中国水稻科学 ›› 2025, Vol. 39 ›› Issue (1): 128-142.DOI: 10.16819/j.1001-7216.2025.240306
• 研究报告 • 上一篇
江敏1,#, 王广伦2,#, 李明璐1, 苗波1, 李明煊1, 石春林3,*()
收稿日期:
2024-03-11
修回日期:
2024-04-22
出版日期:
2025-01-10
发布日期:
2025-01-14
通讯作者:
*email:493455464@qq.com作者简介:
第一联系人:#共同第一作者;
基金资助:
JIANG Min1,#, WANG Guanglun2,#, LI Minglu1, MIAO Bo1, LI Mingxuan1, SHI Chunlin3,*()
Received:
2024-03-11
Revised:
2024-04-22
Online:
2025-01-10
Published:
2025-01-14
Contact:
* email:493455464@qq.comAbout author:
First author contact:#These authors contributed equally to this work;
摘要:
【目的】通过构建水稻高温热害预警系统与灾害风险评估体系,提高水稻高温热害灾损评估水平和防灾减灾能力。【方法】挑选福建省4个代表性水稻品种,在当地水稻易受高温热害的四个关键发育期进行高温控制试验,测定不同高温胁迫处理下水稻产量及其构成因素的变化。结合水稻发育期模型计算高温热害灾损率,进而构建水稻高温热害风险评估和预警系统。结合福建省近50年的气象资料,利用研发的系统计算水稻高温热害灾损率,划分出各稻区水稻关键发育期的热害风险等级。利用逐日气象数据进行水稻高温热害的单点和区域动态预警模拟,并利用种植样点的区域试验资料和气象产量计算出实际灾损,对模拟预警结果进行验证。【结果】福建省水稻高温热害风险评估结果显示,闽东南双季稻区的早稻以低风险为主,并且主要出现在早稻开花期,近50年热害发生频率小于30%;闽西北双季稻区的早稻以高风险和次高风险为主,其中开花期热害发生频率为68%~80%,灌浆期为62%~80%。闽西北山地单季稻区中稻发生高温热害低风险区分布最广,其中减数分裂期热害的发生频率小于38%,开花期小于26%。2020年12个代表性品种在福建省水稻高温热害单点动态预警系统中模拟,结果显示,闽东南双季稻区早稻发生重度高温热害的概率较高,灾损率为51.1%~55.4%;闽西北双季稻区早稻则遭遇轻度和中度高温热害,灾损率为12.1%~26.8%;闽西北山地单季稻区中稻发生中度热害概率较高,灾损率为18.2%~29.4%。2020年福建省区域预警模拟结果显示,种植早稻“T78优2155”的两个稻区内,重度热害地区主要集中在安溪、南安、同安、龙海等闽东南县区,灾损率为30.8%~41.6%,闽西北仅有将乐地区为重度热害,灾损率为31.0%;种植中稻“II优3301”的闽西北山地单季稻区内,光泽、政和、明溪、永安等地遭遇中度热害,灾损率为15.1%~21.7%。【结论】闽西北水稻种植区的早稻遭遇热害的风险均较闽东南地区更为严重。无论在空间还是时间变化上,系统模拟的灾损率与当地实际水稻生产的灾损率以及气象产量变化相契合,预警效果较好。
江敏, 王广伦, 李明璐, 苗波, 李明煊, 石春林. 基于模型的水稻高温热害风险评估与动态预警[J]. 中国水稻科学, 2025, 39(1): 128-142.
JIANG Min, WANG Guanglun, LI Minglu, MIAO Bo, LI Mingxuan, SHI Chunlin. Risk Assessment and Dynamic Early Warming of Heat Damage in Rice Based on Simulation Model[J]. Chinese Journal OF Rice Science, 2025, 39(1): 128-142.
