中国水稻科学 ›› 2022, Vol. 36 ›› Issue (4): 399-409.DOI: 10.16819/j.1001-7216.2022.211103
肖德顺, 徐春梅(), 王丹英, 章秀福, 陈松, 褚光, 刘元辉
收稿日期:
2021-11-02
修回日期:
2021-12-29
出版日期:
2022-07-10
发布日期:
2022-07-12
通讯作者:
徐春梅
基金资助:
XIAO Deshun, XU Chunmei(), WANG Danying, ZHANG Xiufu, CHEN Song, CHU Guang, LIU Yuanhui
Received:
2021-11-02
Revised:
2021-12-29
Online:
2022-07-10
Published:
2022-07-12
Contact:
XU Chunmei
摘要:
【目的】研究根际氧环境对水稻幼苗根系微形态建成的影响及其生理机制,以期为水稻幼苗理想根型的构建提供理论依据。【方法】以春优84和秀水09为材料,用国际水稻所营养液配方进行水培试验。秧苗移栽一周后用在线溶氧仪(氮气、氧气调节)设定低氧(0~1.0 mg/L)、中氧(2.5~3.5 mg/L)和高氧(>6.0 mg/L,饱和溶解氧处理,在水稻生长过程中用充气泵连续向水体中充入空气)和常规水培(CK,不进行氧调节,水稻移栽一周后水中氧含量约为0.3~2.5 mg/L) 4个氧处理,研究水稻幼苗生物量、根系微形态结构、根系分泌有机酸、呼吸强度等指标。【结果】1)各处理水稻幼苗根系直径为d1(0~0.50 mm)、d2(0.51~1.00 mm)和d3(1.01~1.50 mm)的细根占总根的比例均超过90%,对水稻苗期根系形态构建尤为重要。中氧处理后,春优84直径为d1、d2和秀水09直径为d1、d3的根的根长和根表面积均明显高于对照。2)低氧处理减少地上部和地下部生物量,抑制细根(d1)生长,促进粗根(d5, 2.01~2.50 mm)的生长,降低呼吸强度,增加有机酸分泌量。中氧和高氧处理后水稻植株的生物量均有增加,但生理反应不尽相同。中氧处理后水稻根系呼吸强度上升,而高氧处理后根系呼吸强度降低。各氧处理均减少水稻幼苗根系生长素(IAA)含量,中氧和高氧处理与对照间差异达显著水平。高氧处理显著增加根系一氧化氮(NO)含量,其他处理间差异不显著。3)相关分析结果表明,两供试品种总根和细根(d2)的各形态指标(根长、表面积和体积)均与根系有机酸分泌量、呼吸强度、NO含量正相关,与生长素(IAA)含量负相关。【结论】适当增氧(中氧)处理增加水稻幼苗根系呼吸强度和有机酸分泌量,根系生理活性增强;增加细根(直径为0~1.50 mm)的根长、吸收面积的占比,优化其根系形态结构。因此,生产上可以通过栽培措施改变根际氧环境调控分蘖期水稻根系微形态结构,增强根系功能。
肖德顺, 徐春梅, 王丹英, 章秀福, 陈松, 褚光, 刘元辉. 根际氧环境对水稻幼苗根系微形态结构的影响及其生理机制[J]. 中国水稻科学, 2022, 36(4): 399-409.
XIAO Deshun, XU Chunmei, WANG Danying, ZHANG Xiufu, CHEN Song, CHU Guang, LIU Yuanhui. Effect of Rhizosphere Oxygen Environment on the Root Micromorphological Structure of Rice Seedlings and Its Physiological Mechanism[J]. Chinese Journal OF Rice Science, 2022, 36(4): 399-409.
图1 不同氧处理对地上部(A)和地下部(B)干物质量的影响 不同小写字母表示不同处理间差异达显著水平(P<0.05)。下同。对照-自然条件(0.3~2.5 mg/L);低氧-0~1.0 mg/L;中氧-2.5~3.5 mg/L;高氧->6.0 mg/L。
Fig. 1. Effects of different oxygen treatments on shoot (A) and root (B) dry weight. Different lowercase letters represent significant difference between oxygen treatments. Control, Natural conditions, OC 0.3~2.5 mg/L; Low oxygen, OC 0~1.0 mg/L; Medium oxygen, OC 2.5~3.5 mg/L; High oxygen, OC >6.0 mg/L. The same as below.
品种 Variety | 处理 Treatment | 总根长 Total root length | 不同直径根长 Length of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 (0~0.50 mm) | d2 (0.51~1.00 mm) | d3 (1.01~1.50 mm) | d4 (1.51~2.00 mm) | d5 (2.01~2.50 mm) | |||
春优84 Chunyou 84 | 对照 Control | 3570.30 a | 2091.56 a | 1121.01 b | 335.62 b | 13.66 a | 8.44 a |
低氧 Low oxygen | 3575.39 a | 2077.17 a | 1041.31 b | 434.81 a | 12.56 ab | 9.54 a | |
中氧 Medium oxygen | 3816.75 a | 2061.05 a | 1403.56 a | 344.33 b | 7.57 b | 0.24 b | |
高氧 High oxygen | 3758.83 a | 2225.89 a | 1152.14 b | 368.87 b | 11.35 ab | 0.57 b | |
秀水09 Xiushui 09 | 对照 Control | 2411.08 a | 1284.53 a | 998.64 b | 112.95 a | 7.91 a | 7.05 a |
低氧 Low oxygen | 1856.02 b | 749.97 c | 985.88 b | 112.73 a | 0.23 c | 7.22 a | |
中氧 Medium oxygen | 2574.64 a | 1343.62 a | 1066.98 b | 157.33 a | 5.00 b | 1.71 b | |
高氧 High oxygen | 2496.34 a | 1150.37 b | 1200.66 a | 136.05 a | 8.61 a | 0.65 b | |
方差分析ANOVA | |||||||
品种 Variety (V) | 170.30 ** | 240.74 ** | 5.83 * | 268.94 ** | 17.31 ** | 0.50 ns | |
处理 Treatment (T) | 4.15 ns | 5.21 * | 4.60 * | 2.44 ns | 2.82 ns | 18.12 ** | |
V × T | 1.44 ns | 5.02 * | 3.26 ns | 3.18 ns | 2.66 ns | 0.95 ns |
表1 不同氧处理对水稻幼苗根系长度的影响
Table 1. Effects of different oxygen treatments on the root length of rice seedlings. cm
品种 Variety | 处理 Treatment | 总根长 Total root length | 不同直径根长 Length of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 (0~0.50 mm) | d2 (0.51~1.00 mm) | d3 (1.01~1.50 mm) | d4 (1.51~2.00 mm) | d5 (2.01~2.50 mm) | |||
春优84 Chunyou 84 | 对照 Control | 3570.30 a | 2091.56 a | 1121.01 b | 335.62 b | 13.66 a | 8.44 a |
低氧 Low oxygen | 3575.39 a | 2077.17 a | 1041.31 b | 434.81 a | 12.56 ab | 9.54 a | |
中氧 Medium oxygen | 3816.75 a | 2061.05 a | 1403.56 a | 344.33 b | 7.57 b | 0.24 b | |
高氧 High oxygen | 3758.83 a | 2225.89 a | 1152.14 b | 368.87 b | 11.35 ab | 0.57 b | |
秀水09 Xiushui 09 | 对照 Control | 2411.08 a | 1284.53 a | 998.64 b | 112.95 a | 7.91 a | 7.05 a |
低氧 Low oxygen | 1856.02 b | 749.97 c | 985.88 b | 112.73 a | 0.23 c | 7.22 a | |
中氧 Medium oxygen | 2574.64 a | 1343.62 a | 1066.98 b | 157.33 a | 5.00 b | 1.71 b | |
高氧 High oxygen | 2496.34 a | 1150.37 b | 1200.66 a | 136.05 a | 8.61 a | 0.65 b | |
方差分析ANOVA | |||||||
品种 Variety (V) | 170.30 ** | 240.74 ** | 5.83 * | 268.94 ** | 17.31 ** | 0.50 ns | |
处理 Treatment (T) | 4.15 ns | 5.21 * | 4.60 * | 2.44 ns | 2.82 ns | 18.12 ** | |
V × T | 1.44 ns | 5.02 * | 3.26 ns | 3.18 ns | 2.66 ns | 0.95 ns |
品种 Variety | 处理 Treatment | 总根系表面积 Total root surface area | 不同直径根表面积 Surface area of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 | d2 | d3 | d4 | d5 | |||
春优84 Chunyou 84 | 对照 Control | 517.84 b | 113.35 c | 248.56 b | 125.79 bc | 16.41 a | 13.74 b |
低氧 Low oxygen | 533.10 b | 108.61 c | 239.19 b | 148.45 a | 19.18 a | 17.67 a | |
中氧 Medium oxygen | 587.37 a | 163.31 a | 306.14 a | 116.67 c | 1.09 b | 0.17 c | |
高氧 High oxygen | 546.69 b | 137.79 b | 270.36 b | 136.77 ab | 1.39 b | 0.39 c | |
秀水09 Xiushui 09 | 对照 Control | 369.99 a | 88.93 b | 212.73 b | 46.77 ab | 11.04 a | 10.52 b |
低氧 Low oxygen | 322.59 b | 52.55 c | 215.13 b | 37.57 b | 0.12 c | 17.23 a | |
中氧 Medium oxygen | 409.64 a | 100.24 a | 265.35 a | 42.84 b | 0.75 c | 0.46 c | |
高氧 High oxygen | 404.58 a | 96.93 ab | 242.66 a | 61.12 a | 2.67 b | 1.19 c | |
方差分析ANOVA | |||||||
品种 Variety (V) | 138.20 ** | 116.49 ** | 10.38 * | 297.33 ** | 48.86 ** | 1.43 ns | |
处理 Treatment (T) | 4.58 * | 26.77 ** | 7.62 * | 3.17 ns | 53.25 ** | 185.68 ** | |
V × T | 1.01 ns | 4.10 ns | 0.22 ns | 2.52 ns | 30.29 ** | 2.08 ns |
表2 不同氧处理对水稻幼苗根系表面积的影响
Table 2. Effect of different oxygen treatments on root surface area of rice seedlings. cm2
品种 Variety | 处理 Treatment | 总根系表面积 Total root surface area | 不同直径根表面积 Surface area of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 | d2 | d3 | d4 | d5 | |||
春优84 Chunyou 84 | 对照 Control | 517.84 b | 113.35 c | 248.56 b | 125.79 bc | 16.41 a | 13.74 b |
低氧 Low oxygen | 533.10 b | 108.61 c | 239.19 b | 148.45 a | 19.18 a | 17.67 a | |
中氧 Medium oxygen | 587.37 a | 163.31 a | 306.14 a | 116.67 c | 1.09 b | 0.17 c | |
高氧 High oxygen | 546.69 b | 137.79 b | 270.36 b | 136.77 ab | 1.39 b | 0.39 c | |
秀水09 Xiushui 09 | 对照 Control | 369.99 a | 88.93 b | 212.73 b | 46.77 ab | 11.04 a | 10.52 b |
低氧 Low oxygen | 322.59 b | 52.55 c | 215.13 b | 37.57 b | 0.12 c | 17.23 a | |
中氧 Medium oxygen | 409.64 a | 100.24 a | 265.35 a | 42.84 b | 0.75 c | 0.46 c | |
高氧 High oxygen | 404.58 a | 96.93 ab | 242.66 a | 61.12 a | 2.67 b | 1.19 c | |
方差分析ANOVA | |||||||
品种 Variety (V) | 138.20 ** | 116.49 ** | 10.38 * | 297.33 ** | 48.86 ** | 1.43 ns | |
处理 Treatment (T) | 4.58 * | 26.77 ** | 7.62 * | 3.17 ns | 53.25 ** | 185.68 ** | |
V × T | 1.01 ns | 4.10 ns | 0.22 ns | 2.52 ns | 30.29 ** | 2.08 ns |
品种 Variety | 处理 Treatment | 总根系体积 Total root volume | 不同直径根体积 Volume of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 | d2 | d3 | d4 | d5 | |||
春优84 Chunyou 84 | 对照 Control | 8.86 bc | 0.68 b | 4.73 b | 3.38 b | 0.06 a | 0.02 a |
低氧 Low oxygen | 8.44 c | 0.60 bc | 4.55 b | 3.10 b | 0.14 a | 0.03 a | |
中氧 Medium oxygen | 9.53 a | 0.77 a | 5.54 a | 3.17 b | 0.05 a | 0.01 a | |
高氧 High oxygen | 9.22 ab | 0.55 c | 4.52 b | 4.06 a | 0.07 a | 0.01 a | |
秀水09 Xiushui 09 | 对照 Control | 5.47 ab | 0.60 ab | 3.78 c | 1.00 ab | 0.05 b | 0.04 b |
低氧 Low oxygen | 5.24 b | 0.36 c | 3.87 bc | 0.87 b | 0.01 c | 0.13 a | |
中氧 Medium oxygen | 6.34 a | 0.55 b | 4.21 ab | 1.39 a | 0.11 a | 0.07 b | |
高氧 High oxygen | 6.33 a | 0.66 a | 4.47 a | 1.14 ab | 0.03 bc | 0.03 b | |
方差分析ANOVA | |||||||
品种 Variety (V) | 221.77 ** | 17.74 ** | 19.60 ** | 312.30 ** | 0.94 ns | 14.59 ** | |
处理 Treatment (T) | 5.31 * | 9.87 ** | 3.21 ns | 0.23 ns | 0.21 ns | 5.74 * | |
V × T | 0.28 ns | 10.00 ** | 2.68 ns | 0.23 ns | 2.10 ns | 2.89 ns |
表3 不同氧处理对水稻幼苗根体积的影响
Table 3. Effect of different oxygen treatments on root volume of rice seedlings. cm3
品种 Variety | 处理 Treatment | 总根系体积 Total root volume | 不同直径根体积 Volume of roots with different diameters | ||||
---|---|---|---|---|---|---|---|
d1 | d2 | d3 | d4 | d5 | |||
春优84 Chunyou 84 | 对照 Control | 8.86 bc | 0.68 b | 4.73 b | 3.38 b | 0.06 a | 0.02 a |
低氧 Low oxygen | 8.44 c | 0.60 bc | 4.55 b | 3.10 b | 0.14 a | 0.03 a | |
中氧 Medium oxygen | 9.53 a | 0.77 a | 5.54 a | 3.17 b | 0.05 a | 0.01 a | |
高氧 High oxygen | 9.22 ab | 0.55 c | 4.52 b | 4.06 a | 0.07 a | 0.01 a | |
秀水09 Xiushui 09 | 对照 Control | 5.47 ab | 0.60 ab | 3.78 c | 1.00 ab | 0.05 b | 0.04 b |
低氧 Low oxygen | 5.24 b | 0.36 c | 3.87 bc | 0.87 b | 0.01 c | 0.13 a | |
中氧 Medium oxygen | 6.34 a | 0.55 b | 4.21 ab | 1.39 a | 0.11 a | 0.07 b | |
高氧 High oxygen | 6.33 a | 0.66 a | 4.47 a | 1.14 ab | 0.03 bc | 0.03 b | |
方差分析ANOVA | |||||||
品种 Variety (V) | 221.77 ** | 17.74 ** | 19.60 ** | 312.30 ** | 0.94 ns | 14.59 ** | |
处理 Treatment (T) | 5.31 * | 9.87 ** | 3.21 ns | 0.23 ns | 0.21 ns | 5.74 * | |
V × T | 0.28 ns | 10.00 ** | 2.68 ns | 0.23 ns | 2.10 ns | 2.89 ns |
品种 Variety | 处理 Treatment | 生长素含量 IAA content/(μmoL·g−1) | 一氧化氮含量 NO content/(μmoL·g−1) |
---|---|---|---|
春优84 Chunyou 84 | 对照 Control | 1.51 ± 0.03 a | 0.40 ± 0.02 b |
低氧 Low oxygen | 1.23 ± 0.01 b | 0.42 ± 0.02 b | |
中氧 Medium oxygen | 1.26 ± 0.00 b | 0.40 ± 0.03 b | |
高氧 High oxygen | 1.30 ± 0.02 b | 0.66 ± 0.03 a | |
秀水09 Xiushui 09 | 对照 Control | 2.00 ± 0.09 a | 0.65 ± 0.03 b |
低氧 Low oxygen | 1.93 ± 0.05 a | 0.41 ± 0.01 c | |
中氧 Medium oxygen | 1.51 ± 0.07 b | 0.67 ± 0.02 b | |
高氧 High oxygen | 1.37 ± 0.02 b | 0.99 ± 0.03 a | |
方差分析ANOVA | |||
品种 Variety (V) | 416.52 ** | 452.90** | |
处理 Treatment (T) | 106.07 ** | 311.58 ** | |
V × T | 58.32 ** | 58.51 ** |
表4 不同氧处理对水稻幼苗根系生长素和一氧化氮含量的影响
Table 4. Effects of different oxygen treatments on the content of IAA and NO in the roots of rice seedlings.
品种 Variety | 处理 Treatment | 生长素含量 IAA content/(μmoL·g−1) | 一氧化氮含量 NO content/(μmoL·g−1) |
---|---|---|---|
春优84 Chunyou 84 | 对照 Control | 1.51 ± 0.03 a | 0.40 ± 0.02 b |
低氧 Low oxygen | 1.23 ± 0.01 b | 0.42 ± 0.02 b | |
中氧 Medium oxygen | 1.26 ± 0.00 b | 0.40 ± 0.03 b | |
高氧 High oxygen | 1.30 ± 0.02 b | 0.66 ± 0.03 a | |
秀水09 Xiushui 09 | 对照 Control | 2.00 ± 0.09 a | 0.65 ± 0.03 b |
低氧 Low oxygen | 1.93 ± 0.05 a | 0.41 ± 0.01 c | |
中氧 Medium oxygen | 1.51 ± 0.07 b | 0.67 ± 0.02 b | |
高氧 High oxygen | 1.37 ± 0.02 b | 0.99 ± 0.03 a | |
方差分析ANOVA | |||
品种 Variety (V) | 416.52 ** | 452.90** | |
处理 Treatment (T) | 106.07 ** | 311.58 ** | |
V × T | 58.32 ** | 58.51 ** |
春优84 Chunyou 84 | 秀水09 Xiushui 09 | ||||||||
---|---|---|---|---|---|---|---|---|---|
有机酸总量 Organic acid content | 根系呼吸强度 Root respiration rate | 根系生长素含量 Root IAA content | 根系一氧化氮含量 Root NO content | 有机酸总量 Organic acid content | 根系呼吸强度 Root respiration rate | 根系生长素含量 Root IAA content | 根系一氧化氮含量 Root NO content | ||
总根长 Total root length | 0.439 | 0.259 | −0.260 | 0.284 | 0.497 | 0.223 | −0.569 | 0.726** | |
总根表面积 Total root surface area | 0.781** | 0.331 | −0.488 | 0.012 | 0.613* | 0.091 | −0.691* | 0.734** | |
总根体积 Total root volume | 0.404 | 0.552 | −0.005 | 0.214 | 0.745** | −0.062 | −0.777** | 0.696* | |
根长 Root length | |||||||||
d1 | −0.216 | −0.151 | 0.026 | 0.629* | 0.249 | 0.480 | −0.344 | 0.523 | |
d2 | 0.661* | 0.643* | −0.161 | −0.157 | 0.814** | −0.498 | −0.770** | 0.844** | |
d3 | 0.101 | −0.799** | −0.630* | 0.090 | 0.493 | 0.079 | −0.534 | 0.344 | |
d4 | −0.599* | −0.305 | 0.423 | 0.029 | 0.401 | −0.086 | −0.382 | 0.844** | |
d5 | −0.419 | −0.242 | 0.290 | −0.493 | −0.826** | 0.029 | 0.890** | −0.718** | |
根表面积 Root surface area | |||||||||
d1 | 0.661* | 0.478 | −0.304 | 0.146 | 0.518 | 0.245 | −0.614* | 0.755** | |
d2 | 0.642* | 0.510 | −0.247 | 0.038 | 0.645* | 0.220 | −0.760** | 0.427 | |
d3 | −0.284 | −0.870** | −0.358 | 0.324 | 0.565 | −0.551 | −0.475 | 0.805** | |
d4 | −0.397 | −0.253 | 0.263 | −0.506 | −0.481 | 0.136 | 0.485 | 0.121 | |
d5 | −0.361 | −0.285 | 0.200 | −0.498 | −0.751** | −0.139 | 0.861** | −0.789** | |
根体积 Root volume | |||||||||
d1 | 0.523 | 0.836** | 0.136 | −0.662* | 0.524 | −0.095 | −0.522 | 0.890** | |
d2 | 0.669* | 0.660* | −0.099 | −0.393 | 0.872** | −0.372 | −0.848** | 0.744** | |
d3 | −0.439 | −0.246 | 0.137 | 0.859** | 0.456 | 0.218 | −0.520 | 0.389 | |
d4 | −0.061 | −0.580* | −0.346 | −0.006 | 0.187 | 0.772** | −0.341 | 0.160 | |
d5 | −0.147 | −0.333 | −0.108 | −0.162 | −0.405 | 0.066 | 0.434 | −0.804** |
表5 根系生理指标与根系微形态结构的相关性分析
Table 5. Correlation analysis of root physiological indexes and root micromorphological structure.
春优84 Chunyou 84 | 秀水09 Xiushui 09 | ||||||||
---|---|---|---|---|---|---|---|---|---|
有机酸总量 Organic acid content | 根系呼吸强度 Root respiration rate | 根系生长素含量 Root IAA content | 根系一氧化氮含量 Root NO content | 有机酸总量 Organic acid content | 根系呼吸强度 Root respiration rate | 根系生长素含量 Root IAA content | 根系一氧化氮含量 Root NO content | ||
总根长 Total root length | 0.439 | 0.259 | −0.260 | 0.284 | 0.497 | 0.223 | −0.569 | 0.726** | |
总根表面积 Total root surface area | 0.781** | 0.331 | −0.488 | 0.012 | 0.613* | 0.091 | −0.691* | 0.734** | |
总根体积 Total root volume | 0.404 | 0.552 | −0.005 | 0.214 | 0.745** | −0.062 | −0.777** | 0.696* | |
根长 Root length | |||||||||
d1 | −0.216 | −0.151 | 0.026 | 0.629* | 0.249 | 0.480 | −0.344 | 0.523 | |
d2 | 0.661* | 0.643* | −0.161 | −0.157 | 0.814** | −0.498 | −0.770** | 0.844** | |
d3 | 0.101 | −0.799** | −0.630* | 0.090 | 0.493 | 0.079 | −0.534 | 0.344 | |
d4 | −0.599* | −0.305 | 0.423 | 0.029 | 0.401 | −0.086 | −0.382 | 0.844** | |
d5 | −0.419 | −0.242 | 0.290 | −0.493 | −0.826** | 0.029 | 0.890** | −0.718** | |
根表面积 Root surface area | |||||||||
d1 | 0.661* | 0.478 | −0.304 | 0.146 | 0.518 | 0.245 | −0.614* | 0.755** | |
d2 | 0.642* | 0.510 | −0.247 | 0.038 | 0.645* | 0.220 | −0.760** | 0.427 | |
d3 | −0.284 | −0.870** | −0.358 | 0.324 | 0.565 | −0.551 | −0.475 | 0.805** | |
d4 | −0.397 | −0.253 | 0.263 | −0.506 | −0.481 | 0.136 | 0.485 | 0.121 | |
d5 | −0.361 | −0.285 | 0.200 | −0.498 | −0.751** | −0.139 | 0.861** | −0.789** | |
根体积 Root volume | |||||||||
d1 | 0.523 | 0.836** | 0.136 | −0.662* | 0.524 | −0.095 | −0.522 | 0.890** | |
d2 | 0.669* | 0.660* | −0.099 | −0.393 | 0.872** | −0.372 | −0.848** | 0.744** | |
d3 | −0.439 | −0.246 | 0.137 | 0.859** | 0.456 | 0.218 | −0.520 | 0.389 | |
d4 | −0.061 | −0.580* | −0.346 | −0.006 | 0.187 | 0.772** | −0.341 | 0.160 | |
d5 | −0.147 | −0.333 | −0.108 | −0.162 | −0.405 | 0.066 | 0.434 | −0.804** |
[1] | 李香玲, 冯跃华. 水稻根系生长特性及其与地上部分关系的研究进展[J]. 中国农学通报, 2015, 31(6): 1-6. |
Li X L, Feng Y H. Research advance on relation of aerial part and root traits of rice[J]. Chinese Agricultural Science Bulletin, 2015, 31(6): 1-6. (in Chinese with English abstract) | |
[2] | 石庆华, 黄英金, 李木英, 徐益群, 谭雪明, 张佩莲. 水稻根系性状与地上部的相关及根系性状的遗传研究[J]. 中国农业科学, 1997, 30(4): 62-68. |
Shi Q H, Huang Y J, Li M Y, Xu Y Q, Tan X M, Zhang P L. Studies on the heredity of root characteristics and correlation between the characteristics of roots and upperground parts in rice[J]. Scientia Agricultura Sinica, 1997, 30(4): 62-68. (in Chinese with English abstract) | |
[3] | 张福锁, 曹一平. 根际动态过程与植物营养[J]. 土壤学报, 1992, 29(3): 239-250. |
Zhang F S, Cao Y P. Rhizosphere dynamics and plant nutrition[J]. Acta Pedologica Sinica, 1992, 29(3): 239-250. (in Chinese with English abstract) | |
[4] | Kiba T, Krapp A. Plant nitrogen acquisition under low availability: Regulation of uptake and root architecture[J]. Plant and Cell Physiology, 2016, 57(4): 707-714. |
[5] | 赵霞, 杜朝云, 徐春梅, 杨华伟, 吕泽林, 章秀福. 水稻对低氧环境的适应及其机制研究进展[J]. 作物杂志, 2015, 31(3): 5-12. |
Zhao X, Du Z Y, Xu C M, Yang H W, Lü Z L, Zhang X F. Review of acclimating mechanism to hypoxia condition in rice[J]. Crops, 2015, 31(3): 5-12. (in Chinese with English abstract) | |
[6] | Colmer T D, Cox M C H, Voesenek L A C J. Root aeration in rice (Oryza sativa): Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. New Phytologist, 2006, 170(4): 767-777. |
[7] | 胡继杰, 钟楚, 胡志华, 张均华, 曹小闯, 刘守坎, 金千瑜, 朱练峰. 溶解氧浓度对水稻分蘖期根系生长及氮素利用特性的影响[J]. 中国农业科学, 2021, 54(7): 1525-1536. |
Hu J J, Zhong C, Hu Z H, Zhang J H, Cao X C, Liu S K, Jin Q Y, Zhu L F. Effects of dissolved oxygen concentration on root growth at tillering stage and nitrogen utilization characteristics of rice[J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536. (in Chinese with English abstract) | |
[8] | 胡志华, 朱练峰, 林育炯, 胡继杰, 张均华, 金千瑜. 根际氧浓度对水稻产量及其氮素利用的影响[J]. 中国水稻科学, 2015, 29(4): 382-389. |
Hu Z H, Zhu L F, Lin Y J, Hu J J, Zhang J H, Jin Q Y. Effects of rhizosphere oxygen concentration rice grain yield and nitrogen utilization[J]. Chinese Journal of Rice Science, 2015, 29(4): 382-389. (in Chinese with English abstract) | |
[9] | 徐春梅, 王丹英, 陈松, 陈丽萍, 章秀福. 增氧对水稻根系生长与氮代谢的影响[J]. 中国水稻科学, 2012, 26(3): 320-324. |
Xu C M, Wang D Y, Chen S, Chen L P, Zhang X F. Effect of aeration on root growth and nitrogen metabolism in rice[J]. Chinese Journal of Rice Science, 2012, 26(3): 320-324. (in Chinese with English abstract) | |
[10] | 徐春梅, 陈丽萍, 王丹英, 陈松, 章秀福, 石庆华. 低氧胁迫对水稻幼苗根系功能和氮代谢相关酶活性的影响[J]. 中国农业科学, 2016, 49(8): 1625-1634. |
Xu C M, Chen L P, Wang D Y, Zhang X F, Shi Q H. Effects of low oxygen stress on the root function and enzyme activities related to nitrogen metabolism in roots of rice seedlings[J]. Scientia Agricultura Sinica, 2016, 49(8): 1625-1634. (in Chinese with English abstract) | |
[11] | 茆智. 水稻节水灌溉及其对环境的影响[J]. 中国工程科学, 2002, 4(7): 8-16. |
Mao Z. Water saving irrigation for rice and its effect on environment[J]. Engineering Science, 2002, 4(7): 8-16. (in Chinese with English abstract) | |
[12] | 赵锋, 王丹英, 徐春梅, 张卫建, 李凤博, 毛海军, 章秀福. 根际增氧模式的水稻形态、生理及产量响应特征[J]. 作物学报, 2010, 36(2): 303-312. |
Zhao F, Wang D Y, Xu C M, Zhang W J, Li F B, Mao H J, Zhang X F. Response of morphological, physiological and yield characteristics of rice (Oryza sativa L.) to different oxygen-increasing patterns in rhizosphere[J]. Acta Agronomica Sinica, 2010, 36(2): 303-312. (in Chinese with English abstract) | |
[13] | 朱练峰, 刘学, 禹盛苗, 欧阳由男, 金千瑜. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学, 2010, 24(3): 257-263. |
Zhu L F, Liu X, Yu S M, Ouyang Y N, Jin Q Y. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice[J]. Chinese Journal of Rice Science, 2010, 24(3): 257-263. (in Chinese with English abstract) | |
[14] | Thakup A K, Mandal K G, Mohanty R K, Ambast S K. Rice root growth, photosynthesis, yield and water productivity improvements through modifying cultivation practices and water management[J]. Agricultural Water Management, 2018, 206: 67-77. |
[15] | Drescher G L, Silva L S D, Sarfaraz Q, Roberts T L, Nicoloso F T, Schwalbert R, Marques A C R. Available nitrogen in paddy soils depth: Influence on rice root morphology and plant nutrition[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(3): 1029-1041. |
[16] | Nicola C, Christina A, Eva B. Auxin-regulated lateral root organogenesis[J]. Cold Spring Harbor Perspectives in Biology, 2021, 13(7): a039941. |
[17] | Xu C, Chen L, Chen S, Chu G, Wang D, Zhang X. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice[J]. Annals of Applied Biology, 2020, 177(1): 61-73. |
[18] | Xu C M, Wang D Y, Chen S, Chen L P, Zhang X F. Effects of aeration on root physiology and nitrogen metabolism in rice[J]. Rice Science, 2013, 20(2): 148-253. |
[19] | 吴龙龙, 田仓, 张露, 黄晶, 朱练峰, 张均华, 曹小闯, 金千瑜. 稻田水氮氧环境因子对水稻生长发育、光合作用和氮利用的调控研究进展[J]. 应用生态学报, 2021, 32(4): 1498-1508. |
Wu L L, Tian C, Zhang L, Huang J, Zhu L F, Zhang J H, Cao X C, Jin Q Y. Research advance in the roles of water-nitrogen-oxygen factors in mediating rice growth, photosynthesis and nitrogen utilization in paddy soils[J]. Chinese Journal of Applied Ecology, 2021, 32(4): 1498-1508. (in Chinese with English abstract) | |
[20] | 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响[J]. 农业工程学报, 2018, 34(7): 137-146. |
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J. Effect of alternate wetting and drying irrigation and nitrogen coupling on endogenous hormones, nitrogen utilization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 137-146. (in Chinese with English abstract) | |
[21] | 何俊瑜, 王阳阳, 任艳芳, 周国强, 杨良静. 镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响[J]. 生态环境学报, 2009, 18(5): 1863-1868. |
He J Y, Wang Y Y, Ren Y F, Zhou G Q, Yang L J. Effect of cadmium on root morphology and physiological characteristics of rice seedlings[J]. Ecology and Environmental Sciences, 2009, 18(5): 1863-1868. | |
[22] | 郜红建, 常江, 张自立, 丁士明, 魏俊岭. 研究植物根系分泌物的方法[J]. 植物生理学通讯, 2003, 39(1): 56-60. |
Gao H J, Chang J, Zhang Z L, Ding S M, Wei J L. Methods for investigating root exudates of plants[J]. Plant Physiology Communications, 2003, 39(1): 56-60. (in Chinese with English abstract) | |
[23] | Kelm M, Dahmann R, Wink D, Feelisch M. The nitric oxide superoxide assay: Insights into the biological chemistry of the NO/O2― interaction[J]. Journal of Biological Chemistry, 1997, 272(15): 9922-9932. |
[24] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1): 36-46. |
Yang J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1): 36-46. (in Chinese with English abstract) | |
[25] | Yang J C, Zhang H, Zhang J H. Root morphology and physiology in relation to the yield formation of rice[J]. Journal of Integrative Agriculture, 2012, 11(6): 920-926. |
[26] | 章怡兰, 林雪, 吴仪, 李梦佳, 张晟婕, 路梅, 饶玉春, 王跃星. 水稻根系遗传育种研究进展[J]. 植物学报, 2020, 55(3): 382-393. |
Zhang Y L, Lin X, Wu Y, Li M J, Zhang S J, Lu M, Rao Y C, Wang Y X. Research progress on genetics and breeding of rice roots[J]. Chinese Bulletin of Botany, 2020, 55(3): 382-393. (in Chinese with English abstract) | |
[27] | 丁仕林, 刘朝雷, 钱前. 水稻根系遗传研究进展[J]. 中国稻米, 2019, 25(5): 24-29. |
Ding S L, Liu Z L, Qian Q. Research progress on genetic of rice root[J]. China Rice, 2019, 25(5): 24-29. (in Chinese with English abstract) | |
[28] | 王昱, 王玮, 范杰英, 姜晓莉. 水稻根系分布同产量之间关系的研究进展[J]. 农业与技术, 2017, 37(5): 43-45. |
Wang Y, Wang W, Fan J Y, Jiang X L. Research progress on the relationship between rice root distribution and yield[J]. Agriculture and Technology, 2017, 37(5): 43-45. (in Chinese with English abstract) | |
[29] | 王丹英, 韩勃, 章秀福, 邵国胜, 徐春梅, 符冠富. 水稻根际含氧量对根系生长的影响[J]. 作物学报, 2008, 34(5): 803-808. |
Wang D Y, Han B, Zhang X F, Shao G S, Xu C M, Fu G F. Influence of rhizosphere oxygen concentration on rice root growth[J]. Acta Agronomica Sinica, 2008, 34(5): 803-808. (in Chinese with English abstract) | |
[30] | 赵霞, 徐春梅, 王丹英, 陈松, 陶龙兴, 章秀福. 根际溶氧量对分蘖期水稻生长特性及其氮素代谢的影响[J]. 中国农业科学, 2015, 48(18): 3733-3742. |
Zhao X, Xu C M, Wang D Y, Chen S, Tao L X, Zhang X F. Effect of rhizosphere oxygen on the growth characteristics of rice and its nitrogen metabolism at tillering stage[J]. Scientia Agricultura Sinica, 2015, 48(18): 3733-3742. (in Chinese with English abstract) | |
[31] | 牛耀芳, 宗晓波, 都韶婷, 黄利东, 章永松. 大气CO2浓度升高对植物根系形态的影响及其调控机理[J]. 植物营养与肥料学报, 2011, 17(1): 240-246. |
Niu Y F, Zong X B, Du S T, Huang L D, Zhang Y S. Effect of elevated CO2 on morphology change of plant roots and its regulatory mechanism[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1): 240-246. (in Chinese with English abstract) | |
[32] | 孙虎威, 王文亮, 刘尚俊, 侯蒙蒙, 谢天宁, 梁志浩, 樊亚男, 张亚丽. 低氮胁迫下水稻根系的发生及生长素的响应[J]. 土壤学报, 2014, 51(5): 1096-1102. |
Sun H W, Wang W L, Liu S J, Hou M M, Xie T Y, Liang Z H, Fan Y N, Zhang Y L. Formation of rice root regulated by nitrogen deficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 1096-1102. (in Chinese with English abstract) | |
[33] | 宁倩, 吴金水, 李宝珍, 吴蔓莉. 水稻苗期生长特性对不同浓度IAA的响应[J]. 农业现代化研究, 2013, 34(2): 235-238. |
Ning Q, Wu J S, Li B Z, Wu M L. Response of Growth characteristics to different IAA concentrations in rice seedling[J]. Research of Agricultural Modernization, 2013, 34(2): 235-238. (in Chinese with English abstract) | |
[34] | 李维芳, 王春蕾, 王妮, 邓雨正, 姚彦东, 魏丽娟, 廖伟彪. 一氧化氮影响植物不定根发生的研究进展[J]. 浙江农业学报, 2020, 32(4): 742-752. |
Li W F, Wang C L, Wang N, Deng Y Z, Yao Y D, Wei L J, Liao W B. Research progress on effect of nitric oxide on adventitious formation in plant[J]. Acta Agriculturae Zhejiangensis, 2020, 32(4): 742-752. (in Chinese with English abstract) | |
[35] | 刘光亚, 张艳军, 孙学振, 董合忠. 一氧化氮对植物淹水伤害的缓解作用及其机制[J]. 分子植物育种, 2019, 17(22): 7579-7587. |
Liu G Y, Zhang Y J, Sun X Z, Dong H Z. Roles and underlying mechanisms of nitric oxide in alleviating waterlogging damage to plants[J]. Molecular Plant Breeding, 2019, 17(22): 7579-7587. (in Chinese with English abstract) | |
[36] | 王金祥, 陈碧丽, 廖红, 严小龙. 生长素、乙烯和一氧化氮对拟南芥下胚轴插条形成不定根的调节[J]. 植物生理学通讯, 2009, 45(10): 986-990. |
Wang J X, Chen B L, Liao H, Yan X L. Regulation of auxin, ethylene and nitric oxide on adventitious rooting in Arabidopsis hypocotyl cuttings[J]. Plant Physiology Communications, 2009, 45(10): 986-990. (in Chinese with English abstract) | |
[37] | Correa-Aragunde N, Cejudo F J, Lamattina L. Nitric oxide is required for the auxin-induced activation of NADPH-dependent thioredoxin reductase and protein denitrosylation during root growth responses in arabidopsis[J]. Annals of Botany, 2015, 116(4): 695-702. |
[38] | 王金祥, 严小龙, 潘瑞炽. 不定根形成与植物激素的关系[J]. 植物生理学通讯, 2005, 41(2): 133-142. |
Wang J X, Yan X L, Pan R C. Relationship between adventitious root formation and plant hormones[J]. Plant Physiology Communications, 2005, 41(2): 133-142. (in Chinese with English abstract) | |
[39] | 陈佳宝, 闫道良, 郑炳松. 植物不定根诱导生成机制研究进展[J]. 北方园艺, 2021(6): 129-137. |
Chen J B, Yan D L, Zheng B S. Research progress of the mechanism on adventitious root induction in plant[J]. Northern Horticulture, 2021(6): 129-137. (in Chinese with English abstract) | |
[40] | 许璐璐, 王涵, 高盼盼, 吴三桥, 张辰露. 环境胁迫对植物根系形态的影响[J]. 安徽农业科学, 2020, 48(14): 16-19. |
Xu L L, Wang H, Gao P P, Wu S Q, Zhang C L. Effects of environmental stress on plant root morphology[J]. Journal of Anhui Agricultural Sciences, 2020, 48(14): 16-19. (in Chinese with English abstract) | |
[41] | 葛才林, 络剑峰, 刘冲, 殷朝珍, 王泽港, 马飞, 罗时石. 重金属对水稻呼吸速率及相关同功酶影响的研究[J]. 农业环境科学学报, 2005, 24(2): 222-226. |
Ge C L, Luo J F, Liu C, Yin C Z, Wang Z G, Ma F, Luo S S. Effects of heavy metals on respiration rate and expression of related isozymes in rice[J]. Journal of Agric-Environmental Sciences, 2005, 24(2): 222-226. (in Chinese with English abstract) | |
[42] | 李志霞, 秦嗣军, 吕德国, 聂继云. 植物根系呼吸代谢及影响根系呼吸的环境因子研究进展[J]. 植物生理学报, 2011, 47(10): 957-966. |
Li Z X, Qin S J, Lü D G, Nie J T. Research progress in root respiratory metabolism of plant and the environ mental influencing factors[J]. Plant Physiology Journal, 2011, 47(10): 957-966. (in Chinese with English abstract) | |
[43] | 师恺, 胡文海, 董德坤, Otieno O J, 宋兴舜, 夏晓剑, 周艳虹, 喻景权. 根系限制对番茄幼苗生长、根系呼吸、ATPase和PPase活性的影响[J]. 园艺学报, 2006, 33(4): 853-855. |
Shi K, Hu W H, Dong D K, Otieno O J, Song X S, Xia X J, Zhou Y H, Yu J Q. Effects of root restriction on plant growth, root respiration, activities of H+-ATPase and H+-PPase in tomato seedlings[J]. Acta Horticulturae Sinica, 2006, 33(4): 853-855. (in Chinese with English abstract) | |
[44] | 陈静, 王朝云, 易永健, 汪洪鹰, 易镇邪, 周晚来. 短期淹水对水稻幼苗生长和根系氮代谢关键酶活性的影响[J]. 华北农学报, 2021, 36(2): 99-107. |
Chen J, Wang Z Y, Yi Y J, Wang H Y, Yi Z X, Zhou W L. Effects of short-term submergence on growth of rice seedlings and activities of key nitrogen metabolism enzymes in roots[J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 99-107. (in Chinese with English abstract) | |
[45] | 丁杰萍, 罗永清, 周欣, 岳祥飞, 连杰. 植物根系呼吸研究方法及影响因素研究进展[J]. 草业学报, 2015, 24(5): 206-216. |
Ding J P, Luo Y Q, Zhou X, Yue X F, Lian J. Review of methodology and factors influencing plant root respiration[J]. Acta Prataculturae Sinica, 2015, 24(5): 206-216. (in Chinese with English abstract) | |
[46] | Liang S, Wang Y H, Zhang H, Yun X Y, Wu Y. Response of root-exuded organic acids in irrigated rice to different water management practices[J]. Eurasian Soil Science, 2020, 53(11): 1572-1578. |
[47] | Bi J G, Hou D P, Zhang X X, Tan J S, Bi Q Y, Zhang K K, Liu Y, Wang F M, Zhang A N, Chen L, Liu G L, Liu Z C, Yu X Q, Luo L J. A novel water-saving and drought-resistance rice variety promotes phosphorus absorption through root secreting organic acid compounds to stabilize yield under water-saving condition[J]. Journal of Cleaner Production, 2021, 315: 127992. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||