rice Science, 2024, 38(4): 350-363. |
[3] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[4] | CHEN Mingliang, ZENG Xihua, SHEN Yumin, LUO Shiyou, HU Lanxiang, XIONG Wentao, XIONG Huanjin, WU Xiaoyan, XIAO Yeqing. Typing of Inter-subspecific Fertility Loci and Fertility Locus Pattern of indica-japonica Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 386-396. |
[5] | DING Zhengquan, PAN Yueyun, SHI Yang, HUANG Haixiang. Comprehensive Evaluation and Comparative Analysis of Jiahe Series Long-Grain japonica Rice with High Eating Quality Based on Gene Chip Technology [J]. Chinese Journal OF Rice Science, 2024, 38(4): 397-408. |
[6] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[7] | LÜ Zhou, YI Binghuai, CHEN Pingping, ZHOU Wenxin, TANG Wenbang, YI Zhenxie. Effects of Nitrogen Application Rate and Transplanting Density on Yield Formation of Small Seed Hybrid Rice [J]. Chinese Journal OF Rice Science, 2024, 38(4): 422-436. |
[8] | HU Jijie, HU Zhihua, ZHANG Junhua, CAO Xiaochuang, JIN Qianyu, ZHANG Zhiyuan, ZHU Lianfeng. Effects of Rhizosphere Saturated Dissolved Oxygen on Photosynthetic and Growth Characteristics of Rice at Tillering Stage [J]. Chinese Journal OF Rice Science, 2024, 38(4): 437-446. |
[9] | WU Yue, LIANG Chengwei, ZHAO Chenfei, SUN Jian, MA Dianrong. Occurrence of Weedy Rice Disaster and Ecotype Evolution in Direct-Seeded Rice Fields [J]. Chinese Journal OF Rice Science, 2024, 38(4): 447-455. |
[10] | LIU Fuxiang, ZHEN Haoyang, PENG Huan, ZHENG Liuchun, PENG Deliang, WEN Yanhua. Investigation and Species Identification of Cyst Nematode Disease on Rice in Guangdong Province [J]. Chinese Journal OF Rice Science, 2024, 38(4): 456-461. |
[11] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[12] | MIAO Jun, RAN Jinhui, XU Mengbin, BO Liubing, WANG Ping, LIANG Guohua, ZHOU Yong. Overexpression of RGG2, a Heterotrimeric G Protein γ Subunit-Encoding Gene, Improves Drought Tolerance in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 246-255. |
[13] | YIN Xiaoxiao, ZHANG Zhihan, YAN Xiulian, LIAO Rong, YANG Sijia, Beenish HASSAN, GUO Daiming, FAN Jing, ZHAO Zhixue, WANG Wenming. Signal Peptide Validation and Expression Analysis of Multiple Effectors from Ustilaginoidea virens [J]. Chinese Journal OF Rice Science, 2024, 38(3): 256-265. |
[14] | ZHU Yujing, GUI Jinxin, GONG Chengyun, LUO Xinyang, SHI Jubin, ZHANG Haiqing, HE Jiwai. QTL Mapping for Tiller Angle in Rice by Genome-wide Association Analysis [J]. Chinese Journal OF Rice Science, 2024, 38(3): 266-276. |
[15] | WEI Qianqian, WANG Yulei, KONG Haimin, XU Qingshan, YAN Yulian, PAN Lin, CHI Chunxin, KONG Yali, TIAN Wenhao, ZHU Lianfeng, CAO Xiaochuang, ZHANG Junhua, ZHU Chunqun. Mechanism of Hydrogen Sulfide, a Signaling Molecule Involved in Reducing the Inhibitory Effect of Aluminum Toxicity on Rice Growth Together with Sulfur Fertilizer [J]. Chinese Journal OF Rice Science, 2024, 38(3): 290-302. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||