中国水稻科学 ›› 2021, Vol. 35 ›› Issue (2): 155-165.DOI: 10.16819/j.1001-7216.2021.0519
杨丞1, 汪洋1, 张万洋1, 叶廷红1, 鲁剑巍1, 张赓3, 李小坤1,2,*()
收稿日期:
2020-05-29
修回日期:
2020-12-07
出版日期:
2021-03-10
发布日期:
2021-03-10
通讯作者:
李小坤
基金资助:
Cheng YANG1, Yang WANG1, Wanyang ZHANG1, Tinghong YE1, Jianwei LU1, Geng ZHANG3, Xiaokun LI1,2,*()
Received:
2020-05-29
Revised:
2020-12-07
Online:
2021-03-10
Published:
2021-03-10
Contact:
Xiaokun LI
摘要:
【目的】明确灌溉模式与施氮量及其互作对水稻根系形态、茎蘖产量形成的影响,以期为水稻绿色生产及水肥高效利用提供理论依据。【方法】采用大田试验的方法,以两优287为材料,设置浸润式灌溉(W1)、常规灌溉(W2)和淹水灌溉(W3)三种灌水模式,不施氮(N0,0 kg/hm2)、常规施氮(N1,165.0 kg/hm2)和高氮(N2,247.5 kg /hm2)三个氮肥用量共9个处理。在水稻关键生育期取样,测定根系形态和活力、茎蘖动态、生物量和养分含量,研究灌溉模式与施氮量及其互作对水稻生长发育、产量、氮肥利用率和品质的影响。【结果】与W2处理相比,尽管W1处理水稻成穗率平均减少9.2%,但主茎、一次分蘖和二次分蘖的产量分别增加32.7%、18.1%和33.4%,总体产量平均增加18.5%;W3处理水稻成穗率平均减少5.0%,主茎、一次分蘖和二次分蘖的产量分别平均增加9.3%、2.0%和46.4%,总体产量无显著差异。与N0处理相比,各施氮处理的水稻成穗率平均增加6.1%,主茎和一次分蘖的产量分别平均增加8.1%和92.6%,二次分蘖产量平均增加0.57 t/hm2(N0处理无二次分蘖),总体产量平均增加88.0%。方差分析结果显示,灌溉模式与施氮量对茎蘖产量、总体产量及每穗粒数存在显著交互作用。此外,灌溉模式与施氮量对根系形态、根系活力、氮素吸收以及氮素干物质生产效率均产生了显著影响。方差分析结果显示,灌溉模式与施氮量对总根长、根体积、根尖数、根系伤流速度以及根、茎、叶、穗各器官生物量、群体生长速率等均存在显著交互作用。【结论】灌溉模式和施氮量显著影响水稻根系形态、分蘖形成及产量,且存在明显的交互作用。本试验条件下,浸润式灌溉模式下施用适量氮肥(165.0 kg/hm2)可在获得较高产量的同时提高水分和氮肥利用效率并改善稻米品质。
杨丞, 汪洋, 张万洋, 叶廷红, 鲁剑巍, 张赓, 李小坤. 灌溉模式与施氮量互作对水稻茎蘖产量形成的影响[J]. 中国水稻科学, 2021, 35(2): 155-165.
Cheng YANG, Yang WANG, Wanyang ZHANG, Tinghong YE, Jianwei LU, Geng ZHANG, Xiaokun LI. Effects of Interaction Between Irrigation Mode and Nitrogen Application Rate on the Yield Formation of Main Stem and Tillers of Rice[J]. Chinese Journal OF Rice Science, 2021, 35(2): 155-165.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 总根长 TRL/m | 根表面积 TRSA/(×103 cm2) | 根体积 TRV/cm3 | 根尖数 TRN/(×104) | 平均根直径 ARD/mm |
---|---|---|---|---|---|---|
W1 | N0 | 19.29±1.05 c | 0.88±0.05 d | 32.64±2.21 c | 0.53±0.02 e | 1.46±0.01 d |
N1 | 30.66±3.08 b | 1.35±0.09 c | 43.65±2.61 b | 1.01±0.14 cd | 2.85±0.35 b | |
N2 | 37.58±1.68 a | 2.03±0.16 a | 78.23±0.23 a | 1.15±0.05 bc | 3.73±0.35 a | |
W2 | N0 | 23.59±2.35 c | 0.90±0.09 d | 28.81±2.15 c | 0.77±0.14 de | 1.21±0.07 d |
N1 | 39.05±0.24 a | 1.69±0.22 b | 50.77±6.76 b | 1.00±0.01 cd | 2.24±0.16 c | |
N2 | 36.44±2.23 a | 2.03±0.08 a | 48.77±0.14 b | 1.62±0.20 a | 3.06±0.43 b | |
W3 | N0 | 37.59±3.31 a | 1.06±0.07 d | 26.91±2.31 c | 0.89±0.02 cd | 1.47±0.28 d |
N1 | 37.60±3.61 a | 1.63±0.18 b | 50.17±4.08 b | 1.06±0.06 c | 2.79±0.39 b | |
N2 | 29.87±3.87 b | 1.97±0.12 a | 47.64±7.95 b | 1.36±0.30 b | 3.19±0.43 b | |
F值 | W | 11.29** | 2.98 | 16.16** | 7.61** | 6.04* |
F-value | N | 30.35** | 154.95** | 117.35** | 47.75** | 89.60** |
W×N | 21.91** | 2.45 | 21.77** | 3.09* | 0.97 |
表1 灌溉模式与施氮量互作对水稻根系形态的影响
Table 1 Effects of interaction between irrigation mode and nitrogen application rate on root morphology of rice.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 总根长 TRL/m | 根表面积 TRSA/(×103 cm2) | 根体积 TRV/cm3 | 根尖数 TRN/(×104) | 平均根直径 ARD/mm |
---|---|---|---|---|---|---|
W1 | N0 | 19.29±1.05 c | 0.88±0.05 d | 32.64±2.21 c | 0.53±0.02 e | 1.46±0.01 d |
N1 | 30.66±3.08 b | 1.35±0.09 c | 43.65±2.61 b | 1.01±0.14 cd | 2.85±0.35 b | |
N2 | 37.58±1.68 a | 2.03±0.16 a | 78.23±0.23 a | 1.15±0.05 bc | 3.73±0.35 a | |
W2 | N0 | 23.59±2.35 c | 0.90±0.09 d | 28.81±2.15 c | 0.77±0.14 de | 1.21±0.07 d |
N1 | 39.05±0.24 a | 1.69±0.22 b | 50.77±6.76 b | 1.00±0.01 cd | 2.24±0.16 c | |
N2 | 36.44±2.23 a | 2.03±0.08 a | 48.77±0.14 b | 1.62±0.20 a | 3.06±0.43 b | |
W3 | N0 | 37.59±3.31 a | 1.06±0.07 d | 26.91±2.31 c | 0.89±0.02 cd | 1.47±0.28 d |
N1 | 37.60±3.61 a | 1.63±0.18 b | 50.17±4.08 b | 1.06±0.06 c | 2.79±0.39 b | |
N2 | 29.87±3.87 b | 1.97±0.12 a | 47.64±7.95 b | 1.36±0.30 b | 3.19±0.43 b | |
F值 | W | 11.29** | 2.98 | 16.16** | 7.61** | 6.04* |
F-value | N | 30.35** | 154.95** | 117.35** | 47.75** | 89.60** |
W×N | 21.91** | 2.45 | 21.77** | 3.09* | 0.97 |
图1 灌溉模式与施氮量互作对水稻根系伤流速度的影响图中数值为平均值±标准差(n=3);柱上标以不同小写字母表示在0.05水平差异显著(Duncan)。*,**分别表示在0.05和0.01水平上互作显著。下同。
Fig. 1. Effects of interaction between irrigation mode and nitrogen application rate on bleeding rate. Values are Mean±SD(n=3); values followed by different small letters are significantly different at P<0.05(Duncan). * Significant interaction at P<0.05; ** Significant interaction at P<0.01. The same as below.
生育时期 Growth stage | 灌溉模式 Irrigation regime | 施氮量 Nitrogen rate | 根系生物量 Root biomass /(t·hm-2) | 地上部生物量 Aboveground biomass/(t·hm-2) | 根冠比 Root-shoot ratio | ||
---|---|---|---|---|---|---|---|
茎Stem | 叶Leaf | 穗Panicle | |||||
拔节期 Jointing stage | W1 | N0 | 0.43±0.04 d | 1.13±0.07 c | 0.56±0.04 e | - | 0.26±0.02 e |
N1 | 0.66±0.04 c | 1.58±0.12 ab | 1.09±0.15 c | - | 0.25±0.01 e | ||
N2 | 0.96±0.03 b | 1.64±0.12 a | 1.31±0.19 ab | - | 0.33±0.03 cd | ||
W2 | N0 | 0.32±0.05 de | 0.59±0.05 d | 0.32±0.03 f | - | 0.35±0.03 c | |
N1 | 0.67±0.02 c | 1.35±0.16 bc | 0.89±0.01 d | - | 0.30±0.01 d | ||
N2 | 1.29±0.14 a | 1.61±0.02 a | 1.28±0.07 b | - | 0.45±0.04 a | ||
W3 | N0 | 0.27±0.02 e | 0.53±0.07 d | 0.31±0.04 f | - | 0.32±0.01 cd | |
N1 | 0.88±0.12 b | 1.70±0.25 a | 1.05±0.12 cd | - | 0.32±0.02 cd | ||
N2 | 1.32±0.16 a | 1.82±0.22 a | 1.46±0.12 a | - | 0.40±0.02 b | ||
F值 | W | 5.67* | 0.53 | 5.57* | - | 36.85** | |
F-value | N | 220.47** | 24.48** | 196.96** | - | 49.06** | |
W×N | 9.54** | 0.54 | 3.07* | - | 2.31 | ||
抽穗期 Heading stage | W1 | N0 | 0.55±0.07 d | 2.22±0.08 d | 0.71±0.07 e | 0.73±0.04 cd | 0.15±0.01 bc |
N1 | 0.92±0.11 c | 3.53±0.27 bc | 1.66±0.19 bc | 1.49±0.13 a | 0.14±0.01 cd | ||
N2 | 0.94±0.12 c | 3.52±0.50 bc | 1.77±0.09 b | 0.84±0.05 c | 0.15±0.01 b | ||
W2 | N0 | 0.49±0.00 d | 1.87±0.16 d | 0.52±0.01 e | 0.61±0.04 d | 0.16±0.01 ab | |
N1 | 1.12±0.04 b | 3.94±0.52 b | 1.47±0.20 cd | 1.31±0.15 a | 0.17±0.01 a | ||
N2 | 1.36±0.08 a | 4.52±0.28 a | 2.21±0.29 a | 1.43±0.19 a | 0.14±0.01 d | ||
W3 | N0 | 0.47±0.03 d | 1.68±0.05 d | 0.53±0.05 e | 0.58±0.06 d | 0.17±0.00 a | |
N1 | 0.83±0.08 c | 3.10±0.10 c | 1.32±0.04 d | 0.85±0.09 c | 0.16±0.01 ab | ||
N2 | 0.91±0.06 c | 3.26±0.24 c | 1.65±0.07 bc | 1.10±0.08 b | 0.15±0.00 bc | ||
F值 | W | 27.39** | 16.42** | 7.79** | 15.04** | 13.87** | |
F-value | N | 145.31** | 101.18** | 197.29** | 75.33** | 1.07 | |
W×N | 9.52** | 5.39** | 5.93** | 18.91** | 4.97** |
表2 灌溉模式与施氮量互作对水稻不同生育时期生物量的影响
Table 2 Effects of interaction between irrigation mode and nitrogen application rate on biomass at different growth stages of rice.
生育时期 Growth stage | 灌溉模式 Irrigation regime | 施氮量 Nitrogen rate | 根系生物量 Root biomass /(t·hm-2) | 地上部生物量 Aboveground biomass/(t·hm-2) | 根冠比 Root-shoot ratio | ||
---|---|---|---|---|---|---|---|
茎Stem | 叶Leaf | 穗Panicle | |||||
拔节期 Jointing stage | W1 | N0 | 0.43±0.04 d | 1.13±0.07 c | 0.56±0.04 e | - | 0.26±0.02 e |
N1 | 0.66±0.04 c | 1.58±0.12 ab | 1.09±0.15 c | - | 0.25±0.01 e | ||
N2 | 0.96±0.03 b | 1.64±0.12 a | 1.31±0.19 ab | - | 0.33±0.03 cd | ||
W2 | N0 | 0.32±0.05 de | 0.59±0.05 d | 0.32±0.03 f | - | 0.35±0.03 c | |
N1 | 0.67±0.02 c | 1.35±0.16 bc | 0.89±0.01 d | - | 0.30±0.01 d | ||
N2 | 1.29±0.14 a | 1.61±0.02 a | 1.28±0.07 b | - | 0.45±0.04 a | ||
W3 | N0 | 0.27±0.02 e | 0.53±0.07 d | 0.31±0.04 f | - | 0.32±0.01 cd | |
N1 | 0.88±0.12 b | 1.70±0.25 a | 1.05±0.12 cd | - | 0.32±0.02 cd | ||
N2 | 1.32±0.16 a | 1.82±0.22 a | 1.46±0.12 a | - | 0.40±0.02 b | ||
F值 | W | 5.67* | 0.53 | 5.57* | - | 36.85** | |
F-value | N | 220.47** | 24.48** | 196.96** | - | 49.06** | |
W×N | 9.54** | 0.54 | 3.07* | - | 2.31 | ||
抽穗期 Heading stage | W1 | N0 | 0.55±0.07 d | 2.22±0.08 d | 0.71±0.07 e | 0.73±0.04 cd | 0.15±0.01 bc |
N1 | 0.92±0.11 c | 3.53±0.27 bc | 1.66±0.19 bc | 1.49±0.13 a | 0.14±0.01 cd | ||
N2 | 0.94±0.12 c | 3.52±0.50 bc | 1.77±0.09 b | 0.84±0.05 c | 0.15±0.01 b | ||
W2 | N0 | 0.49±0.00 d | 1.87±0.16 d | 0.52±0.01 e | 0.61±0.04 d | 0.16±0.01 ab | |
N1 | 1.12±0.04 b | 3.94±0.52 b | 1.47±0.20 cd | 1.31±0.15 a | 0.17±0.01 a | ||
N2 | 1.36±0.08 a | 4.52±0.28 a | 2.21±0.29 a | 1.43±0.19 a | 0.14±0.01 d | ||
W3 | N0 | 0.47±0.03 d | 1.68±0.05 d | 0.53±0.05 e | 0.58±0.06 d | 0.17±0.00 a | |
N1 | 0.83±0.08 c | 3.10±0.10 c | 1.32±0.04 d | 0.85±0.09 c | 0.16±0.01 ab | ||
N2 | 0.91±0.06 c | 3.26±0.24 c | 1.65±0.07 bc | 1.10±0.08 b | 0.15±0.00 bc | ||
F值 | W | 27.39** | 16.42** | 7.79** | 15.04** | 13.87** | |
F-value | N | 145.31** | 101.18** | 197.29** | 75.33** | 1.07 | |
W×N | 9.52** | 5.39** | 5.93** | 18.91** | 4.97** |
图3 灌溉模式与施氮量互作对茎蘖增长动态的影响
Fig. 3. Effects of interaction between irrigation mode and nitrogen application rate on dynamics of number of stems and tillers.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 成穗率 Productive tiller percentage/% | 产量Grain yield/(t·hm-2) | 产量贡献率Yield contribution rate/% | |||||
---|---|---|---|---|---|---|---|---|---|
主茎 MS | 一次分蘖 PT | 二次分蘖 ST | 主茎 MS | 一次分蘖 PT | 二次分蘖 ST | ||||
W1 | N0 | 63.43±3.09 b | 1.41±0.12 a | 2.56±0.23 d | - | 35.63±0.93 a | 64.37±1.69 b | - | |
N1 | 71.41±3.13 a | 1.43±0.06 a | 4.64±0.19 ab | 0.38±0.02 c | 22.21±0.30 cd | 71.97±0.97 ab | 5.82±0.08 e | ||
N2 | 63.58±2.84 b | 1.23±0.14 bc | 4.33±0.51 b | 0.80±0.09 a | 19.32±0.39 e | 68.09±1.37 b | 12.58±0.25 a | ||
W2 | N0 | 73.08±4.88 a | 1.01±0.06 de | 2.11±0.13 de | - | 32.37±3.03 b | 67.63±6.32 b | - | |
N1 | 75.51±1.92 a | 1.12±0.07 cd | 3.20±0.21 c | 0.47±0.03 c | 23.38±1.38 c | 66.90±3.95 b | 9.72±0.57 c | ||
N2 | 77.38±5.38 a | 0.94±0.05 de | 4.92±0.26 a | 0.43±0.02 c | 15.00±0.57 f | 78.15±2.98 a | 6.85±0.26 d | ||
W3 | N0 | 63.00±3.00 b | 0.93±0.08 e | 2.00±0.17 e | - | 31.84±1.06 b | 68.16±2.27 b | - | |
N1 | 73.11±3.55 a | 1.08±0.05 cde | 3.69±0.18 c | 0.60±0.03 b | 20.15±1.83 de | 68.69±6.25 b | 11.16±1.02 b | ||
N2 | 74.92±5.41 a | 1.31±0.15 ab | 4.72±0.54 ab | 0.71±0.08 a | 19.39±1.29 e | 70.11±4.68 b | 10.50±0.70 bc | ||
F值 | W | 12.69** | 29.93** | 5.44* | 22.50** | 6.05* | 1.81 | 29.87** | |
F-value | N | 7.86** | 2.12 | 150.96** | 43.02** | 276.21** | 4.34* | 15.71** | |
W×N | 2.75 | 8.02** | 9.03** | 28.41** | 6.55** | 3.29* | 114.77** |
表3 灌溉模式与施氮量互作对茎蘖产量构成的影响
Table 3 Effects of interaction between irrigation mode and nitrogen application rate on yield components of main stem and tillers.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 成穗率 Productive tiller percentage/% | 产量Grain yield/(t·hm-2) | 产量贡献率Yield contribution rate/% | |||||
---|---|---|---|---|---|---|---|---|---|
主茎 MS | 一次分蘖 PT | 二次分蘖 ST | 主茎 MS | 一次分蘖 PT | 二次分蘖 ST | ||||
W1 | N0 | 63.43±3.09 b | 1.41±0.12 a | 2.56±0.23 d | - | 35.63±0.93 a | 64.37±1.69 b | - | |
N1 | 71.41±3.13 a | 1.43±0.06 a | 4.64±0.19 ab | 0.38±0.02 c | 22.21±0.30 cd | 71.97±0.97 ab | 5.82±0.08 e | ||
N2 | 63.58±2.84 b | 1.23±0.14 bc | 4.33±0.51 b | 0.80±0.09 a | 19.32±0.39 e | 68.09±1.37 b | 12.58±0.25 a | ||
W2 | N0 | 73.08±4.88 a | 1.01±0.06 de | 2.11±0.13 de | - | 32.37±3.03 b | 67.63±6.32 b | - | |
N1 | 75.51±1.92 a | 1.12±0.07 cd | 3.20±0.21 c | 0.47±0.03 c | 23.38±1.38 c | 66.90±3.95 b | 9.72±0.57 c | ||
N2 | 77.38±5.38 a | 0.94±0.05 de | 4.92±0.26 a | 0.43±0.02 c | 15.00±0.57 f | 78.15±2.98 a | 6.85±0.26 d | ||
W3 | N0 | 63.00±3.00 b | 0.93±0.08 e | 2.00±0.17 e | - | 31.84±1.06 b | 68.16±2.27 b | - | |
N1 | 73.11±3.55 a | 1.08±0.05 cde | 3.69±0.18 c | 0.60±0.03 b | 20.15±1.83 de | 68.69±6.25 b | 11.16±1.02 b | ||
N2 | 74.92±5.41 a | 1.31±0.15 ab | 4.72±0.54 ab | 0.71±0.08 a | 19.39±1.29 e | 70.11±4.68 b | 10.50±0.70 bc | ||
F值 | W | 12.69** | 29.93** | 5.44* | 22.50** | 6.05* | 1.81 | 29.87** | |
F-value | N | 7.86** | 2.12 | 150.96** | 43.02** | 276.21** | 4.34* | 15.71** | |
W×N | 2.75 | 8.02** | 9.03** | 28.41** | 6.55** | 3.29* | 114.77** |
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 产量 Grain yield /(t·hm-2) | 有效穗数 Effective panicle number/(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
W1 | N0 | 3.74±0.10 d | 139.64±7.80 e | 128.6±3.0 b | 88.83±2.64 a | 24.87±0.77 a |
N1 | 6.25±0.08 ab | 222.92±17.78 cd | 148.3±9.4 a | 81.76±3.16 b | 23.95±0.30 abc | |
N2 | 6.05±0.12 b | 236.20±17.90 bc | 141.1±10.3 a | 81.28±0.18 b | 23.45±0.18 c | |
W2 | N0 | 2.94±0.28 e | 142.64±7.51 e | 109.6±2.5 c | 80.76±0.78 bc | 24.66±0.91 ab |
N1 | 4.77±0.28 c | 209.06±20.01 d | 120.4±4.7 bc | 79.69±3.85 bc | 23.94±0.62 abc | |
N2 | 6.22±0.24 ab | 253.29±14.90 ab | 141.5±3.5 a | 78.71±2.57 bc | 22.31±0.87 d | |
W3 | N0 | 2.74±0.09 e | 141.89±6.76 e | 112.3±7.2 c | 78.01±3.72 bc | 23.61±0.48 bc |
N1 | 5.03±0.46 c | 243.13±10.97 abc | 118.9±9.5 bc | 77.62±2.13 bc | 23.97±0.59 abc | |
N2 | 6.63±0.44 a | 265.07±12.13 a | 149.1±4.4 a | 75.98±3.06 c | 22.38±0.31 d | |
F值 | W | 16.94** | 4.17* | 13.42** | 14.29** | 3.75* |
F-value | N | 326.49** | 158.30** | 36.53** | 4.87* | 18.46** |
W×N | 12.10** | 1.96 | 6.53** | 1.62 | 1.84 |
表4 灌溉模式与施氮量互作对水稻产量及其构成因素的影响
Table 4 Effects of interaction between irrigation mode and nitrogen application rate on grain yield and its components.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 产量 Grain yield /(t·hm-2) | 有效穗数 Effective panicle number/(×104·hm-2) | 每穗粒数 Spikelet number per panicle | 结实率 Seed setting rate /% | 千粒重 1000-grain weight /g |
---|---|---|---|---|---|---|
W1 | N0 | 3.74±0.10 d | 139.64±7.80 e | 128.6±3.0 b | 88.83±2.64 a | 24.87±0.77 a |
N1 | 6.25±0.08 ab | 222.92±17.78 cd | 148.3±9.4 a | 81.76±3.16 b | 23.95±0.30 abc | |
N2 | 6.05±0.12 b | 236.20±17.90 bc | 141.1±10.3 a | 81.28±0.18 b | 23.45±0.18 c | |
W2 | N0 | 2.94±0.28 e | 142.64±7.51 e | 109.6±2.5 c | 80.76±0.78 bc | 24.66±0.91 ab |
N1 | 4.77±0.28 c | 209.06±20.01 d | 120.4±4.7 bc | 79.69±3.85 bc | 23.94±0.62 abc | |
N2 | 6.22±0.24 ab | 253.29±14.90 ab | 141.5±3.5 a | 78.71±2.57 bc | 22.31±0.87 d | |
W3 | N0 | 2.74±0.09 e | 141.89±6.76 e | 112.3±7.2 c | 78.01±3.72 bc | 23.61±0.48 bc |
N1 | 5.03±0.46 c | 243.13±10.97 abc | 118.9±9.5 bc | 77.62±2.13 bc | 23.97±0.59 abc | |
N2 | 6.63±0.44 a | 265.07±12.13 a | 149.1±4.4 a | 75.98±3.06 c | 22.38±0.31 d | |
F值 | W | 16.94** | 4.17* | 13.42** | 14.29** | 3.75* |
F-value | N | 326.49** | 158.30** | 36.53** | 4.87* | 18.46** |
W×N | 12.10** | 1.96 | 6.53** | 1.62 | 1.84 |
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 秸秆吸氮量 NUs/(kg·hm-2) | 籽粒吸氮量 NUg/(kg·hm-2) | 氮素干物质 生产效率 NDMPE/(kg·kg-1) | 氮素籽粒 生产效率 NGPE/(kg·kg-1) | 氮收获指数 NHI/% |
---|---|---|---|---|---|---|
W1 | N0 | 27.55±1.06 de | 39.55±1.59 e | 107.30±3.92 a | 55.71±2.23 a | 58.99±3.21 cd |
N1 | 62.31±5.63 a | 84.11±4.16 c | 81.25±3.70 bc | 42.79±2.42 cd | 57.49±1.87 cd | |
N2 | 54.81±1.08 b | 92.47±3.90 ab | 72.10±3.16 d | 41.11±1.69 d | 62.77±1.26 bc | |
W2 | N0 | 29.94±1.52 d | 36.62±2.83 e | 87.64±3.99 b | 44.15±2.05 bcd | 54.98±2.28 d |
N1 | 39.78±4.50 c | 62.89±5.26 d | 84.11±4.56 b | 46.45±1.61 bc | 61.26±3.62 bc | |
N2 | 41.52±5.79 c | 90.43±7.92 bc | 74.84±3.87 cd | 47.16±1.38 bc | 68.50±4.51 a | |
W3 | N0 | 21.78±2.32 e | 35.66±1.12 e | 88.88±4.74 b | 47.77±2.88 b | 62.15±2.09 bc |
N1 | 44.17±3.26 c | 67.90±3.19 d | 84.85±3.32 b | 44.88±2.17 bcd | 60.61±1.23 bc | |
N2 | 52.00±4.71 b | 99.69±6.07 a | 73.40±4.95 d | 43.77±3.93 bcd | 65.71±2.89 ab | |
F值 | W | 21.96** | 8.49** | 3.81* | 0.46 | 2.81 |
F-value | N | 108.29** | 366.15** | 60.96** | 12.42** | 16.59** |
W×N | 11.07** | 6.96** | 9.54** | 12.27** | 3.55* |
表5 灌溉模式与施氮量互作对水稻氮肥利用率的影响
Table 5 Effects of interaction between irrigation mode and nitrogen application rate on nitrogen use efficiency of rice.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 秸秆吸氮量 NUs/(kg·hm-2) | 籽粒吸氮量 NUg/(kg·hm-2) | 氮素干物质 生产效率 NDMPE/(kg·kg-1) | 氮素籽粒 生产效率 NGPE/(kg·kg-1) | 氮收获指数 NHI/% |
---|---|---|---|---|---|---|
W1 | N0 | 27.55±1.06 de | 39.55±1.59 e | 107.30±3.92 a | 55.71±2.23 a | 58.99±3.21 cd |
N1 | 62.31±5.63 a | 84.11±4.16 c | 81.25±3.70 bc | 42.79±2.42 cd | 57.49±1.87 cd | |
N2 | 54.81±1.08 b | 92.47±3.90 ab | 72.10±3.16 d | 41.11±1.69 d | 62.77±1.26 bc | |
W2 | N0 | 29.94±1.52 d | 36.62±2.83 e | 87.64±3.99 b | 44.15±2.05 bcd | 54.98±2.28 d |
N1 | 39.78±4.50 c | 62.89±5.26 d | 84.11±4.56 b | 46.45±1.61 bc | 61.26±3.62 bc | |
N2 | 41.52±5.79 c | 90.43±7.92 bc | 74.84±3.87 cd | 47.16±1.38 bc | 68.50±4.51 a | |
W3 | N0 | 21.78±2.32 e | 35.66±1.12 e | 88.88±4.74 b | 47.77±2.88 b | 62.15±2.09 bc |
N1 | 44.17±3.26 c | 67.90±3.19 d | 84.85±3.32 b | 44.88±2.17 bcd | 60.61±1.23 bc | |
N2 | 52.00±4.71 b | 99.69±6.07 a | 73.40±4.95 d | 43.77±3.93 bcd | 65.71±2.89 ab | |
F值 | W | 21.96** | 8.49** | 3.81* | 0.46 | 2.81 |
F-value | N | 108.29** | 366.15** | 60.96** | 12.42** | 16.59** |
W×N | 11.07** | 6.96** | 9.54** | 12.27** | 3.55* |
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 糙米率 BR/% | 精米率 MR/% | 整精米率 HMR/% | 垩白粒率 CR/% | 垩白度 CD/% | 糊化温度 PT/℃ | 胶稠度 GC/mm | 直链淀粉含量 AC/% |
---|---|---|---|---|---|---|---|---|---|
W1 | N0 | 77.8 | 71.2 | 56.6 | 43.3 | 18.9 | 70~74 | 48.33 | 20.3 |
N1 | 79.5 | 72.4 | 57.3 | 27.5 | 11.6 | 75 | 42.00 | 22.1 | |
N2 | 79.3 | 69.2 | 54.3 | 27.7 | 10.8 | 70~74 | 50.33 | 19.2 | |
W2 | N0 | 77.7 | 69.3 | 55.1 | 44.8 | 19.2 | 70~74 | 51.67 | 22.9 |
N1 | 79.0 | 66.5 | 53.8 | 39.0 | 16.8 | <70 | 49.67 | 21.1 | |
N2 | 78.2 | 70.1 | 53.1 | 47.7 | 24.3 | 70~74 | 47.67 | 17.6 | |
W3 | N0 | 76.6 | 67.3 | 53.9 | 54.2 | 24.9 | 70~74 | 48.67 | 18.8 |
N1 | 78.3 | 66.0 | 54.3 | 38.3 | 14.5 | 70~74 | 55.00 | 23.5 | |
N2 | 79.8 | 69.2 | 55.9 | 37.9 | 14.9 | 70~74 | 58.00 | 21.3 |
表6 灌溉模式与施氮量互作对稻米品质的影响
Table 6 Effects of interaction between irrigation mode and nitrogen application rate on rice quality.
灌溉模式 Irrigation mode | 施氮量 Nitrogen rate | 糙米率 BR/% | 精米率 MR/% | 整精米率 HMR/% | 垩白粒率 CR/% | 垩白度 CD/% | 糊化温度 PT/℃ | 胶稠度 GC/mm | 直链淀粉含量 AC/% |
---|---|---|---|---|---|---|---|---|---|
W1 | N0 | 77.8 | 71.2 | 56.6 | 43.3 | 18.9 | 70~74 | 48.33 | 20.3 |
N1 | 79.5 | 72.4 | 57.3 | 27.5 | 11.6 | 75 | 42.00 | 22.1 | |
N2 | 79.3 | 69.2 | 54.3 | 27.7 | 10.8 | 70~74 | 50.33 | 19.2 | |
W2 | N0 | 77.7 | 69.3 | 55.1 | 44.8 | 19.2 | 70~74 | 51.67 | 22.9 |
N1 | 79.0 | 66.5 | 53.8 | 39.0 | 16.8 | <70 | 49.67 | 21.1 | |
N2 | 78.2 | 70.1 | 53.1 | 47.7 | 24.3 | 70~74 | 47.67 | 17.6 | |
W3 | N0 | 76.6 | 67.3 | 53.9 | 54.2 | 24.9 | 70~74 | 48.67 | 18.8 |
N1 | 78.3 | 66.0 | 54.3 | 38.3 | 14.5 | 70~74 | 55.00 | 23.5 | |
N2 | 79.8 | 69.2 | 55.9 | 37.9 | 14.9 | 70~74 | 58.00 | 21.3 |
[1] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯. 中国水稻高产栽培技术创新与实践[J]. 中国农业科学, 2015, 48(17): 3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China[J]. Scientia Agricultura Sinica, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[2] | Chen Q, He A B, Wang W Q, Peng S B, Huang J L, Cui K H, Nie L X.Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in central China[J]. Field Crops Research, 2018, 223: 164-170. |
[3] | Peng S B, Khush G S, Virk P, Tang Q Y, Zou Y B.Progress in ideotype breeding to increase rice yield potential[J]. Field Crops Research, 2008, 108: 32-38. |
[4] | 张巫军, 段秀建, 姚雄, 刘强明, 肖人鹏, 张现伟, 唐永群, 文明, 李经勇. 遮阴对重穗型杂交水稻茎秆形态特征和抗倒伏性的影响[J]. 中国稻米, 2020, 26(2): 9-13. |
Zhang W J, Duan X J, Yao X, Liu Q M, Xiao R P, Zhang X W, Tang Y Q, Wen M, Li J Y.Effects of shading on stem morphological traits and lodging resistance in heavy type panicle of indica rice[J]. China Rice, 2020, 26(2): 9-13. (in Chinese with English abstract) | |
[5] | 杨陶陶, 解嘉鑫, 黄山, 谭雪明, 潘晓华, 曾勇军, 石庆华, 张俊, 曾研华. 花后增温对双季晚粳稻产量和稻米品质的影响[J]. 中国农业科学, 2020, 53(7): 1338-1347. |
Yang T T, Xie J X, Huang S, Tan X M, Pan X H, Zeng Y J, Shi Q H, Zhang J, Zeng Y H.The impacts of Post-anthesis warming on grain yield and quality of late japonica rice in a double rice cropping system[J]. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347. (in Chinese with English abstract) | |
[6] | 李静. 温度与光照对水稻产量的影响研究进展[J]. 现代农业科技, 2012(13): 25-26, 31. |
Li J.Research progress on the effects of temperature and light on rice yield[J]. Modern Agricultural Sciences and Technology, 2012(13): 25-26, 31. (in Chinese) | |
[7] | 李婷婷, 冯钰枫, 朱安, 黄健, 汪浩, 李思宇, 刘昆, 彭如梦, 张宏路, 刘立军. 主要节水灌溉方式对水稻根系形态生理的影响[J]. 中国水稻科学, 2019, 33(4): 293-302. |
Li T T, Feng Y F, Zhu A, Huang J, Wang H, Li S Y, Liu K, Peng R M, Zhang H L, Liu L J.Effects of main water-saving irrigation methods on morphological and physiological traits of rice roots[J]. Chinese Journal of Rice Science, 2019, 33(4): 293-302. (in Chinese with English abstract) | |
[8] | Bouman B.A conceptual framework for the improvement of crop water productivity at different spatial scales[J]. Agricultural Systems, 2007, 93(3): 43-60. |
[9] | 侯云鹏, 杨建, 李前, 秦裕波, 孔丽丽, 尹彩侠, 王立春, 谢佳贵. 施氮对水稻产量、氮素利用及土壤无机氮积累的影响[J]. 土壤通报, 2016, 47(1): 118-124. |
Hou Y P, Yang J, Li Q, Qin Y B, Kong L L, Yin C X, Wang L C, Xie J G.Effects of nitrogen application on rice yield, nitrogen use, and soil inorganic nitrogen accumulation[J]. Chinese Journal of Soil Science, 2016, 47(01): 118-124. (in Chinese with English abstract) | |
[10] | 吴巍, 赵军. 植物对氮素吸收利用的研究进展[J]. 中国农学通报, 2010, 26(13): 75-78. |
Wu W, Zhao J.Research progress on nitrogen uptake and utilization by plants[J]. Chinese Agricultural Science Bulletin, 2010, 26(13): 75-78. (in Chinese with English abstract) | |
[11] | 晏军, 吴启侠, 朱建强, 张露萍. 适雨灌溉下氮肥运筹对水稻光合特性、氮素吸收及产量形成的影响[J]. 中国水稻科学, 2019, 33(4): 347-356. |
Yan J, Wu Q X, Zhu J Q, Zhang L P.Effects of nitrogen application on rice photosynthetic characteristics, nitrogen uptake and grain yield formation under rainfall-adapted water management[J]. Chinese Journal of Rice Science, 2019, 33(4): 347-356. (in Chinese with English abstract) | |
[12] | 于显枫, 郭天文, 张仁陟, 张绪成, 马一凡, 赵记军. 水氮互作对春小麦叶片气体交换和叶绿素荧光参数的作用机制[J]. 西北农业学报, 2008(3): 117-123. |
Yu X F, Guo T W, Zhang R Z, Zhang X C, Ma Y F, Zhao J J. Effects of water and nitrogen interaction on leaf gas exchange and chlorophyll fluorescence parameters of spring wheat[J] Acta Agriculturae Boreali-occidentalis Sinica, 2008(3): 117-123. (in Chinese with English abstract) | |
[13] | Garcia M C, Lamattia L.Nitric oxide and abscisic acid cross talk in guard cells[J]. Plant Physiology, 2002, 128(3): 790-792. |
[14] | 熊正琴, 邢光熹, 沈光裕, 孙德玲. 太湖地区湖、河和井水中氮污染状况的研究[J]. 农村生态坏境, 2002, 18(2): 29-33. |
Xiong Z Q, Xing G X, Shen G Y, Sun D L.Non-point source N pollution of lakes, rivers and wells in the Taihu lake region[J]. Journal of Ecology and Rural Environment, 2002, 18(2): 29-33. (in Chinese with English abstract) | |
[15] | Zhang H, Li H W, Yuan L M, Wang Z Q, Yang J C, Zhang J H.Post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice[J]. Journal of Experimental Botany, 2012, 63(1): 215-227. |
[16] | 邵士梅, 马丙菊, 常雨晴, 景文疆, 侯丹平, 赵步洪, 张耗. 水氮互作对水稻产量形成的影响研究进展[J]. 中国稻米, 2019, 25(3): 21-25. |
Shao S M, Ma B J, Chang Y Q, Jing W J, Hou D P, Zhao B H, Zhang H.Research progress on the effects of water and nitrogen interaction on rice yield formation[J]. China Rice, 2019, 25(3): 21-25. (in Chinese with English abstract) | |
[17] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999. |
Lu R K. Analytical Methods for Soil and Agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999. | |
[18] | 赵建红, 李玥, 孙永健, 李应洪, 孙加威, 代邹, 谢华英, 徐徽, 马均. 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响[J]. 植物营养与肥料学报, 2016, 22(3): 609-617. |
Zhao J H, Li Y, Sun Y J, Li Y H, Sun J W, Dai Z, Xie H Y, Xu H, Ma J.Effects of irrigation and nitrogen management on nitrogen use efficiency and yield of hybrid rice cultivated in ditches under no-tillage[J]. Plant Nutrition and Fertilizer Science, 2016, 22(3): 609-617. (in Chinese with English abstract) | |
[19] | Cabangon R J, Tuong T P, Castillo E G, Bao L X, Lu G A,Wang G H, Cui Y L, Bouman B A M, Li Y H, Chen C D, Wang J Z. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China[J]. Paddy and Water Environment, 2004, 2(4): 195-206. |
[20] | Sun Y J, Ma J, Sun Y Y,Xu H, Yang Z Y, Liu S J, Jia X W, Zheng H Z. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2012, 127(27): 85-98. |
[21] | 孙永健, 马均, 孙园园, 徐徽, 严奉君, 代邹, 蒋明金, 李玥. 水氮管理模式对杂交籼稻冈优527群体质量和产量的影响[J]. 中国农业科学, 2014, 47(10): 2047-2061. |
Sun Y J, Ma J, Sun Y Y, Xu H, Yan F J, Dai Z, Jiang M J, Li Y.Effects of water and nitrogen management patterns on population quality and yield of hybrid rice Gangyou 527[J]. Scientia Agricultura Sinica, 2014, 47(10): 2047-2061. (in Chinese with English abstract) | |
[22] | 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J]. 中国农业科学, 1996, 29(4): 59-67. |
Yang J C, Wang Z Q, Zhu Q S.Effects of nitrogen nutrition on rice yield and its physiological mechanism under different soil water conditions[J]. Scientia Agricultura Sinica, 1996, 29(4): 59-67. (in Chinese with English abstract) | |
[23] | Sharma B D, Kar S, Cheema S S.Yield, water use and nitrogen uptake for different water and N levels in winter wheat[J]. Fertilizer Research, 1990, 22(2): 119-127. |
[24] | 龙旭, 汪仁全, 孙永健, 马均. 不同施氮量下三角形强化栽培水稻群体发育与产量形成特征. 中国水稻科学, 2010, 24(2): 162-168. |
Long X, Wang R Q, Sun Y J, Ma J.Characteristics of population development and yield formation of rice under triangle-planted system of rice intensification at different nitrogen application amounts[J]. Chinese Journal of Rice Science, 2010, 24(2): 162-168. (in Chinese with English abstract) | |
[25] | 李刚华, 张国发, 陈功磊, 王绍华, 凌启鸿, 丁艳锋. 超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应. 作物学报, 2009, 35(6): 1106-1114. |
Li G H, Zhang G F, Chen G L, Wang S H, Ling Q H, Ding Y F.Population characteristics of super japonica rice Ningjing 1 and Ningjing 3 and its responses to nitrogen[J]. Acta Agronomica Sinica, 2009, 35(6): 1106-1114. (in Chinese with English abstract) | |
[26] | 徐国伟, 陆大克, 孙会忠, 王贺正, 李友军. 干湿交替灌溉与施氮耦合对水稻根际环境的影响[J]. 农业工程学报, 2017, 33(4): 186-194. |
Xu G W, Lu D K, Sun H Z, Wang H Z, Li Y J.Effect of alternative wetting and drying irrigation and nitrogen coupling on rhizosphere environment of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 186-194. (in Chinese with English abstract) | |
[27] | 褚光, 展明飞, 朱宽宇, 王志琴, 杨建昌. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026-1036. |
Chu G, Zhan M F, Zhu K Y, Wang Z Q, Yang J C.Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice.Acta Agronomica Sinica, 2016, 42(7): 1026-1036. (in Chinese with English abstract) | |
[28] | Yang J.Approaches to achieve high yield and high resource use efficiency in rice[J]. Frontiers of Agricultural Science and Engineering, 2015, 2(2): 115-123. |
[29] | 徐国伟, 陆大克, 刘聪杰, 王贺正, 陈明灿, 李友军. 干湿交替灌溉和施氮量对水稻内源激素及氮素利用的影响[J]. 农业工程学报, 2018, 34(7): 137-146. |
Xu G W, Lu D K, Liu C J, Wang H Z, Chen M C, Li Y J.Effects of alternate wetting and drying irrigation and nitrogen application rate on endogenous hormones and nitrogen utilization of rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(7): 137-146. (in Chinese with English abstract) | |
[30] | 宁慧峰, 崔嘉欣, 刘浩, 孙景生. 灌溉方式和施氮量对水稻产量和品质的影响[J]. 灌溉排水学报, 2017, 36(12): 1-7. |
Ning H F, Cui J X, Liu H, Sun J S.Effects of irrigation mode and nitrogen application rate on rice yield and quality[J]. Journal of Irrigation and Drainage, 2017, 36(12): 1-7. (in Chinese with English abstract) | |
[31] | 潘圣刚, 曹凑贵, 蔡明历, 汪金平, 王若涵, 原保忠, 翟晶. 不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响[J]. 植物营养与肥料学报, 2009, 15(2): 283-289. |
Pan S G, Cao C G, Cai M L, Wang J P, Wang R H, Yuan B Z, Zhai J.Effects of nitrogen fertilizer level on rice nitrogen use efficiency, yield and quality under different irrigation modes[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 283-289. (in Chinese with English abstract) |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[6] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[7] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[8] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[9] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[10] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[11] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[12] | 赵艺婷, 谢可冉, 高逖, 崔克辉. 水稻分蘖期干旱锻炼对幼穗分化期高温下穗发育和产量形成的影响[J]. 中国水稻科学, 2024, 38(3): 277-289. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||