中国水稻科学 ›› 2024, Vol. 38 ›› Issue (2): 111-126.DOI: 10.16819/j.1001-7216.2024.230601
• 综述与专论 • 下一篇
许用强1,#, 姜宁1,2,#, 奉保华1, 肖晶晶3, 陶龙兴1,*(), 符冠富1,*()
收稿日期:
2023-06-08
修回日期:
2023-12-11
出版日期:
2024-03-10
发布日期:
2024-03-14
通讯作者:
* email: taolongxing@caas.cn;fuguanfu@caas.cn
作者简介:
#为并列第一作者
基金资助:
XU Yongqiang1,#, JIANG Ning1,2,#, FENG Baohua1, XIAO Jingjing3, TAO Longxing1,*(), FU Guanfu1,*()
Received:
2023-06-08
Revised:
2023-12-11
Online:
2024-03-10
Published:
2024-03-14
Contact:
* email: taolongxing@caas.cn;fuguanfu@caas.cn
About author:
#These authors contributed equally to this work
摘要:
近年来,频繁发生的极端高温天气严重影响了水稻的生长发育、产量及稻米品质形成。水稻开花期对高温最为敏感,研究花期高温诱导小穗败育机理及其调控措施对减缓水稻高温热害,保障我国粮食安全生产具有重要意义。本文综述了高温下水稻颖花开放、花药开裂及散粉、柱头花粉粒萌发及花粉管伸长的特征及其作用机制,探究水稻花期耐热性调控机制以及减缓水稻花期高温热害的栽培调控措施,不仅为水稻花期高温热害机理及防控技术研究提供新的研究思路,还对今后的研究方向进行了展望。
许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126.
XU Yongqiang, JIANG Ning, FENG Baohua, XIAO Jingjing, TAO Longxing, FU Guanfu. Research Progress in Mechanism Behind Heat Damage and Its Regulatory Techniques During Flowering in Rice[J]. Chinese Journal OF Rice Science, 2024, 38(2): 111-126.
[1] | 周佰铨, 翟盘茂. 未来的极端天气气候与水文事件预估及其应对[J]. 气象, 2023, 49(3): 257-266. |
Zhou B Q, Zhai P M. The future projections of extreme weather, climate and water events and strategic responses[J]. Meteorological Monthly, 2023, 49(3): 257-266. (in Chinese with English abstract) | |
[2] | IPCC. Summary for Policymakers//Masson-Delmotte V, Zhai P, Pirani A. Climate Change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom: Cambridge University Press, 2021: 1-41. |
[3] | Fischer E M, Sippel S, Knutti R. Increasing probability of record-shattering climate extremes[J]. Nature Climate Change, 2021, 11(8): 689-695. |
[4] | 许吟隆, 赵明月, 李阔, 赵运成, 王淳一. 农业适应气候变化研究进展回顾与展望[J]. 中国生态农业学报, 2023, 31(8): 1155-1170. |
Xu Y L, Zhao M Y, Li K, Zhao Y C, Wang C Y. Review on the research progress of agricultural adaptation to climate change and perspectives[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1155-1170. (in Chinese with English abstract) | |
[5] | 李多, 刘芸芸. 2022年春季我国气候异常特征及成因分析[J]. 气象, 2022, 48(10): 1343-1353. |
Li D, Liu Y Y. Features and possible causes of climate anomalies in china in spring 2022[J]. Meteorological Monthly, 2022, 48(10): 1343-1353. (in Chinese with English abstract) | |
[6] | Verma V, Vishal B, Kohli A, Kumar P P. Systems-based rice improvement approaches for sustainable food and nutritional security[J]. Plant Cell Reports, 2021, 40(11): 2021-2036. |
[7] | Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E, Liu Q, Martre P, Müller C, Peng S, Peñuelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35): 9326-9331. |
[8] | 王才林, 仲维功. 高温对水稻结实率的影响及其防御对策[J]. 江苏农业科学, 2004(1): 15-18. |
Wang C L, Zhong W G. Effects of high temperature on seed setting rate of rice and its prevention[J]. Jiangsu Agricultural Sciences, 2004(1): 15-18. (in Chinese with English abstract) | |
[9] | Yoshida H, Nagato Y. Flower development in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4719-4730. |
[10] | 苟亚军, 朱薪宇, 王海洋, 沈荣鑫. 水稻花时调控机理与育种应用[J]. 华南农业大学学报, 2022, 43(6): 48-59. |
Gou Y J, Zhu X Y, Wang H Y, Shen R X. Regulation mechanism and breeding application of rice floret-opening-time[J]. Journal of South China Agricultural University, 2022, 43(6): 48-59. (in Chinese with English abstract) | |
[11] | Wang M, Chen M, Huang Z, Zhou H, Liu Z. Advances on the study of diurnal flower-opening times of rice[J]. International Journal of Molecular Sciences, 2023, 24(13): 10654. |
[12] | 王玉博, 王悦, 刘雄, 唐文帮. 水稻光周期调控开花的研究进展[J]. 中国水稻科学, 2021, 35(3): 207-224. |
Wang Y B, Wang Y, Liu X, Tang W B. Research progress of photoperiod regulation in rice flowering[J]. Chinese Journal of Rice Science, 2021, 35(3): 207-224. (in Chinese with English abstract) | |
[13] | 王忠, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨: Ⅲ. 浆片的结构及其在开颖过程中内含物的变化[J]. 作物学报, 1991(2): 96-101+161-162. |
Wang Z, Gu Y J, Gao Y Z. Studies on the mechanism of the anthesis of rice: Ⅲ. Structure of the lodicule and changes of its contents during flowering[J]. Acta Agronomica Sinica, 1991(2): 96-101+161-162. (in Chinese with English abstract) | |
[14] | 李云峰, 任德勇. 水稻穗发育与高产育种[J]. 中国农业科学, 2023, 56(7): 1215-1217. |
Li Y F, Ren D Y. Panicle development and high-yield breeding in rice[J]. Scientia Agricultura Sinica, 2023, 56(7): 1215-1217. (in Chinese with English abstract) | |
[15] | 付永琦, 向妙莲, 蒋海燕, 何永明, 曾晓春. 水稻颖花开放前浆片转录组变化[J]. 中国农业科学, 2016, 49(6): 1017-1033. |
Fu Y Q, Xiang M L, Jiang H Y, He Y M, Zeng X C. Transcriptome profiling of lodicules before floret opening in Oryza sativa L[J]. Scientia Agricultura Sinica, 2016, 49(6): 1017-1033. (in Chinese with English abstract) | |
[16] | Qin Y, Yang J, Zhao J. Calcium changes and the response to methyl jasmonate in rice lodicules during anthesis[J]. Protoplasma, 2005, 225(1-2): 103-112. |
[17] | 王忠, 卢从明, 顾蕴洁, 高煜珠. 水稻开颖机理的探讨: Ⅰ. 温度对水稻开颖及花粉生活力的影响[J]. 作物学报, 1988(1): 14-21. |
Wang Z, Lu C M, Gu Y J, Gao Y Z. Studies on the mechanism of rice glume-openning: Ⅰ. Effects of temperature on glume-openning and pollen vitality of rice[J]. Acta Agronomica Sinica, 1988(1): 14-21. (in Chinese with English abstract) | |
[18] | 曾晓春, 周燮, 吴晓玉. 水稻颖花开放机理研究进展[J]. 中国农业科学, 2004(2): 188-195. |
Zeng X C, Zhou X, Wu X Y. Advances in study of opening mechanism in rice florets[J]. Scientia Agricultura Sinica, 2004(2): 188-195. | |
[19] | Jagadish S V, Bahuguna R N, Djanaguiraman M, Gamuyao R, Prasad P V, Craufurd P Q. Implications of high temperature and elevated CO2 on flowering time in plants[J]. Frontiers of Plant Science, 2016, 7: 913. (in Chinese with English abstract) |
[20] | Luan W, Chen H, Fu Y, Si H, Peng W, Song S, Liu W, Hu G, Sun Z, Xie D, Sun C. The effect of the crosstalk between photoperiod and temperature on the heading-date in rice[J]. PLoS One, 2009, 4(6): e5891. |
[21] | 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 高温胁迫对国稻6号开花结实习性的影响[J]. 作物学报, 2008(4): 669-674. |
Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Effects of high temperature stress on flowering and grain-setting characteristics for Guodao 6[J]. Acta Agronomica Sinica, 2008(4): 669-674. (in Chinese with English abstract) | |
[22] | 张桂莲, 刘思言, 张顺堂, 肖应辉, 唐文邦, 陈立云. 抽穗开花期不同高温处理对水稻开花习性和结实率的影响[J]. 中国农学通报, 2012, 28(30): 116-120. |
Zhang G L, Liu S Y, Zhang S T, Xiao Y H, Tang W B, Chen L Y. Effects of different high temperature treatment on flowering characteristics and seed setting of rice during heading and flowering period[J]. Chinese Agricultural Science Bulletin, 2012, 28(30): 116-120. | |
[23] | Fu G F, Feng B H, Zhang C X, Yang Y J, Yang X Q, Chen T T, Zhao X, Zhang X F, Jin Q Y, Tao L X. Heat stress is more damaging to superior spikelets than inferiors of rice (Oryza sativa L.) due to their different organ temperatures[J]. Frontiers in Plant Science, 2016, 7: 1637. |
[24] | 陈建珍, 闫浩亮, 刘科, 穆麒麟, 朱开典, 张运波, 田小海. 大穗型水稻品种抽穗开花期遭遇高温后的结实表现[J]. 中国农业气象, 2018, 39(2): 84-91. |
Chen J Z, Yan H L, Liu K, Mu Q L, Zhu K D, Zhang Y B, Tian X H. Seed-set of large-panicle rice cultivars suffered from high temperature at anthesis[J]. Chinese Journal of Agrometeorology, 2018, 39(2): 84-91. (in Chinese with English abstract) | |
[25] | 周建霞. 高温诱导水稻颖花不育特性研究[D]. 北京: 中国农业科学院, 2014. |
Zhou J X. Study on high temperature induced spikelet sterility in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract) | |
[26] | 张文倩, 王亚梁, 朱德峰, 陈惠哲, 向镜, 张义凯, 张玉屏. 花期夜温升高对水稻颖花开放及籽粒结实的影响[J]. 中国农业气象, 2019, 40(3): 180-185. |
Zhang W Q, Wang Y L, Zhu D F, Chen H Z, Xiang J, Zhang Y K, Zhang Y P. Effect of increasing night temperature on floret opening and grain setting of rice[J]. Chinese Journal of Agrometeorology, 2019, 40(3): 180-185. (in Chinese with English abstract) | |
[27] | 陶龙兴, 谈惠娟, 王熹, 曹立勇, 宋建, 程式华. 开花和灌浆初期高温胁迫对国稻6号结实的生理影响[J]. 作物学报, 2009, 35(1): 110-117. |
Tao L X, Tan H J, Wang X, Cao L Y, Song J, Cheng S H. Physiological effects of high temperature stress on grain-setting for Guodao 6 during flowering and filling stage[J]. Acta Agronomica Sinica, 2009, 35(1): 110-117. (in Chinese with English abstract) | |
[28] | 徐鹏, 贺一哲, 黄亚茹, 王辉, 尤翠翠, 何海兵, 柯健, 武立权. 花期短时高温对不同品种水稻颖花开放动态及产量的影响[J]. 中国农业气象, 2023, 44(1): 25-35. |
Xu P, He Y Z, Huang Y R, Wang H, You C C, He H B, Ke J, Wu L Q. Effects of short-term high temperature on spikelet opening dynamics and yield of different rice varieties during flowering period[J]. Chinese Journal of Agrometeorology, 2023, 44(1): 25-35. (in Chinese with English abstract) | |
[29] | 徐鹏, 贺一哲, 尤翠翠, 黄亚茹, 何海兵, 柯健, 武立权. 高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J]. 江苏农业学报, 2023, 39(1): 255-265. |
Xu P, He Y Z, You C C, Huang Y R, He H B, Ke J, Wu L Q. Research progress on the mechanism and defense measures of rice spikelet abortion caused by high temperature stress[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 255-265. (in Chinese with English abstract) | |
[30] | Guo T, Mu Q, Wang J, Vanous A E, Onogi A, Iwata H, Li X, Yu J. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation[J]. Genome Research, 2020, 30(5): 673-683. |
[31] | Shim J S, Jang G. Environmental Signal-dependent regulation of flowering time in rice[J]. Internationel Journal of Molecular Science, 2020, 21(17): 6155. |
[32] | Wilson Z A, Song J, Taylor B, Yang C. The final split: the regulation of anther dehiscence[J]. Journal of Experimental Botany, 2011, 62(5): 1633-1649. |
[33] | 穰中文, 周清明, 符习勤. 水稻花药开裂的形态特征观察及机制分析[J]. 湖南农业大学学报: 自然科学版, 2018, 44(5): 453-458. |
Rang Z W, Zhou Q M, Fu X Q. Analysis of the mechanism of anther dehiscence in rice based on morphological characteristics[J]. Journal of Hunan Agricultural University: Natural Sciences, 2018, 44(5): 453-458. (in Chinese with English abstract) | |
[34] | 刘伟元. 水稻开花与浆片细胞程序性死亡的细胞学基础研究[D]. 扬州: 扬州大学, 2008. |
Liu W Y. Study on cytology basic of rice anthesis and lodicule programmed cell death[D]. Yangzhou: Yangzhou University, 2008. (in Chinese with English abstract) | |
[35] | 何永明, 刘遂飞, 雷抒情. 水稻花药开裂前茉莉酸水平及信号途径相关基因表达的动态变化. 江西农业大学学报, 2018, 40(3): 429-434. |
He Y M, Liu S F, Lei S Q. The dynamic changes in jasmonate levels and expression of its pathway-related genes in anthers before dehiscence in rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 429-434. (in Chinese with English abstract) | |
[36] | Song S Y, Chen Y, Liu L, See Y H B, Mao C Z, Gan Y B, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice[J]. Nature Plants, 2018, 4(7): 495-504. |
[37] | Xu X F, Wang B, Feng Y F, Xue J S, Qian X X, Liu S Q, Zhou J, Yu Y H, Yang N Y, Xu P, Yang Z N. AUXIN RESPONSE FACTOR17 directly regulates MYB108 for anther dehiscence[J]. Plant Physiology, 2019, 181(2): 645-655. |
[38] | Hong W J, Lee S K, Kim S H, Kim Y J, Moon S, Kim E J, Silva J, Jung K H. Comparative transcriptome analysis of pollen and anther wall reveals novel insights into the regulatory mechanisms underlying anther wall development and its dehiscence in rice[J]. Plant Cell Reports, 2022: 1229-1242. |
[39] | Zhang Z, Hu M, Xu W, Wang Y, Huang K, Zhang C, Wen J. Understanding the molecular mechanism of anther development under abiotic stresses[J]. Plant Molecular Biology, 2021, 105(1-2): 1-10. |
[40] | Arshad M S, Farooq M, Asch F, Krishna J S V, Prasad P V V, Siddique K H M. Thermal stress impacts reproductive development and grain yield in rice[J]. Plant Physiol Biochemistry, 2017, 115: 57-72. |
[41] | Jiang Y, Lahlali R, Karunakaran C, Warkentin T D, Davis A R, Bueckert R A. Pollen, ovules, and pollination in pea: Success, failure, and resilience in heat[J]. Plant Cell Environment, 2019, 42(1): 354-372. |
[42] | Song G C, Wang M M, Zeng B, Zhang J, Jiang C L, Hu Q R, Geng G T, Tang C M. Anther response to high-temperature stress during development and pollen thermotolerance heterosis as revealed by pollen tube growth and in vitro pollen vigor analysis in upland cotton[J]. Planta, 2015, 241(5): 1271-1285. |
[43] | Jagadish S V K, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2007, 58(7): 1627-1635. |
[44] | Jagadish S V K, Muthurajan R, Oane R, Wheeler T R, Heuer H, Bennett J, Craufurd P Q. Physiological and a proteomic approaches to address heat toleranceduring anthesis in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2010, 61(1): 143-156. |
[45] | Jagadish K S V, Craufurd P, Shi W J, Oane R. A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.)[J]. Functional Plant Biology, 2014, 41(1): 48-55. |
[46] | Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage T L. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon[J]. Journal of Experimental Botany, 2013, 64(10): 2971-2983. |
[47] | MaruyamA A, Weerakoon W M W, Wakiyama Y, Ohba K. Effects of increasing temperatures on spikelet fertility in different rice cultivars based on temperature gradient chamber experiments[J]. Journal of Agronomy and Crop Science, 2013, 199(6): 416-423. |
[48] | Min L, Zhu L F, Tu L L, Deng F L, Yuan D J, Zhang X L. Cotton GhCKI disrupts normal male reproduction by delaying tapetum programmed cell death via inactivating starch synthase[J]. Plant Jouranl, 2013, 75(5): 823-835. |
[49] | 黄福灯, 曹珍珍, 李春寿, 陆艳婷, 潘刚, 程方民. 花期高温对水稻花器官性状和结实的影响[J]. 核农学报, 2016, 30(3): 565-570. |
Huang F D, Cao Z Z, Li C S, Lu Y T, Pan G, Cheng F M. Study on effects of high-temperature stress on rice in floral organ character and seed-setting rate[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(3): 565-570. (in Chinese with English abstract) | |
[50] | Matsui T, Hasegawa T. Effect of long anther dehiscence on seed set at high temperatures during flowering in rice (Oryza sativa L.)[J]. Scientific Reports, 2019, 9(1): 20363. |
[51] | 王文铖. 水稻水分生理特征与高温抗性的关系及其机理[D]. 武汉: 华中农业大学, 2021. |
Wang W C. Relationship between rice water status and heat resistance and its mechanisms[D]. Wuhan: Huazhong Agricultural University, 2021. (in Chinese with English abstract) | |
[52] | 宋有金. 不同生育阶段高温对水稻产量及颖花育性的影响[D]. 南京: 南京农业大学, 2020. |
Song Y J. Response of rice yield and spikelet fertility to high temperature in different periods[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract) | |
[53] | Matsui T, Omasa K, Horie T. Mechanism of anther dehiscence in rice (Oryza sativa L.)[J]. Annals of Botany, 1999, 84(4): 501-506. |
[54] | 李文彬, 王贺, 张福锁. 高温胁迫条件下硅对水稻花药开裂及授粉量的影响[J]. 作物学报, 2005(1): 134-136. |
Li W B, Wang H, Zhang F S. Effects of silicon on anther dehiscence and pollen shedding in rice under high temperature stress[J]. Acta Agronomica Sinica, 2005(1): 134-136. (in Chinese with English abstract) | |
[55] | 张桂莲, 张顺堂, 萧浪涛, 武小金, 肖应辉, 陈立云. 水稻花药对高温胁迫的生理响应[J]. 植物生理学报, 2013, 49(9): 923-928. |
Zhang G L, Zhang S T, Xiao L T, Wu X J, Xiao Y H, Chen L Y. Physiological responses of anther to high temperature stress in rices[J]. Plant Physiology Journal, 2013, 49(9): 923-928. (in Chinese with English abstract) | |
[56] | Bagha S. The impact of high temperatures on anther and pollen development in cultivated Oryza species[D]. Toronto: University of Toronto, 2014. |
[57] | 陈士强. 关于稻麦花粉管伸长和极核受精过程的研究[D]. 扬州: 扬州大学, 2007. |
Chen S Q. Studies of pollen tube growth and polar nucleus fertilization of rice, wheat and barley[D]. Yangzhou: Yangzhou University, 2007. (in Chinese with English abstract) | |
[58] | Taylor L P, Hepler P K. Pollen germination and tube growth[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48(1): 461-491. |
[59] | 丁春邦. 植物学[M]. 北京: 中国农业出版社, 2014: 147-148. |
Ding C B. Botany[M]. Beijing: China Agriculture Press, 2014: 147-148. (in Chinese) | |
[60] | Wassmann R, Jagadish S V K, Heuer S, Ismail A M, Sumfleth K. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies[J]. Advances in Agronomy, 2009, 101: 59-122. |
[61] | 唐建成, 莫志军, 张卫. 培矮64S花器特性研究[J]. 种子, 2003(4): 40-41. |
Tang J C, Mo Z J, Zhang W. Research of flower character of Pei'ai 64S[J]. Seed, 2003(4): 40-41. (in Chinese with English abstract) | |
[62] | Hedhly A, Hormaza J I, Herrero M. The effect of temperature on pollen germination, pollen tube growth, and stigmatic receptivity in peach[J]. Plant Biology, 2005, 7(5): 476-483. |
[63] | 贺立伟. 水稻雄性不育系柱头外露特性及其与花器性状的关系研究[D]. 长沙: 湖南农业大学, 2008. |
He L W. Study on stigma exsertion characteristics of rice male sterile lines and its relationship with floral traits[D]. Changsha: Hunan Agricultural University, 2008. (in Chinese with English abstract) | |
[64] | Prasad P V, Boote K J, Allen L H, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress[J]. Field Crops Research, 2006, 95(2-3): 398-411. |
[65] | 张彬, 芮雯奕, 郑建初, 周博, 杨飞, 张卫建. 水稻开花期花粉活力和结实率对高温的响应特征[J]. 作物学报, 2007(7): 1177-1181. |
Zhang B, Rui W Y, Zheng J C, Zhou B, Yang F, Zhang W J. Responses of pollen activity and seed setting of rice to high temperature of heading period[J]. Acta Agronomica Sinica, 2007(7): 1177-1181. (in Chinese with English abstract) | |
[66] | Shi W, Li X, Schmidt R C, Struik P C, Yin X, Jagadish S V K. Pollen germination and in vivo fertilization in response to high-temperature during flowering in hybrid and inbred rice[J]. Plant Cell Environment, 2018, 41(6): 1287-1297. |
[67] | Ahmed F E, Hall A E, Demason D A. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae)[J]. American Journal of Botany, 1992(79): 784-791. |
[68] | Porch T G, Jahn M. Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris[J]. Plant Cell Environment, 2001, 24(7): 723-731. |
[69] | Prasad P V, Djanaguiraman M. Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration[J]. Functional Plant Biology, 2014, 41(12): 1261-1269. |
[70] | Rottmann T, Fritz C, Sauer N, Stadler R. Glucose uptake via STP transporters inhibits in vitro pollen tube growth in a hexokinase1-dependent manner in Arabidopsis thaliana[J]. The Plant Cell, 2018, 30(9): 2057-2081. |
[71] | Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes[J]. New Phytologist, 2022, 233(5): 2185-2202. |
[72] | Hou S, Shi J, Hao L, Wang Z, Liao Y, Gu H, Dong J, Dresselhaus T, Zhong S, Qu L J. VPS18-regulated vesicle trafficking controls the secretion of pectin and its modifying enzyme during pollen tube growth in Arabidopsis[J]. The Plant Cell, 2021, 33(9): 3042-3056. |
[73] | Kim Y J, Kim M H, Hong W J, Moon S, Kim S T, Park S K, Jung K H. OsMTD2-mediated reactive oxygen species (ROS) balance is essential for intact pollen-tube elongation in rice[J]. The Plant Journal, 2021, 107(4): 1131-1147. |
[74] | Selinski J, Scheibe R. Pollen tube growth: where does the energy come from[J]? Plant Signaling & Behavior, 2014, 9(12): e977200. |
[75] | Rottmann T, Zierer W, Subert C, Sauer N, Stadler R. STP10 encodes a high-affinity monosaccharide transporter and is induced under low-glucose conditions in pollen tubes of Arabidopsis[J]. Journal of Experimental Botany, 2016, 67(8): 2387-2399. |
[76] | Hoffmann R D, Portes M T, Olsen L I, Damineli D S C, Hayashi M, Nunes C O, Pedersen J T, Lima P T, Campos C, Feijó J A, Palmgren M. Plasma membrane H+-ATPases sustain pollen tube growth and fertilization[J]. Nature Communications, 2020, 11(1): 2395. |
[77] | Pertl-Obermeyer H, Gimeno A, Kuchler V, Servili E, Huang S, Fang H, Lang V, Sydow K, Pöckl M, Schulze W X, Obermeyer G. pH modulates interaction of 14-3-3 proteins with pollen plasma membrane H+ ATPases independently from phosphorylation[J]. Journal of Experimental Botany, 2022, 73(1): 168-181. |
[78] | Scali M, Moscatelli A, Bini L, Onelli E, Vignani R, Wang W. Protein analysis of pollen tubes after the treatments of membrane trafficking inhibitors gains insights on molecular mechanism underlying pollen tube polar growth[J]. The Protein Journal, 2021, 40(2): 205-222. |
[79] | Wang L D, Lin Z C, Carli J, GladalaKostarz A, Davies J M, FranklinTong V E, Bosch M. Depletion plays a pivotal role in self-incompatibility, revealing a link between cellular energy status, cytosolic acidification and actin remodelling in pollen tubes[J]. New Phytologist, 2022, 236(5): 1691-1707. |
[80] | Matsui T, Omasa K, Horie T. High temperature-induced spikelet sterility of Japonica rice at flowering in relation to air temperature, humidity and wind velocity conditions[J]. Japanese Journal of Crop Science, 1997, 66(3): 449-455. |
[81] | Ge Z, Bergonci T, Zhao Y, Zou Y, Du S, Liu M C, Luo X, Ruan H, García-Valencia L E, Zhong S, Hou S, Huang Q, Lai L, Moura D S, Gu H, Dong J, Wu H M, Dresselhaus T, Xiao J, Cheung A Y, Qu L J. Arabidopsis pollen tube integrity and sperm release are regulated by RALF-mediated signaling[J]. Science, 2017, 358(6370): 1596-1600. |
[82] | Chen W, Gong P, Guo J, Li H, Li R, Xing W, Yang Z, Guan Y. Glycolysis regulates pollen tube polarity via Rho GTPase signaling[J]. PLoS Genetics, 2018, 14(4): e1007373. |
[83] | Wudick M M, Portes M T, Michard E, Rosas-Santiago P, Lizzio M A, Nunes C O, Campos C, Santa Cruz Damineli D, Carvalho J C, Lima P T, Pantoja O, Feijó J A. Cornichon sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis[J]. Science, 2018, 360(6388): 533-536. |
[84] | Ju Y, Kessler S A. Keeping pollen tubes on track[J]. Nature Plants, 2020, 6(2): 51-52. |
[85] | Meng J G, Liang L, Jia P F, Wang Y C, Li H J, Yang W C. Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance[J]. Nature Plants, 2020, 6(2): 143-153. |
[86] | Saini H S, Sedgley M, Aspinall D. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in Wheat (Triticum aestivum L.)[J]. Australian Journal of Crop Science, 1983, 10(2): 137-144. |
[87] | Snider J L, Oosterhuis D M. How does timing, duration, and severity of heat stress influence pollen-pistil interactions in angiosperms[J]? Plant Signaling & Behavior, 2011, 6(7): 930-933. |
[88] | Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering[J]. Environmental and Experimental Botany, 2019, 158(1): 80-88. |
[89] | Wang Y, Impa S M, Sunkar R, Jagadish S V K. The neglected other half - role of the pistil in plant heat stress responses[J]. Plant Cell and Environment, 2021, 44(7): 2200-2210. |
[90] | Parrotta L, Faleri C, Cresti M, Cai G. Heat stress affects the cytoskeleton and the delivery of sucrose synthase in tobacco pollen tubes[J]. Planta, 2016, 243(1): 43-63. |
[91] | 徐坤. 高温对梨花粉萌发及生长的影响[D]. 南京: 南京农业大学, 2015. |
Xu K. The effect of high temperature on pollen germination and tube growth of pera[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract) | |
[92] | Djanaguiraman M, Perumal R, Ciampitti I A, Gupta S K, Prasad P V V. Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil[J]. Plant Cell Environ, 2018, 41(5): 993-1007. |
[93] | Monteiro D, Liu Q, Lisboa S, Scherer G E, Quader H, Malhó R. Phosphoinositides and phosphatidic acid regulate pollen tube growth and reorientation through modulation of [Ca2+]c and membrane secretion[J]. Journal of Experimental Botany, 2005, 56(416): 1665-1674. |
[94] | Poidevin L, Forment J, Unal D, Ferrando A. Transcriptome and translatome changes in germinated pollen under heat stress uncover roles of transporter genes involved in pollen tube growth[J]. Plant Cell and Environment, 2021, 44(7): 2167-2184. |
[95] | Krawczyk H E, Rotsch A H, Herrfurth C, Scholz P, Shomroni O, Salinas-Riester G, Feussner I, Ischebeck T. Heat stress leads to rapid lipid remodeling and transcriptional adaptations in Nicotiana tabacum pollen tubes[J]. Plant Physiology, 2022, 189(2): 490-515. |
[96] | Zhang C X, Li G Y, Chen T T, Feng B H, Fu W M, Yan J X, Islam M R, Jin Q Y, Tao L X, Fu G F. Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils[J]. Rice, 2018, 11(1): 1-12. |
[97] | Jiang N, Yu P H, Fu W M, Li GY, Feng B H, Chen T T, Li H B, Tao L X, Fu G F. Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets[J]. Plant Cell and Environment, 2020, 43(5): 1273-1287. |
[98] | Muhlemann J K, Younts T, Muday G K. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11188-E11197. |
[99] | Ma Z M, Lv J, Wu W H, Fu D, Lü S Y, Ke Y G, Yang P F. Regulatory network of rice in response to heat stress and its potential application in breeding strategy[J]. Molecular Breeding, 2023, 43(9): 68. |
[100] | Jeong H Y, Nguyen H P, Lee C. Genome-wide identification and expression analysis of rice pectin methylesterases: Implication of functional roles of pectin modification in rice physiology[J]. Journal of Plant Physiology, 2015, 183: 23-29. |
[101] | Wu H C, Jinn T L. Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance[J]. Plant Signal Behavior, 2010, 5(10): 1252-1256. |
[102] | Ariizumi T, Toriyama K. Genetic regulation of sporopollenin synthesis and pollen exine development[J]. Annual Review Plant Biology, 2011, 62: 437-460. |
[103] | Liu F, Yang H T, Tang R, Wang W, Shen H D, Xu M, Hao T, Hu Y, Zhang Y, Bao Y. OsTKPR1 proteins with a single amino acid substitution fail the synthesis of a specific sporopollenin precursor and cause abnormal exine and pollen development in rice[J]. Plant Science, 2023, 335: 111792. |
[104] | Yang H T, Liu F, Wang W, Rui Q C, Li G, Tan X Y, Ye J, Shen H D, Liu Y P, Liu W L, Tang R, Hu J R, Liu K, Zhang Y H, Zhan H D, Wang Y H, Bao Y Q. OsTKPR2 is part of a sporopollenin-producing metabolon required for exine formation in rice[J]. Jouranl of Experimental Botany, 2023, 74(6): 1911-1925. |
[105] | Liu H Z, Wang J S, Li C Q, Lin Q S, Wang X Q, Li J J, Hu L J, Yin G H, Ba Q S. Phenotype characterisation and analysis of expression patterns of genes related mainly to carbohydrate metabolism and sporopollenin in male-sterile anthers induced by high temperature in wheat (Triticum aestivum)[J]. Crop & Pasture Science, 2018, 69: 469-478. |
[106] | Yang X T, Ye J L, Zhang L L, Song X Y. Blocked synthesis of sporopollenin and jasmonic acid leads to pollen wall defects and anther indehiscence in genic male sterile wheat line 4110S at high temperatures[J]. Functional Integrative Genomics, 2020, 20(3): 383-396. |
[107] | Yang W L, Yao D D, Duan H Y, Zhang J L, Cai Y L, Lan C, Zhao B, Mei Y, Zheng Y, Yang E B, Lu X D, Zhang X H, Tang J H, Yu K, Zhang X B. VAMP726 from maize and Arabidopsis confers pollen resistance to heat and UV radiation by influencing lignin content of sporopollenin[J]. Plant Communication, 2023, 4(6): 100682. |
[108] | Narayanan S, Tamura P J, Roth M R, Prasad P V, Welti R. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations[J]. Plant Cell and Environment, 2016, 39(4): 787-803. |
[109] | Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. Transcriptional regulatory network of plant heat Stress response[J]. Trends in Plant Science, 2017, 22(1): 53-65. |
[110] | Nawaz Z, Kakar K U, Saand M A, Shu Q Y. Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses[J]. BMC Genomics, 2014, 15(1): 853. |
[111] | Cui Y M, Lu S, Li Z, Cheng J W, Hu P, Zhu T Q, Wang X, Jin M, Wang X X, Li L Q, Huang S Y, Zou B H, Hua J. Cyclic nucleotide-gated ion channels 14 and 16 promote tolerance to heat and chilling in rice[J]. Plant Physiology, 2020, 183(4): 1794-1808. |
[112] | Swanson S, Gilroy S. ROS in plant development[J]. Physiologia Plantarum, 2010, 138(4): 384-392. |
[113] | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling[J]. Jounal of Experimental Botany, 2014, 65(5): 1229-1240. |
[114] | Mittler R. ROS are good[J]. Trends in Plant Sciences, 2017, 22(1): 11-19. |
[115] | Zhao Q, Zhou L, Liu J, Du X, Asad M A, Huang F, Pan G, Cheng F. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress[J]. Plant Physiology and Biochemistry, 2018, 122: 90-101. |
[116] | Zhao Q, Zhou L J, Liu J C, Cao Z Z, Du X X, Huang F D, Pan G, Cheng F M. Involvement of CAT in the detoxification of HT-induced ROS burst in rice anther and its relation to pollen fertility[J]. Plant Cell Reports, 2018, 37(5): 741-757. |
[117] | Liu X H, Liu Y S, Yang W, Yang Z T, Lu S J, Liu J X. A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice[J]. Plant Biotechnological Journal, 2020, 18(5): 1317-1329. |
[118] | Cheng Z Y, Luan Y T, Meng J S, Sun J, Tao J, Zhao D Q. WRKY transcription factor response to high-temperature stress[J]. Plants (Basel), 2021, 10: 2211. |
[119] | Chen S Q, Cao H R, Huang B L, Zheng X J, Liang K J, Wang G L, Sun X L. The WRKY10-VQ8 module safely and effectively regulates rice thermotolerance[J]. Plant Cell and Environment, 2022, 45(7): 2126-2144. |
[120] | Cao Z B, Tang H W, Cai Y H, Zeng B H, Zhao J L, Tang X Y, Lu M, Wang H M, Zhu X J, Wu X F, Yuan L F, Wan J L. Natural variation of HTH5 from wild rice, Oryza rufipogon Griff., is involved in conferring high- temperature tolerance at the heading stage[J]. Plant Biotechnological Journal, 2022, 20(8): 1591-1605. |
[121] | Shiraya T, Mori T, Maruyama T, Sasaki M, Takamatsu T, Oikawa K, Itoh K, Kaneko K, Ichikawa H, Mitsui T. Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice[J]. Plant Biotechnological Journal, 2015, 13(9): 1251-1263. |
[122] | Qiao B, Zhang Q, Liu D L, Wang H Q, Yin J Y, Wang R, He M L, Cui M, Shang Z L, Wang D K, Zhu Z G. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2[J]. Journal of Experimental Botany, 2015, 66(19): 5853-5866. |
[123] | Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong L Z. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J]. Journal of Experimental Botany, 2015, 66(21): 6803-6817. |
[124] | El-Esawi M A, Alayafi A A. Overexpression of rice Rab7 Gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.)[J]. Genes (Basel), 2019, 10(1): 56. |
[125] | Liu J X, Howell S H. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants[J]. Plant Cell, 2010, 22(9): 2930-2942. |
[126] | Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827-833. |
[127] | Kan Y, Mu X R, Zhang H, Gao J, Shan J X, Ye W W, Lin H X. TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis[J]. Nature Plants, 2022, 8(1): 53-67. |
[128] | Zhang H, Zhou J F, Kan Y, Shan J X, Ye W W, Dong N Q, Guo T, Xiang Y H, Yang Y B, Li Y C, Zhao H Y, Yu H X, Lu Z Q, Guo S Q, Lei J J, Liao B, Mu X R, Cao Y J, Yu J J, Lin Y, Lin H X. A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance[J]. Science, 2022, 376(6599): 1293-1300. |
[129] | Liu J P, Sun X J, Xu F Y, Zhang Y J, Zhang Q, Miao R, Zhang J H, Liang J S, Xu W F. Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants[J]. Rice, 2018, 11(1): 38. |
[130] | Degen G E, Worrall D, Carmo-Silva E. An isoleucine residue acts as a thermal and regulatory switch in wheat Rubisco activase[J]. Plant Joural, 2020, 103(2): 742-751. |
[131] | Feng B H, Xu Y Q, Fu W M, Li H B, Li G Y, Li J, Wang W T, Tao L X, Chen T T, Fu G F. RGA1 negatively regulates thermo-tolerance by affecting carbohydrate metabolism and the energy supply in rice[J]. Rice, 2023, 16(1): 32. |
[132] | 陈庆全, 万丙良. 水稻耐热性的人工气候室鉴定方法研究[J]. 安徽农业科学, 2009, 37(14): 6350+6360. |
Chen Q Q, Wan B L. Study on phytotron identification method of rice heat tolerance[J]. Journal of Anhui Agricultural Sciences, 2009, 37(14): 6350+6360. | |
[133] | Challinor A J, Watson J, Lobell D B, Howden S M, Chhetri N B. A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4): 287-291. |
[134] | Liao M, Ma Z, Kang Y, Zhang B, Gao X, Yu F, Yang P, Ke Y. ENHANCED DISEASE SUSCEPTIBILITY 1 promotes hydrogen peroxide scavenging to enhance rice thermotolerance[J]. Plant Physiology, 2023, 192(4): 3106-3119. |
[135] | Matsui T, Omasa K, Horie T. Comparison between anthers of two rice (Oryza saliva L.) cultivars with tolerance to high temperatures at flowering or susceptibility[J]. Plant Production Science, 2008, 4(1): 36-40. |
[136] | Jagadish S V K, Craufurd P Q, Wheeler T R. Phenotyping parents of mapping populations of rice for heat tolerance during anthesis[J]. Crop Science, 2008, 48(3): 1140-1146. |
[137] | Shi W, Ishimaru T, Gannaban R B, Oane W, Jagadish S. Popular rice (Oryza sativa L.) cultivars show contrasting responses to heat stress at gametogenesis and anthesis[J]. Crop Science, 2015, 55(2): 589-596. |
[138] | Wang Y L, Wang L, Zhou J X, Hu S B, Chen H Z, Xiang J, Zhang Y K, Zeng Y J, Shi Q H, Zhu D F, Zhang Y P. Research progress on heat stress of rice at anthesis[J]. Rice Science, 2019, 26(1): 1-10. |
[139] | 赵森, 于江辉, 周浩, 孟秋成, 肖国樱. 抽穗开花期耐高温的爪哇稻资源筛选[J]. 植物遗传资源学报, 2013, 14(3): 384-389. |
Zhao S, Yu J H, Zhou H, Meng Q C, Xiao G Y. Screening of javanica rice for thermo-tolerance at heading stage[J]. Journal of Plant Genetic Resources, 2013, 14(3): 384-389. (in Chinese with English abstract) | |
[140] | 刘业涛, 穆麒麟, 王毅, 高园, 田小海. 从非洲水稻材料中筛选耐高温种质资源[J]. 中国农学通报, 2019, 35(12): 8-12. |
Liu Y T, Mu Q L, Wang Y, Gao Y, Tian X H. Selecting high temperature tolerant germplasms from Africa rice[J]. Chinese Agricultural Science Bulletin, 2019, 35(12): 8-12. (in Chinese with English abstract) | |
[141] | 肖国樱, 邓力华, 翁绿水, 肖友伦, 李锦江, 于江辉, 孟秋成. 水稻耐逆境种质创新研究十年回顾[J]. 农业现代化研究, 2018, 39(6): 945-952. |
Xiao G Y, Deng L H, Weng L S, Xiao Y L, Li J J, Yu J H, Meng Q C. Germplasm innovation of stress tolerance in rice: Progress we have made in past decade[J]. Research of Agricultural Modernization, 2018, 39(6): 945-952. (in Chinese with English abstract) | |
[142] | 胡声博. 水稻高温诱导颖花不育品种间差异及其机理研究[D]. 北京: 中国农业科学院, 2013. |
Hu S B. Study on differences of varieties and its mechanism in rice spikelet sterility induced by high temperature[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract) | |
[143] | Fu G F, Zhang C X, Yang Y J, Xiong J, Yang X Q, Zhang X F, Jin Q Y, Tao L X. Male parent plays more important role in heat tolerance in three-line hybrid rice[J]. Rice Science, 2015, 22(3): 116-122. |
[144] | 曹立勇, 赵建根, 占小登, 李登楼, 何立斌, 程式华. 水稻耐热性的QTL定位及耐热性与光合速率的相关性[J]. 中国水稻科学, 2003(3): 34-38. |
Cao L Y, Zhao J G, Zhan X D, Li D L, He L B, Chen S H. Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice[J]. Chinese Journal of Rice Science, 2003(3): 34-38. (in Chinese with English abstract) | |
[145] | 王少波. 水稻耐热胁迫基因的挖掘及其表达分析[D]. 福州: 福建农林大学, 2019. |
Wang S B. Mining and analysis genome heat resistance genes in rice (Oryza sativa L.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. (in Chinese with English abstract) | |
[146] | Jung K H, Ko H J, Nguyen M X, Kim S R, Ronald P, An G. Genome-wide identification and analysis of early heat stress responsive genes in rice[J]. Journal of Plant Biology, 2012, 55(6): 458-468. |
[147] | Wang L, Ruan Y L. Critical roles of vacuolar invertase in floral organ development and male and female fertilities are revealed through characterization of GhVIN1-RNAi cotton plants[J]. Plant Physiology, 2016, 171(1): 405-423. |
[148] | Zafar S A, Hameed A, Nawaz M A, Wei M A, Noor M A, Hussain M. Mehbooburrahman, mechanisms and molecular approaches for heat tolerance in rice (Oryza sativa L.) under climate change scenario[J]. Journal of Integrative Agriculture, 2018, 17(4): 726-738. |
[149] | 张政, 冯国栋, 王洋, 王莹莹, 唐维, 牛向丽. 过量表达AtAPX2基因提高水稻抗逆性[J]. 合肥工业大学学报: 自然科学版, 2019, 42(4): 546-550. |
Zhang Z, Feng G D, Wang Y, Wang Y Y, Tang W, Niu X L. Overexpression of AtAPX2 enhances abiotic stress tolerance in rice[J]. Journal of Hefei University of Technology: Natural Science, 2019, 42(4): 546-550. (in Chinese with English abstract) | |
[150] | Bhogireddy S, Babu M S, Swamy K N, Vishnukiran T, Subrahmanyam D, Sarla N, Voleti N, Rao P R, Mangrauthia S K. Expression dynamics of genes and microRNAs at different growth stages and heat treatments in contrasting high temperature responsive rice genotypes[J]. Journal of Plant Growth Regulation, 2022, 41(1): 74-91. |
[151] | Zhang M, Li Z, Feng K X, Ji Y N, Xu Y Z, Tu D B, Teng B, Liu Q M, Liu J W, Zhou Y J, Wu W G. Strategies for indica rice adapted to high-temperature stress in the middle and lower reaches of the Yangtze River[J]. Frontiers of Plant Sciences, 2023, 13: 1081807. |
[152] | 宋建, 乐明凯, 符冠富, 王熹, 陶龙兴. 水稻高温胁迫伤害机理研究进展[J]. 中国稻米, 2009(6): 8-14. |
Song J, Yue M K, Fu G F, Wang X, Tao L X. Research progress on injury mechanism of rice under high temperature stress[J]. China Rice, 2009(6): 8-14. (in Chinese with English abstract) | |
[153] | Yang J, Duan L C, He H H, Li Y C, Li X X, Liu D, Wang J J, Jin G H, Huang S. Application of exogenous KH2PO4 and salicylic acid and optimization of the sowing date enhance rice yield under high-temperature conditions[J]. Journal of Plant Growth Regulation, 2021, 41(4): 1532-1546. |
[154] | 刘厚敖, 宋忠华, 刘云开, 陈梦琼. 湖南省高温的时空分布与水稻生产的利用对策[J]. 农业现代化研究, 2005(6): 55-57. |
Liu H A, Song Z H, Liu Y K, Chen M Q. Distribution of high temperature and stratagem of rice production in Hunan[J]. Research of Agricultural Modernization, 2005(6): 55-57. (in Chinese with English abstract) | |
[155] | 谢晓金, 李秉柏, 李映雪, 李昊宇, 赵小艳, 杨沈斌, 王志明. 抽穗期高温胁迫对水稻产量构成要素和品质的影响[J]. 中国农业气象, 2010, 31(3): 411-415. |
Xie X J, Li B B, Li Y X, Li H Y, Zhao X Y, Yang S B, Wang Z M. Effects of high temperature stress on yield components and grain quality during heading stage[J]. Chinese Journal of Agrometeorology, 2010, 31(3): 411-415. (in Chinese with English abstract) | |
[156] | 盛婧, 陈留根, 朱普平, 薛新红, 郑建初. 不同水稻品种抽穗期对高温的响应及避热的调控措施[J]. 江苏农业学报, 2006(4): 325-330. |
Sheng J, Chen L G, Zhu P P, Xue X H, Zheng J C. Responses of rice varieties to high temperature at heading Stage and methods for heat escape[J]. Jiangsu Journal of Agricultural Sciences, 2006(4): 325-330. (in Chinese with English abstract) | |
[157] | 郭建茂, 吴越, 杨沈斌, 江晓东, 谢晓燕, 王锦杰, 申双和. 典型高温年不同播期一季稻产量差异及其原因分析[J]. 中国农业气象, 2017, 38(2): 121-130. |
Guo J M, Wu Y, Yang S B, Jiang X D, Xie X Y, Wang J J, Shen S H. Yield differences and its causes for one season rice under different sowing dates in typical high temperature year[J]. Chinese Journal of Agrometeorology, 2017, 38(2): 121-130. (in Chinese with English abstract) | |
[158] | 闫川, 丁艳锋, 王强盛, 李刚华, 黄丕生, 王绍华. 行株距配置对水稻茎秆形态生理与群体生态的影响[J]. 中国水稻科学, 2007(5): 530-536. |
Yan C, Ding Y F, Wang Q S, Li G H, Huang P S, Wang S H. Effects of row-spacing on morphological and eco-physiological characteristics in rice[J]. Chinese Journal of Rice Science, 2007(5): 530-536. (in Chinese with English abstract) | |
[159] | 闫川, 丁艳锋, 王强盛, 李刚华, 刘正辉, 缪小建, 郑永美, 魏广彬, 王绍华. 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响[J]. 作物学报, 2008, 34(12): 2176-2183. |
Yan C, Ding Y F, Wang Q S, Li G H, Liu Z H, Liu X J, Zheng Y M, Wei G B, Wang S H. Effect of panicle fertilizer application rate on morphological, ecological characteristics, and organ temperature of rice[J]. Acta Agronomica Sinica, 2008, 34(12): 2176-2183. (in Chinese with English abstract) | |
[160] | 江陵杰, 范鹏, 郭柯凡, 金雨航, 周诚, 沈新平, 黄丽芬, 蒋敏. 水稻冠层温度研究进展[J]. 江苏农业学报, 2020, 36(1): 234-242. |
Jiang L J, Fan P, Guo K F, Jin Y H, Zhou C, Sheng X P, Huang L F, Jiang L F. Research progress on the factors affecting canopy temperature of rice[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 234-242. (in Chinese with English abstract) | |
[161] | Liu K, Deng J, Lu J, Wang X, Lu B, Tian X, Zhang Y. High nitrogen levels alleviate yield Loss of super hybrid rice caused by high temperatures during the flowering stage[J]. Frontiers of Plant Science, 2019, 10: 357. |
[162] | Fahad S, Hussain S, Saud S, Hassan S, Tanveer M, Ihsan M Z, Shah A N, Ullah A, Nasrullah, Khan F, Ullah S, Alharby H, Nasim W, Wu C, Huang J. A combined application of biochar and phosphorus alleviates heat-induced adversities on physiological, agronomical and quality attributes of rice[J]. Plant Physiology and Biochemistry, 2016, 103: 191-198. |
[163] | 赵决建. 氮磷钾施用量及比例对水稻抗高温热害能力的影响[J]. 土壤肥料, 2005(5): 13-16. |
Zhao J J. Effect of application quantity of N, P and K on resistant capability of rice against hot disaster of high temperature[J]. Soils and Fertilizers, 2005(5): 13-16. (in Chinese with English abstract) | |
[164] | Wu C, Cui K H, Tang S, Li G H, