
中国水稻科学 ›› 2026, Vol. 40 ›› Issue (1): 27-36.DOI: 10.16819/j.1001-7216.2026.241116
周华成1,2,#, 包秀浩1,#, 王晓乐1,#, 鲁镇飞1, 马荣荣1,2, 陆永法1,2, 王晓燕1,2, 蔡克锋1,2, 唐志明1,2, 周卓奇2, 陈志新2, 马炜炜1,*(
)
收稿日期:2024-11-25
修回日期:2025-04-09
出版日期:2026-01-10
发布日期:2026-01-21
通讯作者:
*email: jonathan_@163.com作者简介:第一联系人:共同第一作者
基金资助:
ZHOU Huacheng1,2,#, BAO Xiuhao1,#, WANG Xiaole1,#, LU Zhenfei1, MA Rongrong1,2, LU Yongfa1,2, WANG Xiaoyan1,2, CAI Kefeng1,2, TANG Zhiming1,2, ZHOU Zhuoqi2, CHEN Zhixin2, MA Weiwei1,*(
)
Received:2024-11-25
Revised:2025-04-09
Online:2026-01-10
Published:2026-01-21
About author:First author contact:These authors contributed equally to this paper
摘要:
RNA结合蛋白(RBP)作为关键的RNA代谢调控因子,在真核生物的细胞发育中参与多种RNA加工事件。这些RBP能够与RNA结合形成核糖核蛋白复合物,并可通过相分离机制形成动态的无膜凝集体。本文首先综述了RBP和相分离的基本概念,进而深入解析了植物细胞中RBPs相分离的分子机制,重点阐明其在植物生长发育和对环境变化的响应中的重要作用。最后,展望了RBP相分离机制研究中面临的挑战及其在作物改良中的潜在应用价值。
周华成, 包秀浩, 王晓乐, 鲁镇飞, 马荣荣, 陆永法, 王晓燕, 蔡克锋, 唐志明, 周卓奇, 陈志新, 马炜炜. 植物细胞中RNA结合蛋白相分离现象研究进展[J]. 中国水稻科学, 2026, 40(1): 27-36.
ZHOU Huacheng, BAO Xiuhao, WANG Xiaole, LU Zhenfei, MA Rongrong, LU Yongfa, WANG Xiaoyan, CAI Kefeng, TANG Zhiming, ZHOU Zhuoqi, CHEN Zhixin, MA Weiwei. Research Progress in the Phase Separation of RNA-binding Proteins in Plant Cells[J]. Chinese Journal OF Rice Science, 2026, 40(1): 27-36.
| 名称 Name | 结构特征 Structural characteristics | 生理功能 Physiological function |
|---|---|---|
| SR蛋白 Serine/Arginine-rich protein | N端:含RRM结构域 N-terminus: containing an RRM domain C端:富含SR的结构域 C-terminus: containing an SR-rich domain | 调控前体mRNA的剪接、转运及翻译,参与植物生长发育调控(如细胞增殖、开花时间),增强高温、低温等非生物胁迫适应性 Regulates precursor mRNA splicing, transport, and translation; participates in plant growth and development regulation (e.g., cell proliferation, flowering time); enhances adaptation to abiotic stresses such as high and low temperatures |
| GR-RBP Glycine-rich RNA-binding protein | N端:含RRM或CSD结构域 N-terminus: containing RRM or CSD domain C端:存在富含甘氨酸区域(部分该类型蛋白的该 区域间隔分布着CCHC型锌指基序) C-terminus: containing glycine-rich region(in some proteins, this region is interspersed with conserved CCHC-type zinc finger motifs) | 促进RNA折叠,响应干旱、盐、低温胁迫;通过激素信号调控植物开花、生物钟及种子萌发等发育过程 Promotes RNA folding; responds to drought, salt, and low-temperature stresses; regulates flowering, circadian rhythm, and seed germination through hormone signaling |
| PPR蛋白 Pentatricopeptide repeat protein | P类:串联重复的35个氨基酸基序 P-type: tandem repeats of 35-amino acid motifs PLS类:由P基序(35 aa)、L基序(35~36 aa)和S基序 (31~32 aa)组成 PLS-type: composed of P motifs (35 aa), L motifs (35-36 aa), and S motifs (31-32 aa) | 靶向线粒体和叶绿体,调控RNA编辑、剪接及稳定性,影响光合作用、呼吸作用、胚胎发育,并参与胁迫响应 Regulates mitochondria and chloroplasts; controls RNA editing, splicing, and stability; influences photosynthesis, respiration, embryogenesis, and participates in stress responses |
| DEAD-box RH DEAD-box RNA helicase | 包含保守的DEAD基序及Q、I、III等结构域,有ATP 依赖的RNA解旋活性 Containing conserved DEAD motifs (Q, I, II, III, V, VI) with ATP-dependent RNA helicase activity | 催化RNA二级结构解旋,参与核与细胞器RNA加工(如内含子剪接、rRNA成熟),调节生长发育及低温、干旱胁迫耐受性 Catalyze RNA secondary structure unwinding; participate in post-transcriptional RNA processing (e.g., intron splicing, mRNA maturation); regulate growth and development, as well as tolerance to cold and drought stress |
| RNA分子伴侣 RNA molecular chaperone | 结构多样,部分属于GR-RBP或DEAD-box家族,具有 非特异性RNA结合能力 Structurally diverse; some belong to GR-RBP or DEAD- box families; exhibit nonspecific RNA-binding ability | 通过纠正RNA错误折叠维持其功能,在低温等胁迫下保护RNA稳定性,促进叶绿体RNA代谢,提高植物逆境适应能力 Maintaining RNA function by correcting misfolding, protecting RNA stability under stresses such as low temperature, promoting chloroplast RNA metabolism, and enhancing plant stress adaptability |
| YTH蛋白 YT521-B homology domain-containing protein | 含有保守的YTH结构域(约140个氨基酸),与RRM具有 结构上的相似性。能形成芳香族笼结构,与RNA上的 m6A甲基化修饰结合 Containing conserved YTH domain (approximately140 amino acids); specifically binding to m6A methylation on RNA | 通过识别表观转录修饰的mRNA,调控RNA代谢,在生长发育(如叶片建成、根系发育、开花时间调控)及非生物胁迫响应(高温、盐胁迫、干旱等)中发挥关键作用 By recognizing epitranscriptomic modifications of mRNA, regulate RNA metabolism, maintain gene expression stability and homeostasis, and play key roles in plant adaptation under different environmental (heat, salt, drought, etc.) and biotic stress conditions |
表1 植物中RNA结合蛋白的类型与基本情况
Table 1. Types and basic information of RNA-binding proteins in plants
| 名称 Name | 结构特征 Structural characteristics | 生理功能 Physiological function |
|---|---|---|
| SR蛋白 Serine/Arginine-rich protein | N端:含RRM结构域 N-terminus: containing an RRM domain C端:富含SR的结构域 C-terminus: containing an SR-rich domain | 调控前体mRNA的剪接、转运及翻译,参与植物生长发育调控(如细胞增殖、开花时间),增强高温、低温等非生物胁迫适应性 Regulates precursor mRNA splicing, transport, and translation; participates in plant growth and development regulation (e.g., cell proliferation, flowering time); enhances adaptation to abiotic stresses such as high and low temperatures |
| GR-RBP Glycine-rich RNA-binding protein | N端:含RRM或CSD结构域 N-terminus: containing RRM or CSD domain C端:存在富含甘氨酸区域(部分该类型蛋白的该 区域间隔分布着CCHC型锌指基序) C-terminus: containing glycine-rich region(in some proteins, this region is interspersed with conserved CCHC-type zinc finger motifs) | 促进RNA折叠,响应干旱、盐、低温胁迫;通过激素信号调控植物开花、生物钟及种子萌发等发育过程 Promotes RNA folding; responds to drought, salt, and low-temperature stresses; regulates flowering, circadian rhythm, and seed germination through hormone signaling |
| PPR蛋白 Pentatricopeptide repeat protein | P类:串联重复的35个氨基酸基序 P-type: tandem repeats of 35-amino acid motifs PLS类:由P基序(35 aa)、L基序(35~36 aa)和S基序 (31~32 aa)组成 PLS-type: composed of P motifs (35 aa), L motifs (35-36 aa), and S motifs (31-32 aa) | 靶向线粒体和叶绿体,调控RNA编辑、剪接及稳定性,影响光合作用、呼吸作用、胚胎发育,并参与胁迫响应 Regulates mitochondria and chloroplasts; controls RNA editing, splicing, and stability; influences photosynthesis, respiration, embryogenesis, and participates in stress responses |
| DEAD-box RH DEAD-box RNA helicase | 包含保守的DEAD基序及Q、I、III等结构域,有ATP 依赖的RNA解旋活性 Containing conserved DEAD motifs (Q, I, II, III, V, VI) with ATP-dependent RNA helicase activity | 催化RNA二级结构解旋,参与核与细胞器RNA加工(如内含子剪接、rRNA成熟),调节生长发育及低温、干旱胁迫耐受性 Catalyze RNA secondary structure unwinding; participate in post-transcriptional RNA processing (e.g., intron splicing, mRNA maturation); regulate growth and development, as well as tolerance to cold and drought stress |
| RNA分子伴侣 RNA molecular chaperone | 结构多样,部分属于GR-RBP或DEAD-box家族,具有 非特异性RNA结合能力 Structurally diverse; some belong to GR-RBP or DEAD- box families; exhibit nonspecific RNA-binding ability | 通过纠正RNA错误折叠维持其功能,在低温等胁迫下保护RNA稳定性,促进叶绿体RNA代谢,提高植物逆境适应能力 Maintaining RNA function by correcting misfolding, protecting RNA stability under stresses such as low temperature, promoting chloroplast RNA metabolism, and enhancing plant stress adaptability |
| YTH蛋白 YT521-B homology domain-containing protein | 含有保守的YTH结构域(约140个氨基酸),与RRM具有 结构上的相似性。能形成芳香族笼结构,与RNA上的 m6A甲基化修饰结合 Containing conserved YTH domain (approximately140 amino acids); specifically binding to m6A methylation on RNA | 通过识别表观转录修饰的mRNA,调控RNA代谢,在生长发育(如叶片建成、根系发育、开花时间调控)及非生物胁迫响应(高温、盐胁迫、干旱等)中发挥关键作用 By recognizing epitranscriptomic modifications of mRNA, regulate RNA metabolism, maintain gene expression stability and homeostasis, and play key roles in plant adaptation under different environmental (heat, salt, drought, etc.) and biotic stress conditions |
| 生物学过程 Biological process | 名称 Name | 基因号 Gene ID | RNA结合域 RBD | RNA代谢类型 RNA metabolism type | 物种 Species | 参考文献 Reference |
|---|---|---|---|---|---|---|
| 开花时间 Flowering time | SR45 | AT1G16610 | RRM | RNA剪接 RNA splicing | 拟南芥Arabidopsis | [ |
| HRLP | AT2G44710 | RRM | RNA剪接 RNA splicing | 拟南芥Arabidopsis | [ | |
| UBA2C | AT3G15010 | RRM | 转录 Transcription | 拟南芥Arabidopsis | [ | |
| FCA | AT4G16280 | RRM | 聚腺苷酸化Polyadenylation | 拟南芥Arabidopsis | [ | |
| SSF | AT2G47310 | RRM | 转录 Transcription | 拟南芥Arabidopsis | [ | |
| CPSF30L | AT1G30460 | YTH | 聚腺苷酸化Polyadenylation | 拟南芥Arabidopsis | [ | |
| EHD6 | OS02G0517531 | RRM | mRNA隔离 mRNA sequestration | 水稻Rice | [ | |
| YTH07 | OS04G0608800 | YTH | mRNA隔离 mRNA sequestration | 水稻Rice | [ | |
| 叶片发育 Leaf development | SERRATE | AT2G27100 | ZnF C2H2 | miRNA加工 miRNA processing | 拟南芥Arabidopsis | [ |
| 芳香物质形成 Aroma formation | SlYTH2 | SOLYC01G028860 | YTH | 转录抑制 Transcriptional repression | 番茄Tomato | [ |
| 高温胁迫应答 Heat stress response | RBGD2/4 | AT2G33410/ AT2G33410 | RRM | mRNA转运 mRNA transport | 拟南芥Arabidopsis | [ |
| AGO1 | AT1G48410 | PAZ PIWI | miRNA的保护 miRNA protection | 拟南芥Arabidopsis | [ | |
| GRP7 | AT2G21660 | RRM | 转录Transcription | 拟南芥Arabidopsis | [ | |
| 渗透压胁迫应答Osmotic stress response | DCP5 | AT1G26110 | nil | mRNA隔离 mRNA sequestration | 拟南芥Arabidopsis | [ |
| 盐胁迫应答 Salt stress response | ECT8 | AT1G79270 | YTH | mRNA降解 mRNA degradation | 拟南芥Arabidopsis | [ |
| 干旱胁迫应答 Drought stress response | DRG9 | OS09G0421700 | ZnF | mRNA隔离 mRNA sequestration | 水稻Rice | [ |
| SiYTH1 | Seita.9G534000 | YTH | 转录Transcription | 小米Foxtail millet | [ | |
| 植物免疫应答 Plant immune response | RH6/8/12/20 | AT2G45810/ AT3G61240/ AT4G00660/ AT1G55150 | DEAD RRM | miRNA加工 miRNA processing | 拟南芥Arabidopsis | [ |
| ECT1 | AT3G03950 | YTH | mRNA隔离 mRNA sequestration | 拟南芥Arabidopsis | [ |
表2 植物中产生相分离的RNA结合蛋白
Table 2. RNA-binding proteins that undergo phase separation in plants.
| 生物学过程 Biological process | 名称 Name | 基因号 Gene ID | RNA结合域 RBD | RNA代谢类型 RNA metabolism type | 物种 Species | 参考文献 Reference |
|---|---|---|---|---|---|---|
| 开花时间 Flowering time | SR45 | AT1G16610 | RRM | RNA剪接 RNA splicing | 拟南芥Arabidopsis | [ |
| HRLP | AT2G44710 | RRM | RNA剪接 RNA splicing | 拟南芥Arabidopsis | [ | |
| UBA2C | AT3G15010 | RRM | 转录 Transcription | 拟南芥Arabidopsis | [ | |
| FCA | AT4G16280 | RRM | 聚腺苷酸化Polyadenylation | 拟南芥Arabidopsis | [ | |
| SSF | AT2G47310 | RRM | 转录 Transcription | 拟南芥Arabidopsis | [ | |
| CPSF30L | AT1G30460 | YTH | 聚腺苷酸化Polyadenylation | 拟南芥Arabidopsis | [ | |
| EHD6 | OS02G0517531 | RRM | mRNA隔离 mRNA sequestration | 水稻Rice | [ | |
| YTH07 | OS04G0608800 | YTH | mRNA隔离 mRNA sequestration | 水稻Rice | [ | |
| 叶片发育 Leaf development | SERRATE | AT2G27100 | ZnF C2H2 | miRNA加工 miRNA processing | 拟南芥Arabidopsis | [ |
| 芳香物质形成 Aroma formation | SlYTH2 | SOLYC01G028860 | YTH | 转录抑制 Transcriptional repression | 番茄Tomato | [ |
| 高温胁迫应答 Heat stress response | RBGD2/4 | AT2G33410/ AT2G33410 | RRM | mRNA转运 mRNA transport | 拟南芥Arabidopsis | [ |
| AGO1 | AT1G48410 | PAZ PIWI | miRNA的保护 miRNA protection | 拟南芥Arabidopsis | [ | |
| GRP7 | AT2G21660 | RRM | 转录Transcription | 拟南芥Arabidopsis | [ | |
| 渗透压胁迫应答Osmotic stress response | DCP5 | AT1G26110 | nil | mRNA隔离 mRNA sequestration | 拟南芥Arabidopsis | [ |
| 盐胁迫应答 Salt stress response | ECT8 | AT1G79270 | YTH | mRNA降解 mRNA degradation | 拟南芥Arabidopsis | [ |
| 干旱胁迫应答 Drought stress response | DRG9 | OS09G0421700 | ZnF | mRNA隔离 mRNA sequestration | 水稻Rice | [ |
| SiYTH1 | Seita.9G534000 | YTH | 转录Transcription | 小米Foxtail millet | [ | |
| 植物免疫应答 Plant immune response | RH6/8/12/20 | AT2G45810/ AT3G61240/ AT4G00660/ AT1G55150 | DEAD RRM | miRNA加工 miRNA processing | 拟南芥Arabidopsis | [ |
| ECT1 | AT3G03950 | YTH | mRNA隔离 mRNA sequestration | 拟南芥Arabidopsis | [ |
| [1] | Mitchell S F, Parker R. Principles and properties of eukaryotic mRNPs[J]. Molecular Cell, 2014, 54(4): 547-558. |
| [2] | Hentze M W, Castello A, Schwarzl T, Preiss T. A brave new world of RNA-binding proteins[J]. Nature Reviews Molecular Cell Biology, 2018, 19(5): 327-341. |
| [3] | Lee K, Kang H. Emerging roles of RNA-binding proteins in plant growth, development, and stress responses[J]. Molecules and Cells, 2016, 39(3): 179-185. |
| [4] | Stoilov P, Rafalska I, Stamm S. YTH: A new domain in nuclear proteins[J]. Trends in Biochemical Sciences, 2002, 27(10): 495-497. |
| [5] | Silverman I M, Li F, Gregory B D. Genomic era analyses of RNA secondary structure and RNA-binding proteins reveal their significance to post-transcriptional regulation in plants[J]. Plant Science, 2013, 205-206: 55-62. |
| [6] | Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins[J]. Nature Reviews Genetics, 2014, 15(12): 829-845. |
| [7] | Chen T, Cui P, Xiong L. The RNA-binding protein HOS5 and serine/arginine-rich proteins RS40 and RS41 participate in miRNA biogenesis in Arabidopsis[J]. Nucleic Acids Research, 2015, 43(17): 8283-8298. |
| [8] | Kalyna M, Simpson C G, Syed N H, Lewandowska D, Marquez Y, Kusenda B, Marshall J, Fuller J, Cardle L, McNicol J, Dinh H Q, Barta A, Brown J W S. Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis[J]. Nucleic Acids Research, 2012, 40(6): 2454-2469. |
| [9] | Kim J Y, Kim W Y, Kwak K J, Oh S H, Han Y S, Kang H. Glycine-rich RNA-binding proteins are functionally conserved in Arabidopsis thaliana and Oryza sativa during cold adaptation process[J]. Journal of Experimental Botany, 2010, 61(9): 2317-2325. |
| [10] | Qin T, Zhao P, Sun J, Zhao Y, Zhang Y, Yang Q, Wang W, Chen Z, Mai T, Zou Y, Liu G, Hao W. Research progress of PPR proteins in RNA editing, stress response, plant growth and development[J]. Frontiers in Genetics, 2021, 12: 765580. |
| [11] | Li X, Sun M, Liu S, Teng Q, Li S, Jiang Y. Functions of PPR proteins in plant growth and development[J]. International Journal of Molecular Sciences, 2021, 22(20): 11274. |
| [12] | Lurin C, Andrés C, Aubourg S, Bellaoui M, Bitton F, Bruyère C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette M L, Mireau H, Peeters N, Renou J P, Szurek B, Taconnat L, Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis[J]. The Plant Cell, 2004, 16(8): 2089-2103. |
| [13] | Nawaz G, Kang H. Chloroplast- or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses[J]. Frontiers in Plant Science, 2017, 8: 871. |
| [14] | Li X, Li C, Zhu J, Zhong S, Zhu H, Zhang X. Functions and mechanisms of RNA helicases in plants[J]. Journal of Experimental Botany, 2023, 74(7): 2295-2310. |
| [15] | Fusaro A F, Bocca S N, Ramos R L B, Barrôco R M, Magioli C, Jorge V C, Coutinho T C, Rangel-Lima C M, De Rycke R, Inzé D, Engler G, Sachetto-Martins G. AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development[J]. Planta, 2007, 225(6): 1339-1351. |
| [16] | Cao S, Jiang L, Song S, Jing R, Xu G. AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis[J]. Cellular and Molecular Biology Letters, 11(4): 526-535. |
| [17] | Ma W, Cui S, Lu Z, Yan X, Cai L, Lu Y, Cai K, Zhou H, Ma R, Zhou S, Wang X. YTH domain proteins play an essential role in rice growth and stress response[J]. Plants, 2022, 11(17): 2206. |
| [18] | Hyman A A, Simons K. Beyond oil and water-phase transitions in cells[J]. Science, 2012, 337(6098): 1047-1049. |
| [19] | Li P, Banjade S, Cheng H C, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T, Rosen M K. Phase transitions in the assembly of multivalent signalling proteins[J]. Nature, 2012, 483(7389): 336-340. |
| [20] | Shin Y, Brangwynne C P. Liquid phase condensation in cell physiology and disease[J]. Science, 2017, 357(6357): eaaf4382 |
| [21] | Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses[J]. Molecular Plant, 2024, 17(4): 531-551. |
| [22] | Brangwynne C P, Tompa P, Pappu R V. Polymer physics of intracellular phase transitions[J]. Nature Physics, 2015, 11(11): 899-904. |
| [23] | Wiedner H J, Giudice J. It’s not just a phase: function and characteristics of RNA-binding proteins in phase separation[J]. Nature Structural & Molecular Biology, 2021, 28(6): 465-473. |
| [24] | Luo Y Y, Wu J J, Li Y M. Regulation of liquid-liquid phase separation with focus on post-translational modifications[J]. Chemical Communications, 2021, 57(98): 13275-13287. |
| [25] | Pietrosemoli N, García-Martín J A, Solano R, Pazos F. Genome-wide analysis of protein disorder in Arabidopsis thaliana: Implications for plant environmental adaptation[J]. PLoS One, 2013, 8(2): e55524. |
| [26] | Chakrabortee S, Kayatekin C, Newby G A, Mendillo M L, Lancaster A, Lindquist S. Luminidependens (LD) is an Arabidopsis protein with prion behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(21): 6065-6070. |
| [27] | Wang J, Choi J M, Holehouse A S, Lee H O, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S, Hyman A A. A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins[J]. Cell, 2018, 174(3): 688-699.e16. |
| [28] | Gotor N L, Armaos A, Calloni G, Torrent Burgas M, Vabulas R M, de Groot N S, Tartaglia G G. RNA-binding and prion domains: The Yin and Yang of phase separation[J]. Nucleic Acids Research, 2020, 48(17): 9491-9504. |
| [29] | Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li X, Liao H, Staiger D, Hu Z, Yu F. RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants[J]. Science Advances, 2020, 6(21): eaaz1622. |
| [30] | Xu X, Zheng C, Lu D, Song C P, Zhang L. Phase separation in plants: New insights into cellular compartmentalization[J]. Journal of Integrative Plant Biology, 2021, 63(11): 1835-1855. |
| [31] | Wang A, Conicella A E, Schmidt H B, Martin E W, Rhoads S N, Reeb A N, Nourse A, Ramirez Montero D, Ryan V H, Rohatgi R, Shewmaker F, Naik M T, Mittag T, Ayala Y M, Fawzi N L. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing[J]. The EMBO Journal, 2018, 37(5): e97452. |
| [32] | Zhang H, Peng F, He C, Liu Y, Deng H, Fang X. Large-scale identification of potential phase-separation proteins from plants using a cell-free system[J]. Molecular Plant, 2023, 16(2): 310-313. |
| [33] | Zhang Y, Fan S, Hua C, Teo Z W N, Kiang J X, Shen L, Yu H. Phase separation of HRLP regulates flowering time in Arabidopsis[J]. Science Advances, 2022, 8(25): eabn5488. |
| [34] | Zhao N, Su X M, Liu Z W, Zhou J X, Su Y N, Cai X W, Chen L, Wu Z, He X J. The RNA recognition motif-containing protein UBA2c prevents early flowering by promoting transcription of the flowering repressor FLM in Arabidopsis[J]. New Phytologist, 2022, 233(2): 751-765. |
| [35] | Fang X, Wang L, Ishikawa R, Li Y, Fiedler M, Liu F, Calder G, Rowan B, Weigel D, Li P, Dean C. Arabidopsis FLL2 promotes liquid-liquid phase separation of polyadenylation complexes[J]. Nature, 2019, 569(7755): 265-269. |
| [36] | Wang W, Wang C, Wang Y, Ma J, Wang T, Tao Z, Liu P, Li S, Hu Y, Gu A, Wang H, Qiu C, Li P. The P-body component DECAPPING5 and the floral repressor SISTER OF FCA regulate FLOWERING LOCUS C transcription in Arabidopsis[J]. The Plant Cell, 2023, 35(9): 3303-3324. |
| [37] | Song P, Yang J, Wang C, Lu Q, Shi L, Tayier S, Jia G. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies[J]. Molecular Plant, 2021, 14(4): 571-587. |
| [38] | Cui S, Song P, Wang C, Chen S, Hao B, Xu Z, Cai L, Chen X, Zhu S, Gan X, Dong H, Hu Y, Zhou L, Hou H, Tian Y, Liu X, Chen L, Liu S, Jiang L, Wang H, Jia G, Zhou S, Wan J. The RNA binding protein EHD6 recruits the m6A reader YTH07 and sequesters OsCOL4 mRNA into phase-separated ribonucleoprotein condensates to promote rice flowering[J]. Molecular Plant, 2024, 17(6): 935-954. |
| [39] | Xie D, Chen M, Niu J, Wang L, Li Y, Fang X, Li P, Qi Y. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis[J]. Nature Cell Biology, 2021, 23(1): 32-39. |
| [40] | Bian H, Song P, Gao Y, Deng Z, Huang C, Yu L, Wang H, Ye B, Cai Z, Pan Y, Wang F, Liu J, Gao X, Chen K, Jia G, Klee H J, Zhang B. The m6A reader SlYTH2 negatively regulates tomato fruit aroma by impeding the translation process[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(28): e2405100121. |
| [41] | Zhu S, Gu J, Yao J, Li Y, Zhang Z, Xia W, Wang Z, Gui X, Li L, Li D, Zhang H, Liu C. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis[J]. Developmental Cell, 2022, 57(5): 583-597.e6. |
| [42] | Blagojevic A, Baldrich P, Schiaffini M, Lechner E, Baumberger N, Hammann P, Elmayan T, Garcia D, Vaucheret H, Meyers B C, Genschik P. Heat stress promotes Arabidopsis AGO1 phase separation and association with stress granule components[J]. iScience, 2024, 27(3): 109151. |
| [43] | Xu F, Wang L, Li Y, Shi J, Staiger D, Yu F. Phase separation of GRP7 facilitated by FERONIA-mediated phosphorylation inhibits mRNA translation to modulate plant temperature resilience[J]. Molecular Plant, 2024, 17(3): 460-477. |
| [44] | Wang Z, Yang Q, Zhang D, Lu Y, Wang Y, Pan Y, Qiu Y, Men Y, Yan W, Xiao Z, Sun R, Li W, Huang H, Guo H. A cytoplasmic osmosensing mechanism mediated by molecular crowding-sensitive DCP5[J]. Science, 2024, 386(6721): eadk9067. |
| [45] | Cai Z, Tang Q, Song P, Tian E, Yang J, Jia G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis[J]. The Plant Cell, 2024, 36(8): 2908-2926. |
| [46] | Wang H, Ye T, Guo Z, Yao Y, Tu H, Wang P, Zhang Y, Wang Y, Li X, Li B, Xiong H, Lai X, Xiong L. Author Correction: A double-stranded RNA binding protein enhances drought resistance via protein phase separation in rice[J]. Nature Communications, 2024, 15: 4776. |
| [47] | Luo W, Tang Y, Li S, Zhang L, Liu Y, Zhang R, Diao X, Yu J. The m6A reader SiYTH1 enhances drought tolerance by affecting the messenger RNA stability of genes related to stomatal closure and reactive oxygen species scavenging in Setaria italica[J]. Journal of Integrative Plant Biology, 2023, 65(12): 2569-2586. |
| [48] | Li Q, Liu N, Liu Q, Zheng X, Lu L, Gao W, Liu Y, Liu Y, Zhang S, Wang Q, Pan J, Chen C, Mi Y, Yang M, Cheng X, Ren G, Yuan Y W, Zhang X. DEAD-box helicases modulate dicing body formation in Arabidopsis[J]. Science Advances, 2021, 7(18): eabc6266. |
| [49] | Wen Z, Hu R, Pi Q, Zhang D, Duan J, Li Z, Li Q, Zhao X, Yang M, Zhao X, Liu D, Su Z, Li D, Zhang Y. DEAD-box RNA helicase RH20 positively regulates RNAi-based antiviral immunity in plants by associating with SGS3/RDR6 bodies[J]. Plant Biotechnology Journal, 2024, 22(12): 3295-3311. |
| [50] | Lee K P, Liu K, Kim E Y, Medina-Puche L, Dong H, Di M, Singh R M, Li M, Qi S, Meng Z, Cho J, Zhang H, Lozano-Duran R, Kim C. The m6A reader ECT1 drives mRNA sequestration to dampen salicylic acid-dependent stress responses in Arabidopsis[J]. The Plant Cell, 2024, 36(3): 746-763. |
| [51] | Luo M, Zhu S, Dang H, Wen Q, Niu R, Long J, Wang Z, Tong Y, Ning Y, Yuan M, Xu G. Genetically-encoded targeted protein degradation technology to remove endogenous condensation-prone proteins and improve crop performance[J]. Nature Communications, 2025, 16: 1159. |
| [1] | 李荣欣, 王波, 肖素勤, 殷富有, 张建红, 钟巧芳, 陈玲, 李金璐, 杨和生, 程在全, 刘丽. 野生稻叶绿体基因组组装与密码子偏好性分析及系统发育研究[J]. 中国水稻科学, 2025, 39(6): 801-812. |
| [2] | 杨行洲, 崔苗苗, 魏利辉, 顾爱国, 李东霞, 乐秀虎, 冯辉. 外源miR3979处理水稻对拟禾本科根结线虫趋性、侵染和发育的影响[J]. 中国水稻科学, 2025, 39(5): 703-710. |
| [3] | 马顺婷, 胡运高, 高方远, 刘利平, 牟昌铃, 吕建群, 苏相文, 刘松, 梁毓玉, 任光俊, 郭鸿鸣. 水稻真核翻译起始因子OseIF6.2调控粒型的功能研究[J]. 中国水稻科学, 2025, 39(3): 331-342. |
| [4] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
| [5] | 肖乐铨, 李雷, 戴伟民, 强胜, 宋小玲. 转cry2A*/bar基因水稻与杂草稻杂交后代的苗期生长特性[J]. 中国水稻科学, 2023, 37(4): 347-358. |
| [6] | 马兆惠, 石一涵, 程海涛, 宋文雯, 路连吉, 刘仁广, 吕文彦. 水稻种子胚形态与胚乳组成对稻米留胚特性的影响[J]. 中国水稻科学, 2023, 37(3): 265-275. |
| [7] | 林聃, 江敏, 苗波, 郭萌, 石春林. 水稻高温热害模型研究及其在福建省的应用[J]. 中国水稻科学, 2023, 37(3): 307-320. |
| [8] | 王洋, 张瑞, 刘永昊, 李荣凯, 葛建飞, 邓仕文, 张徐彬, 陈英龙, 韦还和, 戴其根. 水稻对盐胁迫的响应及耐盐机理研究进展[J]. 中国水稻科学, 2022, 36(2): 105-117. |
| [9] | 徐青山, 黄晶, 孙爱军, 洪小智, 朱练峰, 曹小闯, 孔亚丽, 金千瑜, 朱春权, 张均华. 低温影响水稻发育机理及调控途径研究进展[J]. 中国水稻科学, 2022, 36(2): 118-130. |
| [10] | 张娟, 牛百晓, 鄂志国, 陈忱. 水稻胚乳发育遗传调控的研究进展[J]. 中国水稻科学, 2021, 35(4): 326-341. |
| [11] | 潘阳阳, 陈宜波, 王重荣, 李宏, 黄道强, 周德贵, 王志东, 赵雷, 龚蓉, 周少川. γ-氨基丁酸和2-乙酰-1-吡咯啉代谢通路在水稻籽粒发育过程中的变化分析[J]. 中国水稻科学, 2021, 35(2): 121-129. |
| [12] | 刘璐, 许传山, 孙雅菲, 胡志, 艾昊, 刘秀丽, 王小文, 孙淑斌. 缺磷响应基因OsSQD2.1对水稻生长发育的影响[J]. 中国水稻科学, 2020, 34(3): 237-244. |
| [13] | 王昌健, 陈龙, 代丽萍, 路雪丽, 贺金立, 杨龙, 胡江, 朱丽, 董国军, 张光恒, 高振宇, 任德勇, 陈光, 沈兰, 张强, 郭龙彪, 钱前, 曾大力. 水稻花器官发育基因DPS2的鉴定和精细定位[J]. 中国水稻科学, 2020, 34(2): 115-124. |
| [14] | 林添资, 孙立亭, 龚红兵, 王益华, 刘玲珑, 赵志刚, 江玲, 万建民. 一个水稻低温移栽白条纹突变体wltt的鉴定和基因定位[J]. 中国水稻科学, 2019, 33(1): 1-11. |
| [15] | 冯冰, 孙雅菲, 艾昊, 刘秀丽, 杨晶, 刘璐, 高飞燕, 徐国华, 孙淑斌. 超表达蔗糖转运蛋白基因OsSUT1对水稻形态和生理的影响[J]. 中国水稻科学, 2018, 32(6): 549-556. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||