划分指标 Classification indicator | 风险等级Risk level | ||||
---|---|---|---|---|---|
低 Low | 次低 Sub-low | 中 Medium | 次高 Sub-high | 高 High | |
热害发生频率Frequency of heat damage(%) | <20 | 21-40 | 41-60 | 61-80 | >80 |
表1 高温热害风险等级
Table 1. Risk levels of heat damage
划分指标 Classification indicator | 风险等级Risk level | ||||
---|---|---|---|---|---|
低 Low | 次低 Sub-low | 中 Medium | 次高 Sub-high | 高 High | |
热害发生频率Frequency of heat damage(%) | <20 | 21-40 | 41-60 | 61-80 | >80 |
参数 Parameter | 品种Variety | |||
---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 you 2155 | Ⅱ优3301 ⅡYou 3301 | 禾两优676 Heliangyou 676 | |
P1 | 57.21 | 57.21 | 42.75 | 42.75 |
P2 | 936.48 | 976.47 | 1030.03 | 1069.28 |
P3 | 671.05 | 690.97 | 868.50 | 887.89 |
P4 | 731.50 | 708.73 | 486.60 | 462.55 |
表2 福建省4个水稻品种的生育期参数
Table 2. Parameters of four selected early and middle rice varieties in Fujian Province
参数 Parameter | 品种Variety | |||
---|---|---|---|---|
榕盛优1131 Rongshengyou 1131 | T78优2155 T78 you 2155 | Ⅱ优3301 ⅡYou 3301 | 禾两优676 Heliangyou 676 | |
P1 | 57.21 | 57.21 | 42.75 | 42.75 |
P2 | 936.48 | 976.47 | 1030.03 | 1069.28 |
P3 | 671.05 | 690.97 | 868.50 | 887.89 |
P4 | 731.50 | 708.73 | 486.60 | 462.55 |
图3 水稻全生育期模拟值与观测值对比 **表示在0.01统计水平上显著。
Fig. 3. Comparison between simulated and observed values of rice growth period **Significant at 0.01 probability level.
图4 水稻产量形成因子模拟值与观测值对比 **表示在0.01统计水平上显著。
Fig. 4. Comparison between simulated and observed values of rice yield components **Significant at 0.01 probability level.
图5 福建省早稻开花期高温热害频率区域分布 A: 热害发生频率; B: 轻度热害频率; C:中度热害频率; D: 重度热害频率。
Fig. 5. Regional distribution of heat damage frequency during the flowering period of early rice in Fujian Province A, Frequency of thermal damage; B, Frequency of mild heat damage; C, Frequency of moderate heat damage; D, Frequency of severe heat damage.
图6 福建省早稻灌浆期高温热害频率区域分布 A: 热害发生频率; B: 轻度热害频率; C:中度热害频率; D: 重度热害频率。
Fig. 6. Regional distribution of heat damage frequency during the filling stage of early rice in Fujian Province A, Frequency of thermal damage; B, Frequency of mild heat damage; C, Frequency of moderate heat damage; D, Frequency of severe heat damage.
图7 福建省中稻减数分裂期高温热害频率区域分布 A: 热害发生频率; B: 轻度热害频率; C: 中度热害频率; D: 重度热害频率。
Fig. 7. Regional distribution of heat damage frequency during meiosis of mid-season rice in Fujian Province A, Frequency of thermal damage; B, Frequency of mild heat damage; C, Frequency of moderate heat damage; D, Frequency of severe heat damage.
图8 福建省中稻开花期高温热害频率区域分布 A: 热害发生频率; B: 轻度热害频率; C:中度热害频率; D: 重度热害频率。
Fig. 8. Regional distribution of heat damage frequency during flowering stage of mid-season rice in Fujian Province A, Frequency of thermal damage; B, Frequency of mild heat damage; C, Frequency of moderate heat damage; D, Frequency of severe heat damage.
图9 水稻产量损失率模拟值与实测值对比 **表示在0.01统计水平上显著。
Fig. 9. Comparison between simulated and measured values of rice yield loss rate **Significant at 0.01 probability level.
图10 3个代表性样点近20年水稻高温热害损失率及气象产量
Fig. 10. Loss rate caused by heat damage and meteorological yield of rice in three representative sampling sites in recent 20 years
[1] | 周天军, 陈梓明, 陈晓龙, 左萌, 江洁, 胡帅. IPCC AR6报告解读:未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17 (6): 652-663. |
Zhou T J, Chen Z M, Chen X L, Zuo M, Jiang J, Hu S. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663. (in Chinese with English abstract) | |
[2] | Wang W C, Cui K H, Hu Q Q, Wu C, Li G H, Huang J L, Peng S B. Response of spikelet water status to high temperature and its relationship with heat tolerance in rice[J]. The Crop Journal, 2021, 9(6): 1344-1356. |
[3] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
Xu Y Q, Jiang N, Feng B H, Xiao J J, Tao L X, Fu G F. Research progress in heat inducing spikelet sterility and its regulated techniques at flowering stage of rice[J]. Chinese Journal of Rice Science, 2024, 38(2): 111-126. (in Chinese with English abstract) | |
[4] | 周苗, 景秀, 蔡嘉鑫, 王岩, 韩晨曦, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 灌浆前期高温干旱复合胁迫对优质食味粳稻产量与穗后物质生产特征的影响[J]. 南方农业学报, 2022, 53(12): 3357-3368. |
Zhou M, Jing X, Cai J X, Wang Y, Han C X, Guo B W, Hu Y J, Xing Z P, Xu K, Zhang H C. Effects of combined stress of high temperature and drought at early filling stage on characteristics of yield and after-heading dry matter production of high-quality japonica rice[J]. Journal of Southern Agriculture, 2022, 53(12): 3357-3368. (in Chinese with English abstract) | |
[5] | Su Q, Rohila J S, Shyam R, Karthikeyan R. Rice yield and quality in response to daytime and nighttime temperature increase: A meta-analysis perspective[J]. Science of The Total Environment, 2023, 898: 165256. |
[6] | 石涛, 杨太明, 黄勇, 李翔, 刘琪, 杨元建. 无人机多光谱遥感监测水稻高温胁迫的关键技术[J]. 中国农业气象, 2020, 41(9): 597-604. |
Shi T, Yang T M, Huang Y, Li X, Liu Q, Yang Y J. Key technologies of monitoring high temperature stress to rice by portable UAV multispectral remote sensing[J]. Chinese Journal of Agrometeorology, 2020, 41(9): 597-604. (in Chinese with English abstract) | |
[7] | 杨建莹, 霍治国, 王培娟, 邬定荣. 江西早稻高温热害等级动态判识及时空变化特征[J]. 应用生态学报, 2020, 31(1): 199-207. |
Yang J Y, Huo Z G, Wang P J, Wu D R. Dynamic identification of double-early rice heat and its spatiotemporal characteristics in Jiangxi Province, China[J]. Chinese Journal of Applied Ecology, 2020, 31(1): 199-207. (in Chinese with English abstract) | |
[8] | Jiang M Y, Huo Z G, Zhang L, Kong R, Li M X, Mi Q C, Huang M. Characteristic identification of heat exposure based on disaster events for single-season rice along the Middle and Lower Reaches of the Yangtze River, China[J]. Agronomy, 2023, 13(10). |
[9] | Sun T, Hasegawa T, Liu B, Tang L, Liu L L, Cao W X, Zhu Y. Current rice models underestimate yield losses from short-term heat stresses[J]. Global Change Biology, 2021, 27(2): 402-416. |
[10] | 王鑫, 杨德胜, 王锐婷, 赵艺, 王明田. 基于星-地多源数据评估2022年四川盆区水稻高温热害[J]. 中国农业气象, 2023, 44(6): 523-534. |
Wang X, Yang D S, Wang R T, Zhao Y, Wang M T. Evaluation of rice affected by heat damage in the Sichuan Basin in 2022 based on satellite and in-situ observation[J]. Chinese Journal of Agrometeorology, 2023, 44(6): 523-534. (in Chinese with English abstract) | |
[11] | 徐富贤, 袁驰, 王学春, 韩冬, 廖爽, 张志勇, 陈琨, 曾世清, 谢戎, 周兴兵, 曾正明, 张林, 杨波, 蒋鹏. 四川盆地东南部杂交中稻开花期高温伤害的风险预测[J]. 中国稻米, 2021, 27(3): 83-88. |
Xu F X, Yuan C, Wang X C, Han D, Liao S, Zhang Z Y, Chen K, Zeng S Q, Xie R, Zeng Z M, Zhang L, Yang B, Jiang P. Risk prediction of the damage of high temperature at flowering stage on middle-season hybrid rice in Southeastern of Sichuan Basin[J]. China Rice, 2021, 27(3): 83-88. (in Chinese with English abstract) | |
[12] | 阳园燕, 何永坤, 罗孳孳, 范莉, 姚永红. 三峡库区水稻高温热害监测预警技术研究[J]. 西南农业学报, 2013, 26(3): 1249-1254. |
Yang Y Y, He Y K, Luo Z Z, Fan L, Yao Y H. Study on monitoring and early warning technology of rice heat injury in the Three Gorges Reservoir Area[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(3): 1249-1254. (in Chinese with English abstract) | |
[13] | 萧炜鹏, 龚建周, 崔海山, 胡月明. 水稻抽穗扬花期极端高温发生时空特征及热害风险区识别——以南充市为例[J]. 农业资源与环境学报, 2021, 38(2): 198-207. |
Xiao W P, Gong J Z, Cui H S, Hu Y M. Spatio-temporal characteristics of extremely high temperature occurrences on rice during heading-flowering stage and identification of high-temperature disaster areas: An example of Nanchong City[J]. Journal of Agricultural Resources and Environment, 2021, 38(2): 198-207. (in Chinese with English abstract) | |
[14] | 石春林, 金之庆, 汤日圣, 郑建初. 水稻高温败育模拟模型[J]. 中国水稻科学, 2007, 21(2): 220-222. |
Shi C L, Jin Z Q, Tang R S, Zheng J C. Model to Simulate high temperature-induced sterility of rice[J]. Chinese Journal of Rice Science, 2007, 21(2): 220-222. (in Chinese with English abstract) | |
[15] | van Oort P A J, Saito K, Zwart S J, Shrestha S. A simple model for simulating heat induced sterility in rice as a function of flowering time and transpiration cooling[J]. Field Crops Research, 2014, 156: 303-312. |
[16] | 林聃, 江敏, 苗波, 郭萌, 石春林. 水稻高温热害模型研究及其在福建省的应用[J]. 中国水稻科学, 2023, 37(3): 307-320. |
Lin D, Jiang M, Miao B, Guo M, Shi C L. Research on simulation model of high temperature stress on rice and its application in Fujian Province[J]. Chinese Journal of Rice Science, 2023, 37(3): 307-320. (in Chinese with English abstract) | |
[17] | Bouman B A M, Kropff M. J, Tuong T P, Wopereis M C S, Berge H F M T, Laar H H V. ORYZA2000: Modeling Lowland Rice[M]. Los Banos, Philippines: International Rice Research Institute, 2001: 235. |
[18] | 高亮之, 金之庆, 黄耀, 陈华, 李秉柏. 水稻栽培计算机模拟优化决策系统[M]. 北京: 中国农业科技出版社, 1992. |
Gao L Z, Jin Z Q, Huang Y, Chen H, Li B B. Computer simulation and optimization decision system for rice cultivation[M]. Beijing: China Agricultural Science and Technology Press, 1992. (in Chinese) | |
[19] | 史培华. 花后高温对水稻生长发育及产量形成影响的研究[D]. 南京: 南京农业大学, 2014. |
Shi P H. Effect of Post-anthesis heat stress on Rice growth, development and yield formation[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese with English abstract) | |
[20] | Nguyen D N, Lee K J, Kim D I, Nguyen T A, Lee B W. Modeling and validation of high-temperature induced spikelet sterility in rice[J]. Field Crops Research, 2014, 156: 293-302. |
[21] | 江敏. 基于自适应调整的福建省水稻生产气候变化影响研究[D]. 福州: 福建农林大学, 2012. |
Jiang M. Impacts of climate change on rice production in Fujian Province based on self-adaption[D]. Fuzhou: Fujian Agriculture and Forestry University, 2012. (in Chinese with English abstract) | |
[22] | 王敬涛. 气象条件对江淮地区中稻产量构成影响及高温预警模型研究[D]. 合肥: 安徽农业大学, 2009. |
Wang J T. Effects of meteorological conditions on middle-season rice yield components and high-temperature early warming model[D]. Hefei: Anhui Agricultural University, 2009. (in Chinese with English abstract) | |
[23] | Xi Y G, Qin P, Ding G H, Fan W M, Han C M. The application and analysis of rice-growth model for organic rice fertilization management[J]. Ecological Engineering, 2009, 35(4): 602-608. |
[24] | Song Y L, Wang C Y, Linderholm H W, Fu Y, Cai W Y, Xu J X, Zhuang L W, Wu M X, Shi Y X, Wang G F, Chen D L. The negative impact of increasing temperatures on rice yields in Southern China[J]. Science of the Total Environment, 2022, 820: 153262. |
[25] | 季平, 刘金龙, 柳浩, 匡佳丽, 叶世河, 龙莎, 杨洪涛, 彭勃, 徐晨, 刘晓龙. 抽穗期高温胁迫对不同水稻品种产量构成和品质的影响[J]. 作物杂志, 2024(1): 117-125. |
Ji P, Liu J L, Liu H, Kuang J L, Ye S H, Long S, Yang H T, Peng B, Xu C, Liu X L. Effects of heat stress on yield components and quality in different rice varieties during heading stage[J]. Crops, 2024(1): 117-125. (in Chinese with English abstract) | |
[26] | 陈超, 庞艳梅, 刘佳. 四川省水稻高温热害风险及灾损评估[J]. 中国生态农业学报, 2019, 27(4): 554-562. |
Chen C, Pang Y M, Liu J. Assessment of risk and yield loss of rice in Sichuan Province due to heat stress[J]. Chinese Journal of Eco-Agriculture, 2019, 27(4): 554-562. (in Chinese with English abstract) | |
[27] | Yang J Y, Huo Z G, Li X X, Wang P J, Wu D R. Hot weather event-based characteristics of double-early rice heat risk: A study of Jiangxi Province, South China[J]. Ecological Indicators, 2020, 113: 106148. |
[28] | 陈翛, 黄彬香, 潘志华, 张艺璇, 何奇瑾, 胡琦. 西南地区单季稻高温热害时空变化特征及其影响因素[J]. 中国农业大学学报, 2023, 28(1): 27-38. |
Chen X, Huang B X, Pan Z H, Zhang Y X, He Q J, Hu Q. Spatio-temporal characteristics and influencing factors of high temperature damage of single-cropping rice in Southwest China[J]. Journal of China Agricultural University, 2023, 28(1): 27-38. (in Chinese with English abstract) | |
[29] | Ishimaru T, Hlaing K T, Oo Y M, Lwin T M, Sasaki K, Lumanglas P D, Simon E M, Myint T T, Hairmansis A, Susanto U, Ayyenar B, Muthurajan R, Hirabayashi H, Fukuta Y, Kobayashi K, Matsui T, Yoshimoto M, Htun T M. An early-morning flowering trait in rice can enhance grain yield under heat stress field conditions at flowering stage[J]. Field Crops Research, 2022, 277: 108400. |
[30] | Liu M Y, Zhou Y H, Sun J X, Mao F, Yao Q, Li B L, Wang Y Y, Gao Y B, Dong X, Liao S H, Wang P, Huang S B. From the floret to the canopy: High temperature tolerance during flowering[J]. Plant Communications, 2023, 4(6): 100629. |
[31] | 骆宗强, 石春林, 江敏, 刘杨, 宣守丽, 金之庆. 孕穗期高温对水稻物质分配及产量结构的影响[J]. 中国农业气象, 2016, 37(3): 326-334. |
Luo Z Q, Shi C L, Jiang M, Liu Y, Xuan S L, Jin Z Q. Effect of high temperature on rice dry matter partition and yield component during booting stage[J]. Chinese Journal of Agrometeorology, 2016, 37(3): 326-334. (in Chinese with English abstract) | |
[32] | Satake T, Yoshida S. High temperature-induced sterility in indica rice at flowering[J]. Japanese Journal of Crop Science, 1978, 47(1): 6-17. |
[33] | 石春林, 金之庆, 郑建初, 汤日圣. 减数分裂期高温对水稻颖花结实率影响的定量分析[J]. 作物学报, 2008(4): 627-631. |
Shi C L, Jin Z Q, Zheng J C, Tang R S. Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets[J]. Acta Agronomica Sinica, 2008(4): 627-631. (in Chinese with English abstract) | |
[34] | Takeshi H. Predicting the effects of climatic variation and elevated CO2 on rice yield in Japan[J]. Journal of Agricultural Meteorology, 1993, 48(5): 567-574. |
[1] | 吴金水, 唐江英, 谭立, 过志强, 杨娟, 张鑫臻, 陈桂芳, 王建龙, 施婉菊. 水稻对砷的吸收与转运机理及农艺阻控策略 [J]. 中国水稻科学, 2025, 39(2): 143-155. |
[2] | 马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展 [J]. 中国水稻科学, 2025, 39(2): 156-170. |
[3] | 张来桐, 杨乐, 刘洪, 赵学明, 程涛, 徐振江. 水稻香味物质的研究进展 [J]. 中国水稻科学, 2025, 39(2): 171-186. |
[4] | 冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性 [J]. 中国水稻科学, 2025, 39(2): 187-196. |
[5] | 龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究 [J]. 中国水稻科学, 2025, 39(2): 197-208. |
[6] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216 [J]. 中国水稻科学, 2025, 39(2): 209-219. |
[7] | 徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系 [J]. 中国水稻科学, 2025, 39(2): 231-244. |
[8] | 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J]. 中国水稻科学, 2025, 39(1): 1-10. |
[9] | 任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23. |
[10] | 张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32. |
[11] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[12] | 胡风越, 王健, 王春, 王克剑, 刘朝雷. 水稻DMP1、DMP2、DMP3基因突变体的创制及其单倍体诱导能力鉴定[J]. 中国水稻科学, 2025, 39(1): 55-66. |
[13] | 陈书融, 朱练峰, 秦碧蓉, 王婕, 朱旭华, 田文昊, 朱春权, 曹小闯, 孔亚丽, 张均华, 金千瑜. 增氧灌溉下配施硝化抑制剂对水稻生长、产量和氮肥利用的影响[J]. 中国水稻科学, 2025, 39(1): 92-100. |
[14] | 吴猛, 倪川, 康钰莹, 毛雨欣, 叶苗, 张祖建. 水稻分蘖早发特性的品种间差异及其氮素响应[J]. 中国水稻科学, 2025, 39(1): 101-114. |
[15] | 王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||