中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2010, Vol. 24 Issue (3): 329-334     DOI: 10.3969/j.issn.1001-7216.2010.03.019
综述与专论 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
稻米砷研究进展

王永杰,郑祥民*,周立旻

华东师范大学 地理信息科学教育部重点实验室, 上海 200062; *通讯联系人: E-mail: xmzheng@re.ecnu.edu.cn

A Review on Arsenic in Rice

WANG Yong-jie, ZHENG Xiang-min*, ZHOU Li-min
Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200062, China;*Corresponding author, E-mail: xmzheng@re.ecnu.edu.cn
 全文: PDF (670 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 砷作为一种典型有毒元素被认为是最为严重的污染物之一。砷元素对人体的危害是一个长期的、慢性的毒害过程。水稻对砷的同化吸收能力高于其他谷物,稻米是人体摄入砷的主要来源之一。水稻籽粒中砷以无机As (Ⅲ + Ⅴ)、二甲基砷(DMA)为主,其中无机砷占总砷的10%~90%。大米中总砷含量为0.005~0.710 mg/kg。研究发现含砷大米可以分为两种不同类型:一类是大米中砷以DMA为主,且DMA含量随总砷含量的增加而增加;另一类是大米中砷以无机As (Ⅲ + Ⅴ) 为主,含量也随总砷含量的增加而增加。淹水厌氧环境是造成水稻砷富集的主要原因之一。在土壤富氧条件下种植水稻可有效减少水稻对砷的吸收。砷元素在水稻根际环境中的行为研究、微生物调控作用研究、水稻体内砷代谢机制的分子生物学及功能基因组研究等对未来水稻中砷的研究有着重要指导意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永杰
郑祥民
周立旻
关键词稻米      毒害     
Abstract Arsenic(As) is now regarded as one of the most serious contaminants as a typical noxious element,especially inorganic arsenic. Indeed, arsenic has a chronic poisoning effect in human body. Recent studies have shown that rice is much more efficient in assimilating arsenic into its straw and grains than other staple cereal crops, and consumption of rice constitutes a large proportion of dietary intake of arsenic. Therefore, scientists pay a high degree of attention to arsenic in rice. In rice total As content varies from 0.005 to 0.710 mg/kg. Arsenic speciation in rice grain is dominated by inorganic As(Ⅲ+V) and dimethylarsinic(DMA). The inorganic As content in rice varies from 10% to 90% of total As. Now, studies have shown that there are two types of arsenic contained rice, one with arsenic speciation dominated by DMA, and the other by inorganic arsenic. Both of them show an increasing trend in DMA/As(Ⅲ+V) content with rising total arsenic. The flooded conditions is one of the main reasons for enhanced arsenic accumulation in rice, and growing rice aerobically can dramatically decrease the arsenic transfer from soil to rice. Differing chemical states of arsenic, the mechanism of arsenic mobility in rhizosphere and mediated by microbial activity is need to be further researched in the near future. In addition, molecular approaches and functional genomics may also help understand the mechanisms of arsenic transportation and transform in rice.
Key wordsrice   arsenic   toxicity   
收稿日期: 1900-01-01;
引用本文:   
王永杰,郑祥民,周立旻. 稻米砷研究进展[J]. 中国水稻科学, 2010, 24(3): 329-334 .
WANG Yong-jie, ZHENG Xiang-min*,ZHOU Li-min.

A Review on Arsenic in Rice

[J]. , 2010, 24(3): 329-334 .
 
[1] Rahman M A, Hasegawa H, Rahman M M, et al. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 2007, 69(6): 942-948.
[2] Rahman M A, Hasegawa H, Rahman M M, et al. Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: A glass house study. Water Air Soil Pollut, 2007, 185: 53-61.
[3] Smedley P L, Kinniburgh D G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem, 2002, 17(5): 517-568.
[4] Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol, 2008, 42(13): 5008-5013.
[5] Xu X Y, McGrath S P, Meharg A A, et al. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42(15): 5574-5579.
[6] Hirano S, Kobayashi Y, Cui X, et al. The accumulation and toxicity of methylated arsenicals in endothelial cells: Important roles of thiol compounds. Toxicol Appl Pharm, 2004, 198(3): 458-467.
[7] Zavala Y J, Gerads R, Gürleyük H, et al. Arsenic in rice:Ⅱ. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol, 2008, 42(10): 3861-3866.
[8] Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect, 2006, 114(12): 1826-1831.
[9] Meharg A A, Rahman M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ Sci Technol, 2003, 37(2): 229-234.
[10] Petrick J S, Ayala-Fierro F, Cullen W R, et al. Monomethylarsonous acid (MMA(Ⅲ)) is more toxic than arsenic in chang human hepatocytes. Toxicol Appl Pharm, 2000, 163(2): 203-207.
[11] Williams P N, Prince A H, Raab A, et al. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol, 2005, 39(14): 5531-5540.
[12] Bogdan K, Schenk M K. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol, 2008, 42(21): 7885-7890.
[13] Torres-Escribano S, Leal M, Vélez D, et al. Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking and risk assessments. Environ Sci Technol, 2008, 42(10): 3867-3872.
[14] Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol, 2007, 41(19): 6854-6859.
[15] Nordstrom D K.World wide occurrences of arsenic in groundwater. Science, 2002, 296(5576): 2143-2144.
[16] Rahman M A, Hasegawa H, Rahman M M, et al. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 2007, 69(6): 942-948.
[17] Williams P N, Islam M R, Adomako E. E, et al. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol, 2006, 40(16): 4903-4908.
[18] Rahman M A, Hasegawa H, Rahman M M, et al. Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: A glass house study. Water Air Soil Pollut, 2007, 185: 53-61.
[19] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue? Environ Pollut, 2008, 154(2): 169-171.
[20] Agusa T, Kunito T, Fujihara J, et al. Contamination by arsenic and other trace elements in tube well water and its risks assessments to humans in Hanoi, Vietnam. Environ Pollut, 2006, 139(1): 95-106.
[21] Xu X Y, McGrath S P, Meharg A A, et al. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42(15): 5574-5579.
[22] Kinniburgh D G, Kosmus W. Arsenic contamination in groundwater: Some analytical considerations. Talanta, 2002, 58(1): 165-180.
[23] Styblo M, Del-Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol, 2000, 74(6): 289-299.
[24] Polizzotto M L, Kocar B D, Benner S G, et al. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 2008, 454(7203): 505-508.
[25] Zavala Y J, Gerads R, Gürleyük H, et al. Arsenic in rice:Ⅱ. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol, 2008, 42(10): 3861-3866.
[26] Sun G X, Williams P N, Anne-Marie C, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol, 2008, 42(19): 7542-7546.
[27] Schoof R A, Yost L J, Eickhoff J, et al. A market basket survey of inorganic arsenic in food. Food Chem Toxicol, 1999, 37(8): 839-846.
[28] Zavala Y J, Duxbury J M. Arsenic in rice:Ⅰ. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol, 2008, 42(10): 3856-3860.
[29] Meliker J R, Franzblau A, Slotnick M J, et al. Major contributors to inorganic arsenic intake in southeastern Michigan. Int J Hyg Environ Health, 2006, 209(5): 399-411.
[30] Abedin M J, Cresser M S, Meharg A A, et al.Arsenic accumulation and metabolism in rice (Oryza sativa L.).Environ Sci Technol, 2002, 36(5): 962-968.
[31] Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect, 2006, 114(12): 1826-1831.
[32] Williams P N, Raab A, Feldmann J, et al. High levels of arsenic in South Central US rice grain: Consequences for human dietary exposure. Environ Sci Technol, 2007, 41(7): 2178-2183.
[33] Torres-Escribano S, Leal M, Vélez D, et al. Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking and risk assessments. Environ Sci Technol, 2008, 42(10): 3867-3872.
[34] Williams P N, Islam M R, Adomako E. E, et al. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol, 2006, 40(16): 4903-4908.
[35] Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol, 2009, 43(5): 1612-1617.
[36] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue? Environ Pollut, 2008, 154(2): 169-171.
[37] Islam M R, Islam S, Jahiruddin M, et al. Effects of irrigation water arsenic in the rice-rice cropping system. J Biol Sci, 2004, 4(4): 542-546.
[38] Styblo M, Del-Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol, 2000, 74(6): 289-299.
[39] Sun G X, Williams P N, Anne-Marie C, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol, 2008, 42(19): 7542-7546.
[40] Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants. Plant Physiol, 2002, 128(3): 1120-1128.
[41] Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot, 2004, 55(403): 1-7.
[42] Zavala Y J, Duxbury J M. Arsenic in rice:Ⅰ. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol, 2008, 42(10): 3856-3860.
[43] O′Day P A, Vlassopoulos D, Root R, et al. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. PNAS, 2004, 101(38): 13703-13708.
[44] Abedin M J, Cresser M S, Meharg A A, et al.Arsenic accumulation and metabolism in rice (Oryza sativa L.).Environ Sci Technol, 2002, 36(5): 962-968.
[45] Chen Z, Zhu Y G, Liu W J, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol, 2005, 165(1): 91-97.
[46] Kocar B D, Fendorf S. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environ Sci Technol, 2009, 43(13): 4871-4877.
[47] Blute N K, Jay J A, Swartz C H, et al. Aqueous and solid phase arsenic speciation in the sediments of a contaminated wetland and riverbed. Appl Geochem, 2009, 24(2): 346-358.
[48] Islam M R, Islam S, Jahiruddin M, et al. Effects of irrigation water arsenic in the rice-rice cropping system. J Biol Sci, 2004, 4(4): 542-546.
[49] Liu W J, Zhu Y G, Smith F A, et al. Do phosphorus nutrition and iron plaque alter arsenate(As) uptake by rice seedlings in hydroponic culture? New Phytol, 2004, 162(2): 481-488.
[50] Kwong Y, Beauchemin S, Houssain M, et al. Transformation and mobilization of arsenic in the historic Cobalt mining camp, Ontario, Canada. J Geochem Explor, 2007, 92(2/3): 133-150.
[51] Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants. Plant Physiol, 2002, 128(3): 1120-1128.
[52] Duxbury J D, Panaullah G, Koo-Oshima S. Remediation of Arsenic for Agriculture Sustainability, Food Security and Health in Bangladesh. FAOWATER Working Paper. Rome: FAO, 2007.
[53] Polizzotto M L, Kocar B D, Benner S G, et al. Nearsurface wetland sediments as a source of arsenic release to groundwater in Asia. Nature, 2008, 454(7203): 505-508.
[54] Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot, 2004, 55(403): 1-7.
[55] Zong Y, Chen Z, Innes J B, et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature, 2007, 449(7161): 459-462.
[56] Masscheleyn P H, Delaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol, 1991, 25(8): 1414-1419.
[57] Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol, 2008, 42(13): 5008-5013.
[58] Chen Z, Zhu Y G, Liu W J, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol, 2005, 165(1): 91-97.
[59] Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol, 2004, 38(4): 1038-1044.
[60] Meharg A A, Rahman M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ Sci Technol, 2003, 37(2): 229-234.
[61] Liu W J, Zhu Y G, Smith F A, et al. Do phosphorus nutrition and iron plaque alter arsenate(As) uptake by rice seedlings in hydroponic culture? New Phytol, 2004, 162(2): 481-488.
[62] Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43(10): 3778-3783.
[63] 金银龙. GB5749-2006《生活饮用水卫生标准》释义. 北京:中国标准出版社, 2007.
[64] Francesconi K A. Toxic metal species and food regulations making a healthy choice. Analyst, 2007, 132(1): 17-20
[65] Stone R. Arsenic and paddy rice: A neglected cancer risk? Science, 2008, 321(5886): 184-185
[66] Williams P N, Prince A H, Raab A, et al. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol, 2005, 39(14): 5531-5540.
[67] Smith N M, Lee R, Heitkemper D T, et al. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ, 2006, 370(2/3): 294-301.
[68] Duxbury J D, Panaullah G, Koo-Oshima S. Remediation of Arsenic for Agriculture Sustainability, Food Security and Health in Bangladesh. FAOWATER Working Paper. Rome: FAO, 2007.
[69] Oremland R S, Kulp T R, Blum J S, et al. A microbial arsenic cycle in a salt-saturated, extreme environment. Science, 2005, 308(5726): 1305-1308.
[70] Masscheleyn P H, Delaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol, 1991, 25(8): 1414-1419.
[71] Chow S S, Taillefert M. Effect of arsenic concentration on microbial iron reduction and arsenic speciation in an iron-rich freshwater sediment. Geochim Cosmochim Acta, 2009, 73(20): 6008-6021.
[72] Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol, 2004, 38(4): 1038-1044.
[73] Williams P N, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol, 2007, 41(19): 6854-6859.
[74] Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43(10): 3778-3783.
[75] Rahman M A, Hasegawa H, Rahman M M, et al. Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution in fractions of rice grain. Chemosphere, 2007, 69(6): 942-948.
[76] 金银龙. GB5749-2006《生活饮用水卫生标准》释义. 北京:中国标准出版社, 2007.
[77] Rahman M A, Hasegawa H, Rahman M M, et al. Arsenic accumulation in rice (Oryza sativa L.) varieties of Bangladesh: A glass house study. Water Air Soil Pollut, 2007, 185: 53-61.
[78] Xu X Y, McGrath S P, Meharg A A, et al. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol, 2008, 42(15): 5574-5579.
[79] Zavala Y J, Gerads R, Gürleyük H, et al. Arsenic in rice:Ⅱ. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol, 2008, 42(10): 3861-3866.
[80] Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ Health Perspect, 2006, 114(12): 1826-1831.
[81] Francesconi K A. Toxic metal species and food regulations making a healthy choice. Analyst, 2007, 132(1): 17-20
[82] Stone R. Arsenic and paddy rice: A neglected cancer risk? Science, 2008, 321(5886): 184-185
[83] Torres-Escribano S, Leal M, Vélez D, et al. Total and inorganic arsenic concentrations in rice sold in Spain, effect of cooking and risk assessments. Environ Sci Technol, 2008, 42(10): 3867-3872.
[84] Smith N M, Lee R, Heitkemper D T, et al. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ, 2006, 370(2/3): 294-301.
[85] Williams P N, Islam M R, Adomako E. E, et al. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol, 2006, 40(16): 4903-4908.
[86] Oremland R S, Kulp T R, Blum J S, et al. A microbial arsenic cycle in a salt-saturated, extreme environment. Science, 2005, 308(5726): 1305-1308.
[87] Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice: A global health issue? Environ Pollut, 2008, 154(2): 169-171.
[88] Styblo M, Del-Razo L M, Vega L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol, 2000, 74(6): 289-299.
[89] Chow S S, Taillefert M. Effect of arsenic concentration on microbial iron reduction and arsenic speciation in an iron-rich freshwater sediment. Geochim Cosmochim Acta, 2009, 73(20): 6008-6021.
[90] Sun G X, Williams P N, Anne-Marie C, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol, 2008, 42(19): 7542-7546.
[91] Zavala Y J, Duxbury J M. Arsenic in rice:Ⅰ. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol, 2008, 42(10): 3856-3860.
[92] Abedin M J, Cresser M S, Meharg A A, et al.Arsenic accumulation and metabolism in rice (Oryza sativa L.).Environ Sci Technol, 2002, 36(5): 962-968.
[93] Islam M R, Islam S, Jahiruddin M, et al. Effects of irrigation water arsenic in the rice-rice cropping system. J Biol Sci, 2004, 4(4): 542-546.
[94] Abedin M J, Feldmann J, Meharg A A. Uptake kinetics of arsenic species in rice plants. Plant Physiol, 2002, 128(3): 1120-1128.
[95] Liu W J, Zhu Y G, Smith F A, et al. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot, 2004, 55(403): 1-7.
[96] Chen Z, Zhu Y G, Liu W J, et al. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol, 2005, 165(1): 91-97.
[97] Liu W J, Zhu Y G, Smith F A, et al. Do phosphorus nutrition and iron plaque alter arsenate(As) uptake by rice seedlings in hydroponic culture? New Phytol, 2004, 162(2): 481-488.
[98] Duxbury J D, Panaullah G, Koo-Oshima S. Remediation of Arsenic for Agriculture Sustainability, Food Security and Health in Bangladesh. FAOWATER Working Paper. Rome: FAO, 2007.
[99] Masscheleyn P H, Delaune R D, Patrick W H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol, 1991, 25(8): 1414-1419.
[100] Takahashi Y, Minamikawa R, Hattori K H, et al. Arsenic behaviour in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol, 2004, 38(4): 1038-1044.
[101] Li R Y, Stroud J L, Ma J F, et al. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol, 2009, 43(10): 3778-3783.
[102] 金银龙. GB5749-2006《生活饮用水卫生标准》释义. 北京:中国标准出版社, 2007.
[103] Francesconi K A. Toxic metal species and food regulations making a healthy choice. Analyst, 2007, 132(1): 17-20
[104] Stone R. Arsenic and paddy rice: A neglected cancer risk? Science, 2008, 321(5886): 184-185
[105] Smith N M, Lee R, Heitkemper D T, et al. Inorganic arsenic in cooked rice and vegetables from Bangladeshi households. Sci Total Environ, 2006, 370(2/3): 294-301.
[106] Oremland R S, Kulp T R, Blum J S, et al. A microbial arsenic cycle in a salt-saturated, extreme environment. Science, 2005, 308(5726): 1305-1308.
[107] Chow S S, Taillefert M. Effect of arsenic concentration on microbial iron reduction and arsenic speciation in an iron-rich freshwater sediment. Geochim Cosmochim Acta, 2009, 73(20): 6008-6021.
[1] 陈能, 杨仕华, 谢黎虹, 段彬伍. 我国籼稻产区多点间稻米食味评价的比较[J]. 中国水稻科学, 2011, 25(4): 413-419.
[2] 李丁鲁张建明,王慧,李茂柏, 朴钟泽, . 长江下游地区部分优质粳稻品种与越光稻米支链淀粉结构特征及品质性状比较[J]. 中国水稻科学, 2010, 24(4): 379-384 .
[3] 刘璎瑛,丁为民陈建伟,沈明霞. 基于霍特林变换的稻米彩色图像粒形检测算法[J]. 中国水稻科学, 2010, 24(3): 325-328 .
[4] 张永生,江玲,刘喜,刘世家,陈亮明,翟虎渠,万建民. 优质水稻品种越光(Koshihikari)中控制稻米淀粉RVA谱特征值的QTL分析[J]. 中国水稻科学, 2010, 24(2): 137-144 .
[5] 朱振华,金基永,袁平荣,赵国珍,苏振喜,世荣,邹茜,杨世准,戴陆园,. 不同海拔条件下耐冷性粳稻品种的稻米淀粉RVA谱特性[J]. 中国水稻科学, 2010, 24(2): 151-156 .
[6] 王彦荣,邱福林,华泽田,代贵金 . 北方杂交粳稻亲本籼粳成分与杂种产量和稻米品质性状的关系[J]. 中国水稻科学, 2010, 24(2): 145-150 .
[7] 戴云云,丁艳锋,刘正辉,王强盛,李刚华,王绍华. 花后水稻穗部夜间远红外增温处理对稻米品质的影响[J]. 中国水稻科学, 2009, 23(4): 414-420 .
[8] 郝宪彬马秀芳,胡培松,张忠旭,隋国民,华泽田,. 北方杂交粳稻株型与稻米品质性状的关系[J]. 中国水稻科学, 2009, 23(4): 398-404 .
[9] 王 慧李茂柏, 张建明,石英尧,李丁鲁,朴钟泽. 水稻籽粒不同部位植酸含量及其与稻米品质的相关性[J]. 中国水稻科学, 2009, 23(2): 215-215~218 .
[10] 陈圣倪大虎,陆徐忠, 宋丰顺, 张士陆, 王宗阳 ,蔡秀玲 ,李泽福,汪秀锋,李 莉 杨剑波,. 利用分子标记技术降低协优57的直链淀粉含量[J]. 中国水稻科学, 2008, 22(6): 597-597~602 .
[11] 徐春梅,王丹英,邵国胜,章秀福. 施氮量和栽插密度对超高产水稻中早22产量和品质的影响[J]. 中国水稻科学, 2008, 22(5): 507-512 .
[12] 池晓菲,舒庆尧. 稻米糊化温度特性形成规律研究[J]. 中国水稻科学, 2008, 22(5): 548-550 .
[13] 王跃星,杨军,倪深,陈红旗,朱旭东. 浙江省早稻品种(系)的抗裂性分析[J]. 中国水稻科学, 2008, 22(4): 392-398 .
[14] 张光恒,曾大力,郭龙彪,刘慧娟,胡江,高振宇,华志华,钱前,. 葡萄糖焦磷酸酶基因与巨胚基因聚合创建营养功能稻[J]. 中国水稻科学, 2007, 21(6): 567-572 .
[15] 张巧凤,张亚东,朱镇 ,赵凌,赵庆勇,许凌,王才林,. 稻米淀粉黏滞性(RVA谱)特征值的遗传及QTL定位分析[J]. 中国水稻科学, 2007, 21(6): 591-598 .
[16] 刘立军,吴长付,张耗,杨建昌,赵步洪. 实地氮肥管理对稻米品质的影响[J]. 中国水稻科学, 2007, 21(6): 625-630 .
[17] 熊飞,王忠,顾蕴洁,陈刚,周鹏. 施氮时期对扬稻6号颖果发育及稻米品质的影响[J]. 中国水稻科学, 2007, 21(6): 637-642 .
[18] 陈建华,姚青,谢绍军,孙成效,朱智伟. 机器视觉在稻米粒型检测中的应用[J]. 中国水稻科学, 2007, 21(6): 669-672 .
[19] 沈新平,沈晓燕,顾丽,龚丽萍,张洪程. 两优培九稻米垩白在江苏省不同纬度点的播期效应[J]. 中国水稻科学, 2007, 21(6): 677-680 .
[20] 陆艳婷,张小明,叶胜海,祁永斌,金庆生. 密穗型和散穗型粳稻穗部不同部位直链淀粉含量的差异分析[J]. 中国水稻科学, 2007, 21(4): 391-395 .
[21] 郝虎林,魏幼璋 ,杨肖娥,冯英吴,春勇. 供氮水平对稻株铁、锰、铜、锌含量和稻米品质的影响[J]. 中国水稻科学, 2007, 21(4): 411-416 .
[22] 陈河王慧中赵文华,蔡玲斐,王灵均,陈小囡,黄大年. 转mtlD/gutD基因稻米对大鼠性腺毒性的实验研究[J]. 中国水稻科学, 2007, 21(4): 341-344 .
[23] 叶红霞,郭泽建,舒庆尧,徐晓晖,包劲松, 沈圣泉,. 两份转Fer基因富铁水稻特异种质应用价值的初步评价[J]. 中国水稻科学, 2007, 21(3): 270-274 .
[24] 刘奇华,蔡建,刘敏,柴廷友,李天. 两个籼稻品种垩白对稻米蒸煮食味与营养品质的影响[J]. 中国水稻科学, 2007, 21(3): 327-330 .
[25] 沈新平,顾丽,沈小燕,龚丽萍,张洪程. 两优培九稻米淀粉黏滞性(RVA谱)的纬度地域和播期变化[J]. 中国水稻科学, 2007, 21(1): 59-64 .
[26] 王彦荣,岩石真嗣 ,三木孝昭 ,华泽田, 张三元, 代贵金,. 自然农法条件下稻田有益微生物菌群多年施用累积效果[J]. 中国水稻科学, 2006, 20(4): 443-446 .
[27] 孙成效, 段彬伍 ,谢黎虹,陈能. 利用近红外透射光谱技术同步测定糙米的多项品质指标初报[J]. 中国水稻科学, 2006, 20(4): 451-454 .
[28] 朱昌兰,江玲,张文伟,王春明,翟虎渠,万建民. 稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J]. 中国水稻科学, 2006, 20(3): 248-252 .
[29] 尤小涛,荆奇,姜东,戴廷波,周冬琴,曹卫星. 节水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J]. 中国水稻科学, 2006, 20(2): 199-204 .
[30] 沈鹏,金正勋,罗秋香,金学泳,孙艳丽. 水稻灌浆过程中籽粒淀粉合成关键酶活性与蒸煮食味品质[J]. 中国水稻科学, 2006, 20(1): 58-64 .
[31] 李殿平,曹海峰,张俊宝,金学泳. 全程深施肥对水稻产量形成及稻米品质的影响[J]. 中国水稻科学, 2006, 20(1): 73-78 .
[32] 张小明,石春海,叶胜海,吴建国,鲍根良. 籼粳交杂种不同灌浆期稻米缬氨酸含量的发育遗传[J]. 中国水稻科学, 2006, 20(1): 36-42 .
[33] 常国华,侯彩云,尚艳芬,崔改泵,周小丰. 基于计算机色度学原理的直链淀粉检测系统开发[J]. 中国水稻科学, 2005, 19(6): 564-566 .
[34] 俄胜哲,袁继超,丁志勇,姚凤娟,喻小平 ,罗付香. 氮磷钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响[J]. 中国水稻科学, 2005, 19(5): 434-440 .
[35] 张士陆,倪大虎,易成新,李莉,汪秀峰,王宗阳,杨剑波,. 分子标记辅助选择降低籼稻057的直链淀粉含量[J]. 中国水稻科学, 2005, 19(5): 467-470 .
[36] 陈宗祥,陈红旗,邵元建, 张亚芳,潘学彪,. 卷叶基因Rl(t)对杂交稻稻米品质性状的影响[J]. 中国水稻科学, 2005, 19(4): 315-318 .
[37] 沈圣泉,庄杰云,王淑珍,舒庆尧,包劲松,夏英武. 水稻米粒延伸性QTLs定位和基因型与环境互作分析[J]. 中国水稻科学, 2005, 19(4): 319-322 .
[38] 刘立军,徐 伟 ,唐 成,王志琴,杨建昌. 土壤背景氮供应对水稻营养元素吸收和籽粒中营养元素含量的影响[J]. 中国水稻科学, 2005, 19(4): 343-349 .
[39] 张海燕, 董海涛, 姚海根, 向跃武, 谭学林, 方永启, 邓晔, 金庆超, Cabezas DANIEL, 姜玉新, 戴承恩, 阎文昭, 李德葆. 冻融法纯化水稻胚乳RNA及稻米品质重要相关基因表达谱研究[J]. 中国水稻科学, 2005, 19(2): 105-110 .
[40] 刘小川, 王渭霞, 陈深广, 余柳青. 杂交稻米质性状的亲本配合力分子标记鉴定[J]. 中国水稻科学, 2005, 19(1): 25-28 .
[41] 唐绍清, 石春海, 焦桂爱, 胡培松, 王海莲, 万建民. 利用近红外反射光谱技术测定稻米中脂肪含量的研究初报[J]. 中国水稻科学, 2004, 18(6): 563-566 .
[42] 尚艳芬, 侯彩云, 常国华, 周小丰. 整精米自动识别方法的研究[J]. 中国水稻科学, 2004, 18(5): 466-468 .
[43] 朱智伟, 陈 能, 王丹英, 章秀福, 姚 青, 闵 捷, 廖西元. 不同类型水稻品质性状变异特性及差异性分析[J]. 中国水稻科学, 2004, 18(4): 315-320 .
[44] 王慧中, 应奇才, 钟国庆, 田菊霞, 陈 河, 黄大年, 钱 前, 张红生. 转mtlD/gutD双价基因稻米对大鼠的毒性试验[J]. 中国水稻科学, 2004, 18(3): 208-212 .
[45] 郑云飞, 蒋乐平, 郑建明. 浙江跨湖桥遗址的古稻遗存研究[J]. 中国水稻科学, 2004, 18(2): 119-124 .
[46] 任鄄胜, 汪秀志, 肖培村, 田彦华, 韩赞平, 韩 磊, 汪旭东, . 杂交水稻稻米品质性状的相关及聚类分析[J]. 中国水稻科学, 2004, 18(2): 130-134 .
[47] 罗玉坤, 朱智伟, 陈 能, 段彬伍, 章林平. 中国主要稻米的粒型及其品质特性[J]. 中国水稻科学, 2004, 18(2): 135-139 .
[48] 冷燕, 洪德林. 不同生态类型间杂交粳稻品质性状及其遗传分析[J]. 中国水稻科学, 2004, 18(1): 29-33 .
[49] 吴殿星, 段智英, 舒庆尧, 夏英武. 水稻亚(品)种间淀粉粘滞特性杂交转移的初步研究[J]. 中国水稻科学, 2003, 17(4): 319-322 .
[50] 王丰, 程方民, 钟连进, 孙宗修. 早籼稻米RVA谱特性的品种间差异及其温度效应特征[J]. 中国水稻科学, 2003, 17(4): 328-332 .
[51] 郑家国, 任光俊, 陆贤军, 姜心禄. 花后水分亏缺对水稻产量和品质的影响[J]. 中国水稻科学, 2003, 17(3): 239-243 .
[52] 张小明, 石春海, 吴建国, 富田桂, 鲍根良, 叶胜海. 杂交稻米必需氨基酸含量与亲本的关系[J]. 中国水稻科学, 2003, 17(1): 91-94 .
[53] 陈业坚 , 舒庆尧 , 张增勤 , 程式华 , 孙宗修 , 吴 平 . 稻米表观直链淀粉含量由两对非等位基因控制[J]. 中国水稻科学, 2002, 16(4): 369-371 .
[54] 何国庆, 尹源明, 葛红娟, 张 颢. 早籼米酒精发酵的液化条件初探[J]. 中国水稻科学, 2002, 16(4): 375-377 .
[55] 曾大力 ,钱 前 ,阮刘青 ,滕 胜 ,国广泰史 ,藤本 宽 ,朱立煌,. 稻米垩白三维切面的遗传分析[J]. 中国水稻科学, 2002, 16(1): 11-14 .
[56] 陈善福, 沈圣泉, 吴殿星, 夏英武, 舒庆尧. 水稻叶色突变体的稻米理化品质和配合力分析[J]. 中国水稻科学, 2001, 15(4): 261-264 .
[57] 程方民, 钟连进. 不同气候生态条件下稻米品质性状的变异及主要影响因子分析[J]. 中国水稻科学, 2001, 15(3): 187-191 .
[58] 包劲松, 舒庆尧, 吴殿星, 夏英武. 用糙米粉代替精米粉测定淀粉粘滞性的效果研究[J]. 中国水稻科学, 2001, 15(2): 145-146 .
[59] 吴殿星, 舒庆尧, 夏英武,. 利用RVA谱快速鉴别不同表观直链淀粉含量早籼稻的淀粉粘滞特性[J]. 中国水稻科学, 2001, 15(1): 57-59 .
[60] 金正勋,秋太权,孙艳丽,金学泳. 粳稻杂种后代稻米垩白率的配合力分析[J]. 中国水稻科学, 2000, 14(4): 199-202 .
[61] 李 欣,莫惠栋,王安民,徐辰武,朱毅华,于恒秀. 粳型杂种稻米品质性状的遗传表达[J]. 中国水稻科学, 1999, 13(4): 197-204 .
[62] 陈 能,罗玉坤,朱智伟,谢黎虹. 食用稻米米饭质地及适口性的研究[J]. 中国水稻科学, 1999, 13(3): 152-156 .
[63] 石春海,何慈信,朱 军,陈建国. 籼稻稻米外观品质性状的遗传主效应和环境互作效应分析[J]. 中国水稻科学, 1999, 13(3): 179-182 .
[64] 黎用朝, 李小湘. 影响稻米品质的遗传和环境因素研究进展[J]. 中国水稻科学, 1998, 12(增刊): 58-62 .
[65] 黄发松,孙宗修,胡培松,唐绍清. 食用稻米品质形成研究的现状与展望[J]. 中国水稻科学, 1998, 12(3): 172-176 .
[66] 徐辰武,张爱红. 几个籼粳交组合稻米品质性状遗传表达的鉴别[J]. 中国水稻科学, 1998, 12(1): 51-54 .
[67] 陈 能,罗玉坤,朱智伟,张伯平,郑有川,谢黎虹. 优质食用稻米品质的理化指标与食味的相关性研究[J]. 中国水稻科学, 1997, 11(2): 70-76 .
[68] 孟亚利,周治国. 结实期温度与稻米品质的关系[J]. 中国水稻科学, 1997, 11(1): 51-54 .
[69] 张名位 ,彭仲明 ,杜应琼 . 特种稻米中微量元素铁、锌、锰含量的配合力和稳定性分析[J]. 中国水稻科学, 1996, 10(4): 201-206 .
[70] 胡兆华. 史前中国稻作土种演变及现代粳籼型杂交育种的思考——长江三角洲出土稻谷统计分析研究[J]. 中国水稻科学, 1996, 10(3): 163-172 .
[71] 周勇, 文铁桥, 宋国清, 范崇春, 居超明, 徐国成. 植酸和氯离子对稻米品质的影响[J]. 中国水稻科学, 1995, 9(4): 217-222 .
[72] 陈报章, 王象坤, 张居中. 舞阳贾湖新石器时代遗址炭化稻米的发现、形态学研究及意义[J]. 中国水稻科学, 1995, 9(3): 129-134 .
[73] 张嵩午,周德翼. 温度对水稻整精米率的影响[J]. 中国水稻科学, 1993, 7(4): 211-216 .
[74] 朱旭东,熊振民,罗玉坤,孔繁林,曹立勇,闵 捷. 异季栽培对稻米品质的影响[J]. 中国水稻科学, 1993, 7(3): 172-174 .
[75] 易小平,陈芳远. 籼型杂交水稻稻米蒸煮品质,碾米品质及营养品质的细胞质遗传效应[J]. 中国水稻科学, 1992, 6(4): 187-189 .
[76] 朱智伟,杨 炜,林榕辉. 不同类型稻米的蛋白营养价值[J]. 中国水稻科学, 1991, 5(4): 157-162 .
[77] 潘 军,裘凌沧,段彬伍. 微波消化-等离子体发射光谱仪法分析稻米中无机元素的研究[J]. 中国水稻科学, 1991, 5(2): 87-90 .
[78] 向远鸿,唐启源. 海拔对稻米品质影响的灰色关联分析[J]. 中国水稻科学, 1991, 5(2): 94-96 .
[79] 汤圣祥,G S Khush. 稻米胶稠度的遗传研究[J]. 中国水稻科学, 1991, 5(1): 25-28 .
[80] 汤圣祥,G S Khush, B O Juliano. 稻米胶稠度单籽粒分析法[J]. 中国水稻科学, 1990, 4(2): 55-55 .
[81] 罗玉坤, 闵捷, 吴戌君, 陈玉英, 林榕辉. 精度对稻米品质的影响[J]. 中国水稻科学, 1989, 3(3): 123-128 .
[82] 吕川根. 栽培密度和施肥方法对稻米品质影响的研究[J]. 中国水稻科学, 1988, 2(3): 141-144 .
[83] 罗玉坤,闵捷,吴戌君. 香港市场稻米品质的初步研究[J]. 中国水稻科学, 1987, 1(3): 192-197 .
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn