中国水稻科学 ›› 2020, Vol. 34 ›› Issue (3): 228-236.DOI: 10.16819/j.1001-7216.2020.9140
陈专专1, 杨勇1, 冯琳皓1, 孙晔1, 张昌泉1,2, 范晓磊1,2, 李钱峰1,2, 刘巧泉1,2,*()
收稿日期:
2019-12-29
修回日期:
2020-01-13
出版日期:
2020-05-15
发布日期:
2020-05-10
通讯作者:
刘巧泉
基金资助:
Zhuanzhuan CHEN1, Yong YANG1, Linhao FENG1, Ye SUN1, Changquan ZHANG1,2, Xiaolei FAN1,2, Qianfeng LI1,2, Qiaoquan LIU1,2,*()
Received:
2019-12-29
Revised:
2020-01-13
Online:
2020-05-15
Published:
2020-05-10
Contact:
Qiaoquan LIU
摘要:
【目的】稻米蒸煮和食味品质主要受Wx和ALK两个主效基因的调控。这两个基因在栽培稻中存在多个复等位变异,本研究旨在明确Wx和ALK基因的主要等位变异及其组合对稻米品质的影响。【方法】将Wx的3个主要等位基因(Wxa、Wxb和wx)与ALK的2个主要等位基因(ALKa和ALKc)进行不同的组合,在粳稻品种日本晴(Nip)背景下创建6个含有Wx和ALK基因不同等位变异组合的近等基因系。通过测定近等基因系的稻米理化品质明确不同等位基因及其组合对稻米品质的效应。【结果】在相同的ALK基因型背景下,含Wxa等位基因稻米的糊化温度极显著低于wx型和Wxb型的近等基因系。稻米黏滞性受Wx和ALK等位基因组合影响较大,Wx等位变异主要影响稻米的峰值黏度、峰值时间和冷胶黏度;在相同Wx背景下,ALK等位基因主要影响稻米RVA谱的起浆温度,对稻米崩解值和消减值的影响不显著。总体来看,Nip-Wxa/ALKa和Nip-Wxa/ALKc型稻米具有较高直链淀粉含量和崩解值,较低的胶稠度,因而食味值较差;Nip-wx/ALKa和Nip-Wxb/ALKa型水稻具有适中的直链淀粉含量、较软的胶稠度以及较低的糊化温度,因此这两个近等基因系热饭和冷饭的食味值较好;虽然Nip-Wxb/ALKc的糊化温度较高,但因其适中的直链淀粉含量和较高的胶稠度,其冷饭食味值降幅较小;Nip-wx/ALKc稻米的热饭食味值与Nip-wx/ALKa、Nip-Wxb/ALKa和Nip-Wxb/ALKc无差异,但因其较高的糊化温度,其冷饭食味值显著下降。【结论】Wx基因变异主要影响稻米直链淀粉含量和胶稠度,对糊化温度有一定的影响;ALK基因变异主要影响糊化温度,对直链淀粉含量无显著影响,对胶稠度存在微效影响。
中图分类号:
陈专专, 杨勇, 冯琳皓, 孙晔, 张昌泉, 范晓磊, 李钱峰, 刘巧泉. Wx与ALK主要等位基因不同组合对稻米品质的影响[J]. 中国水稻科学, 2020, 34(3): 228-236.
Zhuanzhuan CHEN, Yong YANG, Linhao FENG, Ye SUN, Changquan ZHANG, Xiaolei FAN, Qianfeng LI, Qiaoquan LIU. Effects of Different Combinations of Wx and ALK Main Alleles on Rice Grain Quality[J]. Chinese Journal OF Rice Science, 2020, 34(3): 228-236.
近等基因系 Near-isogenic line | Wx基因型 Wx allele | ALK基因型 ALK allele | Wx基因供体 Donor of Wx gene | ALK基因供体 Donor of ALK gene | 世代 Generation |
---|---|---|---|---|---|
Nip-wx/ALKa | wx | ALKa | 苏御糯 Suyunuo | 日本晴 Nipponbare | BC9F8 |
Nip-wx/ALKc | wx | ALKc | 苏御糯 Suyunuo | 中恢9308 Zhonghui 9308 | BC6F10 |
Nip-Wxb/ALKa | Wxb | ALKa | 日本晴 Nipponbare | 日本晴 Nipponbare | |
Nip-Wxb/ALKc | Wxb | ALKc | 日本晴 Nipponbare | 中恢9308 Zhonghui 9308 | BC8F10 |
Nip-Wxa/ALKa | Wxa | ALKa | 龙特甫 Longtefu | 日本晴 Nipponbare | BC8F7 |
Nip-Wxa/ALKc | Wxa | ALKc | 龙特甫 Longtefu | 中恢9308 Zhonghui 9308 | BC6F3 |
表1 近等基因系的基本信息
Table 1 Information of near-isogenic lines.
近等基因系 Near-isogenic line | Wx基因型 Wx allele | ALK基因型 ALK allele | Wx基因供体 Donor of Wx gene | ALK基因供体 Donor of ALK gene | 世代 Generation |
---|---|---|---|---|---|
Nip-wx/ALKa | wx | ALKa | 苏御糯 Suyunuo | 日本晴 Nipponbare | BC9F8 |
Nip-wx/ALKc | wx | ALKc | 苏御糯 Suyunuo | 中恢9308 Zhonghui 9308 | BC6F10 |
Nip-Wxb/ALKa | Wxb | ALKa | 日本晴 Nipponbare | 日本晴 Nipponbare | |
Nip-Wxb/ALKc | Wxb | ALKc | 日本晴 Nipponbare | 中恢9308 Zhonghui 9308 | BC8F10 |
Nip-Wxa/ALKa | Wxa | ALKa | 龙特甫 Longtefu | 日本晴 Nipponbare | BC8F7 |
Nip-Wxa/ALKc | Wxa | ALKc | 龙特甫 Longtefu | 中恢9308 Zhonghui 9308 | BC6F3 |
鉴定基因 Target gene | 引物名称 Primer | 引物序列 Primer sequence (5'-3') | 区分基因型 Genotype | 检测突变位置 Mutation site |
---|---|---|---|---|
Wx | QRM190-F | ATTCCTTCAGTTCTTTGTCTATCTCA | Wxa/Wxb | 第1内含子CT序列多态性 (CT)7 in Intron 1 |
QRM190-R | TCCTGATGAACAACAGAACAACAC | |||
ND-F | CACAGCAACAGCTAGACAACCAC | Wx/wx | 第2外显子插入缺失23 bp 23 bp InDel in Exon 2 | |
ND-R | CACGACGACGGAGGGGAAC | |||
ALK | 4211(A/G)-F1 | GCGGGCTGAGGGACACCG | ALKa/ALKc | 第8外显子单核苷酸多态性(A/G) A/G SNP in Exon 8 |
4211(A/G)-R1 | AACGGGTCGAACGCCGACGT | |||
4211(A/G)-F | AACAGCAAGGTGCGCGGGTG | |||
4211(A/G)-R | CCACCGAGTCGCACCTCCACA |
表2 用于鉴定水稻Wx和ALK不同基因型的分子标记
Table 2 Molecular markers based on SNPs of Wx and ALK alleles.
鉴定基因 Target gene | 引物名称 Primer | 引物序列 Primer sequence (5'-3') | 区分基因型 Genotype | 检测突变位置 Mutation site |
---|---|---|---|---|
Wx | QRM190-F | ATTCCTTCAGTTCTTTGTCTATCTCA | Wxa/Wxb | 第1内含子CT序列多态性 (CT)7 in Intron 1 |
QRM190-R | TCCTGATGAACAACAGAACAACAC | |||
ND-F | CACAGCAACAGCTAGACAACCAC | Wx/wx | 第2外显子插入缺失23 bp 23 bp InDel in Exon 2 | |
ND-R | CACGACGACGGAGGGGAAC | |||
ALK | 4211(A/G)-F1 | GCGGGCTGAGGGACACCG | ALKa/ALKc | 第8外显子单核苷酸多态性(A/G) A/G SNP in Exon 8 |
4211(A/G)-R1 | AACGGGTCGAACGCCGACGT | |||
4211(A/G)-F | AACAGCAAGGTGCGCGGGTG | |||
4211(A/G)-R | CCACCGAGTCGCACCTCCACA |
图1 PCR鉴定近等基因系中Wx和ALK的基因型A–采用引物ND进行PCR鉴定。B–采用引物QRM190进行PCR鉴定。C–采用引物4211进行PCR鉴定。
Fig. 1. Identification of Wx and ALK genotypes in NILs by PCR. A, PCR product by primer ND. B, PCR product by primer QRM190. C, PCR product by primer 4211.
图2 Wx和ALK等位基因组合对稻米品质的影响对近等基因系的品质性状进行方差分析,并用新复极差法进行多重比较。相同小写字母表示近等基因系间无显著差异(n=3)。
Fig. 2. Effect of Wx and ALK allelic diversity on rice eating and cooking qualities. Data were subjected to one-way analysis of variance (ANOVA) depending on the experiment, followed by a comparison of the means according to the Duncan’s multiple range test at P<0.05. The same letters indicate no significant difference among near-isogenic lines(NILs) at P<0.05 level(n=3).
基因型 Genotype | 起始糊化温度 To /℃ | 峰值糊化温度 Tp /℃ | 终止糊化温度 Tc /℃ | 热焓值 △H / (J·g-1) |
---|---|---|---|---|
Nip-wx/ALKa | 65.7±0.2 e | 72.6±0.1 d | 80.5±0.1 c | 9.98±0.55 bc |
Nip-Wxb/ALKa | 67.5±0.1 d | 72.6±0.1 d | 79.7±0.4 c | 9.45±0.31 c |
Nip-Wxa/ALKa | 63.6±0.3 f | 69.4±0.1 e | 76.6±0.6 d | 6.80±0.33 d |
Nip-wx/ALKc | 75.2±0.1 b | 80.6±0.0 b | 86.8±0.1 a | 11.93±0.35 a |
Nip-Wxb/ALKc | 76.7±0.1 a | 80.8±0.0 a | 86.4±0.1 a | 11.03±0.29 ab |
Nip-Wxa/ALKc | 73.7±0.0 c | 78.2±0.0 c | 84.2±0.0 b | 9.19±0.46 c |
表3 Wx与ALK等位基因组合对米粉差示扫描量热(DSC)特征值的影响
Table 3 Effects of Wx and ALK allelic diversity on differential scanning calorimetry(DSC) parameters of rice.
基因型 Genotype | 起始糊化温度 To /℃ | 峰值糊化温度 Tp /℃ | 终止糊化温度 Tc /℃ | 热焓值 △H / (J·g-1) |
---|---|---|---|---|
Nip-wx/ALKa | 65.7±0.2 e | 72.6±0.1 d | 80.5±0.1 c | 9.98±0.55 bc |
Nip-Wxb/ALKa | 67.5±0.1 d | 72.6±0.1 d | 79.7±0.4 c | 9.45±0.31 c |
Nip-Wxa/ALKa | 63.6±0.3 f | 69.4±0.1 e | 76.6±0.6 d | 6.80±0.33 d |
Nip-wx/ALKc | 75.2±0.1 b | 80.6±0.0 b | 86.8±0.1 a | 11.93±0.35 a |
Nip-Wxb/ALKc | 76.7±0.1 a | 80.8±0.0 a | 86.4±0.1 a | 11.03±0.29 ab |
Nip-Wxa/ALKc | 73.7±0.0 c | 78.2±0.0 c | 84.2±0.0 b | 9.19±0.46 c |
基因型 Genotype | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot paste viscosity /cP | 崩解值 Breakdown /cP | 冷胶黏度Cool paste viscosity /cP | 消减值 Setback /cP | 峰值时间 Peak time /min | 起浆温度 Pasting temperature /℃ |
---|---|---|---|---|---|---|---|
Nip-wx/ALKa | 2251±7 e | 1060±18 f | 1191±7 d | 1319±18 e | -932±5 d | 3.7±0 f | 74.1±0 e |
Nip-wx/ALKc | 2876±11 d | 1517±15 e | 1359±9 c | 1932±13 d | -944±7 d | 4.4±0 e | 81.3±0 b |
Nip-Wxb/ALKa | 4205±9 a | 2392±22 c | 1813±13 b | 3619±11 b | -586±8 b | 6.1±0 c | 75.0±0 d |
Nip-Wxb/ALKc | 4164±20 b | 2008±19 d | 2156±15 a | 3285±9 c | -879±9 c | 5.7±0 d | 82.1±0 a |
Nip-Wxa/ALKa | 3503±8 c | 3145±23 a | 358±8 f | 4107±7 a | 604±6 a | 6.9±0 a | 73.2±0 f |
Nip-Wxa/ALKc | 3533±15 c | 2772±17 b | 761±6 e | 4169±12 a | 636±5 a | 6.5±0 b | 80.5±0 c |
表4 Wx与ALK等位基因组合对米粉黏滞性的影响
Table 4 Effects of Wx and ALK alleles on RVA parameters of rice flour.
基因型 Genotype | 峰值黏度 Peak viscosity /cP | 热浆黏度 Hot paste viscosity /cP | 崩解值 Breakdown /cP | 冷胶黏度Cool paste viscosity /cP | 消减值 Setback /cP | 峰值时间 Peak time /min | 起浆温度 Pasting temperature /℃ |
---|---|---|---|---|---|---|---|
Nip-wx/ALKa | 2251±7 e | 1060±18 f | 1191±7 d | 1319±18 e | -932±5 d | 3.7±0 f | 74.1±0 e |
Nip-wx/ALKc | 2876±11 d | 1517±15 e | 1359±9 c | 1932±13 d | -944±7 d | 4.4±0 e | 81.3±0 b |
Nip-Wxb/ALKa | 4205±9 a | 2392±22 c | 1813±13 b | 3619±11 b | -586±8 b | 6.1±0 c | 75.0±0 d |
Nip-Wxb/ALKc | 4164±20 b | 2008±19 d | 2156±15 a | 3285±9 c | -879±9 c | 5.7±0 d | 82.1±0 a |
Nip-Wxa/ALKa | 3503±8 c | 3145±23 a | 358±8 f | 4107±7 a | 604±6 a | 6.9±0 a | 73.2±0 f |
Nip-Wxa/ALKc | 3533±15 c | 2772±17 b | 761±6 e | 4169±12 a | 636±5 a | 6.5±0 b | 80.5±0 c |
样本 Sample | 基因型 Genotype | 综合评分 Integrated score | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance | |||
---|---|---|---|---|---|---|---|---|---|
热饭 Hot cooked rice | Nip-wx/ALKa | 98.00±0.00 a | 9.80±0.00 a | 0.20±0.00 e | 9.80±0.00 a | 9.80±0.00 a | |||
Nip-wx/ALKc | 98.00±0.00 a | 9.80±0.00 a | 0.53±0.10 d | 9.80±0.00 a | 9.80±0.00 a | ||||
Nip-Wxb/ALK a | 97.00±0.00 a | 9.80±0.00 a | 2.03±0.05 c | 9.43±0.05 b | 9.80±0.00 a | ||||
Nip-Wxb/ALKc | 97.00±0.82 a | 9.80±0.00 a | 2.00±0.14 c | 9.40±0.08 b | 9.80±0.00 a | ||||
Nip-Wx a/ALK a | 81.25±0.50 c | 8.50±0.08 c | 4.18±0.10 a | 6.40±0.08 c | 8.50±0.08 c | ||||
Nip-Wx a/ALKc | 82.50±1.29 b | 8.65±0.13 b | 3.98±0.10 b | 6.35±0.17 c | 8.60±0.08 b | ||||
冷饭 Cooled cooked rice | Nip-wx/ALK a | 93.00±0.82 a | 9.80±0.00 a | 2.33±0.10 d | 8.55±0.17 a | 9.80±0.00 a | |||
Nip-wx/ALKc | 80.75±2.22 c | 8.65±0.17 c | 3.53±0.17 c | 5.08±0.29 d | 8.40±0.22 cd | ||||
Nip-Wxb/ALK a | 87.25±0.50 b | 9.20±0.08 b | 3.48±0.13 c | 7.35±0.10 b | 9.10±0.08 b | ||||
Nip-Wxb/ALKc | 87.00±0.82 b | 9.15±0.17 b | 3.35±0.17 c | 7.15±0.24 b | 9.15±0.17 b | ||||
Nip-Wx a/ALK a | 79.50±0.58 c | 8.30±0.08 d | 4.43±0.10 a | 6.25±0.13 c | 8.23±0.10 d | ||||
Nip-Wx a/ALKc | 81.25±0.96 c | 8.53±0.10 c | 4.03±0.15 b | 6.08±0.05 c | 8.50±0.14 c |
表5 不同Wx和ALK等位基因组合对精米食味值的影响
Table 5 Effects of Wx and ALK allelic diversity on sensory evaluation of milled rice.
样本 Sample | 基因型 Genotype | 综合评分 Integrated score | 外观 Appearance | 硬度 Hardness | 黏度 Viscosity | 平衡度 Balance | |||
---|---|---|---|---|---|---|---|---|---|
热饭 Hot cooked rice | Nip-wx/ALKa | 98.00±0.00 a | 9.80±0.00 a | 0.20±0.00 e | 9.80±0.00 a | 9.80±0.00 a | |||
Nip-wx/ALKc | 98.00±0.00 a | 9.80±0.00 a | 0.53±0.10 d | 9.80±0.00 a | 9.80±0.00 a | ||||
Nip-Wxb/ALK a | 97.00±0.00 a | 9.80±0.00 a | 2.03±0.05 c | 9.43±0.05 b | 9.80±0.00 a | ||||
Nip-Wxb/ALKc | 97.00±0.82 a | 9.80±0.00 a | 2.00±0.14 c | 9.40±0.08 b | 9.80±0.00 a | ||||
Nip-Wx a/ALK a | 81.25±0.50 c | 8.50±0.08 c | 4.18±0.10 a | 6.40±0.08 c | 8.50±0.08 c | ||||
Nip-Wx a/ALKc | 82.50±1.29 b | 8.65±0.13 b | 3.98±0.10 b | 6.35±0.17 c | 8.60±0.08 b | ||||
冷饭 Cooled cooked rice | Nip-wx/ALK a | 93.00±0.82 a | 9.80±0.00 a | 2.33±0.10 d | 8.55±0.17 a | 9.80±0.00 a | |||
Nip-wx/ALKc | 80.75±2.22 c | 8.65±0.17 c | 3.53±0.17 c | 5.08±0.29 d | 8.40±0.22 cd | ||||
Nip-Wxb/ALK a | 87.25±0.50 b | 9.20±0.08 b | 3.48±0.13 c | 7.35±0.10 b | 9.10±0.08 b | ||||
Nip-Wxb/ALKc | 87.00±0.82 b | 9.15±0.17 b | 3.35±0.17 c | 7.15±0.24 b | 9.15±0.17 b | ||||
Nip-Wx a/ALK a | 79.50±0.58 c | 8.30±0.08 d | 4.43±0.10 a | 6.25±0.13 c | 8.23±0.10 d | ||||
Nip-Wx a/ALKc | 81.25±0.96 c | 8.53±0.10 c | 4.03±0.15 b | 6.08±0.05 c | 8.50±0.14 c |
[1] | Vandeputte G E, Delcour J A.From sucrose to starch granule to starch physical behaviour: A focus on rice starch[J]. Carbohydrate Polymers, 2004, 58(3): 245-266. |
[2] | Singh N, Kaur L, Sandhu K S, Kaur J, Nishinari K.Relationships between physicochemical, morphological, thermal, rheological properties of rice starches[J]. Food Hydrocolloid, 2006, 20(4): 532-542. |
[3] | 包劲松. 稻米淀粉品质遗传与改良研究进展[J]. 分子植物育种, 2007, 5(6): 1-20. |
Bao J S.Progress in sutdies on inheritance and improvement of rice starch qualiy[J]. Molecular Plant Breeding, 2007, 5(6): 1-20. (in Chinese with English abstract) | |
[4] | Wang Z Y, Zheng F Q, Shen G Z, Gao J P, Snustad D P, Li M G, Zhang J L, Hong M M.The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene[J]. Plant Journal, 1995, 7(4): 613-622. |
[5] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y.Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences USA, 2009, 106(51): 21760-21765. |
[6] | Cai X L, Wang Z Y, Xing Y Y, Zhang J L, Hong M M.Aberrant splicing of intron 1 leads to the heterogeneous 5′ UTR and decreased expression of waxy gene in rice cultivars of intermediate amylose content[J]. Plant Journal, 1998, 14(4): 459-465. |
[7] | Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q.ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765. |
[8] | Zhang C Q, Zhu J H, Chen S J, Fan X L, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q.Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 2019, 12(8): 1157-1166. |
[9] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 栽培稻中Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q.Progress in the allelic variation of Wx gene and its application in rice[J]. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[10] | Sano Y.Differential regulation of waxy gene expression in rice endosperm[J]. Theoretical and Applied Genetics, 1984, 68(5): 467-473. |
[11] | 范名宇, 王晓菁, 王旭虹, 唐亮, 徐铨, 徐正进. 稻米支链淀粉结构的研究进展[J]. 中国水稻科学, 2017, 31(2): 124-132. |
Fan M Y, Wang X J, Wang X H, Tang L, Xu Q, Xu Z J.Research advances of amylopectin structure in rice[J]. Chinese Journal of Rice Science, 2017, 31(2): 124-132. (in Chinese with English abstract) | |
[12] | Jeon J S, Ryoo N, Hahn T R, Walia H, Nakamura Y.Starch biosynthesis in cereal endosperm[J]. Plant Physiology and Biochemistry, 2010, 48(6): 383-392. |
[13] | 孙业盈, 吕彦, 董春林, 王平荣, 黄晓群, 邓晓建. 水稻Wx基因与稻米AC、GC和GT的遗传关系[J]. 作物学报, 2005, 31(5): 535-539. |
Sun Y Y, Lv Y, Dong C L, Wang P R, Hang X Q, Deng X J.Genetic relationship among Wx gene, AC, GC and GT of rice[J]. Acta Agronomica Sinica, 2005, 31(5): 535-539. (in Chinese with English abstract) | |
[14] | 刘玉花, 栾丽, 龙文波, 王兴, 孔繁伦, 何涛, 涂升斌. 同源四倍体和二倍体水稻Wx基因与淀粉品质的遗传关系[J]. 中国水稻科学, 2007, 21(2): 143-149. |
Liu Y H, Luan L, Long W B, Wang X, Kong F L, He T, Tu S B.Genetic relationships between Wx gene and starch quality in autotereaploid and diploid rice[J]. Chinese Journal of Rice Science, 2007, 21(2): 143-149. (in Chinese with English abstract) | |
[15] | Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O.Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of Thai rice[J]. Starch-Stärke, 2003, 55(9): 410-415. |
[16] | 苏文丽, 向珣朝, 徐艳芳, 龙小林, 康翠芳, 许顺菊. 水稻SSIIa基因型对成糊温度校准的影响及糊化温度与直链淀粉含量的关系分析[J]. 植物遗传资源学报, 2014, 15(2): 348-353. |
Su W L, Xiamg X C, Xu Y F, Long X L, Kang C F, Xu S J.The influence of SSIIa genotype on the calibration of pasting temperature of rice and the relationship between gelatinization temperature and amylose content[J]. Journal of Plant Genetic Resources, 2014, 15(2): 348-353. (in Chinese with English abstract) | |
[17] | Xiang X C, Kang C F, Xu S J, Yang B W.Combined effects of Wx and SSIIa haplotypes on rice starch physicochemical properties[J]. Journal of the Science of Food and Agriculture, 2016, 97(4): 1229-1234. |
[18] | Murray M G, Thompson W F.Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325. |
[19] | Fan X L, Li Y Q, Lu Y, Zhang C Q, Li E P, Li Q F, Tao K Y, Yu W W, Wang J D, Chen Z Z, Liu Q Q.The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature[J/OL].Food Chemistry, 2019, 301: 125258. |
[20] | 张昌泉, 潘立旭, 周兴忠, 李钱峰, 刘巧泉. 不同Wx等位组合对杂交稻天优3611品质的影响[EB/OL]. 北京:中国科技论文在线[2017-04-28]. . |
Zhang C Q, Pan L X, Zhou X Z, Li Q F, Liu Q Q. The combined effects of different Wx allele on grain quality of hybrid rice Tianyou 3611[EB/OL]. Beijing: Chinese Science Paper Online [2017-04-28]. ((in Chinese with English abstract) | |
[21] | Zhang C Q, Zhou L H, Zhu Z B, Lu H W, Zhou X Z, Qian Y T, Li Q F, Lu Y, Gu M H, Liu Q Q.Characterization of grain quality and starch fine structure of two japonica rice (Oryza sativa) cultivars with good sensory properties at different temperatures during the filling stage[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4048-4057. |
[22] | Zhang C Q, Zhu L J, Shao K, Gu M H, Liu Q Q.Toward underlying reasons for rice starches having low viscosity and high amylose: Physiochemical and structural characteristics[J]. Journal of the Science of Food and Agriculture, 2013, 93(7): 1543-1551. |
[23] | Zhu L J, Liu Q Q, Sang Y, Gu M H, Shi Y C.Underlying reasons for waxy rice flours having different pasting properties[J]. Food Chemistry, 2010, 120(1): 94-100. |
[24] | 戴宏林, 吴小骏. 用凯氏定氮法测定植物干样品中的氮含量[J]. 扬州大学学报: 农业与生命科学版, 1995, 16(3): 70. |
Dai H L, Wu X J.Determination of nitrogen in dry plant samples by Kjeldahl nitrogen determination[J]. Journal of Yangzhou University, 16(3): 70. (in Chinese with English abstract) | |
[25] | 马玉清, 李仕贵, 王玉平, 黎汉云, 高克铭. 籼型杂交水稻稻米品质的初步研究[J]. 西南农业学报, 2002, 15(1): 28-31. |
Ma Y Q, Li S G, Wang Y P, Li H Y, Gao K M.Preliminary study on quality traits of indica hybrid rice[J]. Southwest China Journal of Agricultural Science, 2002, 15(1): 28-31. (in Chinese with English abstract) | |
[26] | Bao J S, Sun M, Zhu L H, Corke H.Analysis of quantitative trait loci for some starch properties of rice (Oryza sativa L.): Thermal properties, gel texture and swelling volume[J]. Journal of Cereal Science, 2004, 39(3): 379-385. |
[27] | 夏明元, 李进波, 张建华, 万丙良, 戚华雄. 利用分子标记辅助选择技术选育具有中等直链淀粉含量的早稻品种[J]. 华中农业大学学报, 2004, 23(2): 183-186. |
Xia M Y, Li J B, Zhang J H, Wan B L, Qi H X.Breeding of early indica rice with intermediate amylose content by molecular marker-aided selection[J]. Journal of Huangzhong Agricultural University, 2004, 23(2): 183-186. (in Chinese with English abstract) | |
[28] | 舒庆尧, 吴殿星, 夏英武, 高明尉, McClung A. 稻米淀粉RVA谱特征与食用品质的关系[J]. 中国农业科学, 1998, 31(3): 25-29. |
Shu Q Y, Wu D X, Xia Y W, Gao M W, McClung A. Relationship between RVA character and eating quality in Oryza sativa L[J]. Scientia Agricultura Sinica, 1998, 31(3): 25-29. (in Chinese with English abstract) | |
[29] | 曾瑞珍, 张泽民, 何风华, 席章营, Talukdar A, 施军琼, 秦利军, 黄朝锋, 张桂权. 水稻Wx复等位基因的鉴定及单片段代换系的建立[J]. 中国水稻科学, 2005, 19(6): 495-500. |
Zeng R Z, Zhang Z M, He F H, Xi Z Y, Akshay T, Shi J Q, Qin L J, Huang C F, Zhang G Q.Identification of multiple alleles at the Wx locus and development of single segment substitution lines in rice[J]. Chinese Journal of Rice Science, 2005, 19(6): 495-500. (in Chinese with English abstract) | |
[30] | 陈专专, 李先锋, 仲敏, 葛家奇, 范晓磊, 张昌泉, 刘巧泉. 籼稻背景下抑制不同ALK等位基因表达对稻米品质的影响[J]. 中国水稻科学, 2019, 33(6): 513-522. |
Chen Z Z, Li X F, Zhong M, Ge J Q, Fan X L, Zhang C Q, Liu Q Q.Effects on grain quality by down-regulation of the expression of different ALK allele in indica rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2019, 33(6): 513-522. (in Chinese with English abstract) | |
[31] | 李欣, 顾铭洪, 潘学彪. 常见水稻品种稻米品质的研究[J]. 扬州大学学报:农业与生命科学版, 1987, 8(1): 1-8. |
Li X, Gu M H, Pan X B.A study on grain quality of rice for commercial varieties[J]. Journal of Yangzhou University, 1987, 8(1): 1-8. (in Chinese with English abstract) | |
[32] | Han X Z, Hamaker B R.Amylopectin fine structure and rice starch paste breakdown[J]. Journal of Cereal Science, 2001, 34(3): 279-284. |
[33] | Ong M H, Blanshard J M V. Texture determinants of cooked, parboiled rice. II: Physicochemical properties and leaching behaviour of rice[J]. Journal of Cereal Science, 1995, 21(3): 261-269. |
[34] | Wang K, Hasjim J, Wu A C, Li E P, Henry R J, Gilbert R G.Roles of GBSSI and SSIIa in determining amylose fine structure[J]. Carbohydrate Polymers, 2015, 127: 264-274. |
[35] | 万映秀, 邓其明, 王世全, 刘明伟, 周华强, 李平. 水稻Wx基因的遗传多态性及其与主要米质指标的相关性分析[J]. 中国水稻科学, 2006, 20(6): 603-609. |
Wan Y X, Deng Q M, Wang S Q, Liu M W, Zhou H Q, Li P.Genetic polymorphism of Wx gene and its correlation with major grain quality traits in rice[J]. Chinese Journal of Rice Science, 2006, 20(6): 603-609. (in Chinese with English abstract) | |
[36] | Bao J S, Corke H, He P, Zhu L H.Analysis of quantitative trait loci for starch properties of rice based on an RIL polulation[J]. Acta Botanica Sinica, 2003, 45(8): 986-994. |
[37] | 朱昌兰, 江玲, 张文伟, 王春明, 翟虎渠, 万建民. 稻米直链淀粉含量和胶稠度对高温耐性的QTL分析[J]. 中国水稻科学, 2006, 20(3): 248-252. |
Zhu C L, Jiang L, Zhang W W, Wang C M, Zhai H Q, Wan J M.Identifying QTLs for thermo-tolerance of amylose content and gel consistency in rice[J]. Chinese Journal of Rice Science, 2006, 20(3): 248-252. (in Chinese with English abstract) | |
[38] | 盛文涛, 吴俊, 姚栋萍, 庄文, 邓启云. 稻米食味品质的影响因素及中国籼稻食味品质改良存在的问题与策略[J]. 杂交水稻, 2014, 29(3): 1-5. |
Sheng W T, Wu J, Yao D P, Zhuang W, Deng Q Y.Influencing factors of rice eating quality and existing problems and strategies of genetic improvement on eating quality of indica rice in China[J]. Hybrid Rice, 2014, 29(3): 1-5. (in Chinese with English abstract) |
[1] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
[2] | 吴玉红, 李艳华, 王吕, 秦宇航, 李杉杉, 郝兴顺, 张庆路, 崔月贞, 肖飞. 陕南稻区紫云英稻草联合还田配施减量氮肥协同提升水稻产量与稻米品质[J]. 中国水稻科学, 2023, 37(6): 628-641. |
[3] | 程玲, 黄福钢, 邱一埔, 王心怡, 舒宛, 邱永福, 李发活. 籼稻材料570011抗褐飞虱基因的遗传分析及鉴定[J]. 中国水稻科学, 2023, 37(3): 244-252. |
[4] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
[5] | 杨陶陶, 邹积祥, 伍龙梅, 包晓哲, 江瑜, 张楠, 张彬. 开放式增温对华南双季稻稻米品质的影响[J]. 中国水稻科学, 2023, 37(1): 66-77. |
[6] | 景文疆, 顾汉柱, 张小祥, 吴昊, 张伟杨, 顾骏飞, 刘立军, 王志琴, 杨建昌, 张耗. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学, 2022, 36(5): 505-519. |
[7] | 杨晨, 郑常, 袁珅, 徐乐, 彭少兵. 再生稻肥料管理对不同品种产量和品质的影响[J]. 中国水稻科学, 2022, 36(1): 65-76. |
[8] | 闫浩亮, 王松, 王雪艳, 党程成, 周梦, 郝蓉蓉, 田小海. 不同水稻品种在高温逼熟下的表现及其与气象因子的关系[J]. 中国水稻科学, 2021, 35(6): 617-628. |
[9] | 唐先干, 谢金水, 徐昌旭, 刘佳, 袁福生, 刘光荣, 李祖章. 红壤性稻田紫云英与化肥减施对早稻品质与养分吸收的影响[J]. 中国水稻科学, 2021, 35(5): 466-474. |
[10] | 王志东, 陈宜波, 龚蓉, 周少川, 王重荣, 李宏, 黄道强, 周德贵, 赵雷, 潘阳阳, 杨义强, 李晓芳. 优质籼稻剑叶SPAD值与稻米品质相关性研究[J]. 中国水稻科学, 2021, 35(1): 89-97. |
[11] | 文春燕, 熊运华, 姚晓云, 陈春莲, 胡标林, 黄永萍, 吴延寿. 氮肥施用对米粉专用稻产量、米质及加工特性的影响[J]. 中国水稻科学, 2020, 34(6): 574-585. |
[12] | 汪浩, 刘祥臣, 张强, 余贵龙, 张文地, 黄健, 朱安, 刘立军. 豫南地区头季和再生季水稻产量与品质差异分析[J]. 中国水稻科学, 2020, 34(5): 425-434. |
[13] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna PILLAY, 王才林. Wxmp基因背景下可溶性淀粉合成酶基因SSⅡa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3): 217-227. |
[14] | 李盼盼, 朱玉君, 郭梁, 庄杰云, 樊叶杨. 利用剩余杂合体衍生的近等基因系精细定位水稻粒长微效QTL qGL1.1[J]. 中国水稻科学, 2020, 34(2): 125-134. |
[15] | 胡国辉, 宋顺奇, 向镜, 朱德峰, 陈惠哲, 张义凯, 王亚梁, 徐一成, 易子豪, 王军可, 张玉屏. 生物可降解膜覆盖对机插水稻生长和稻米品质的影响[J]. 中国水稻科学, 2020, 34(2): 159-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||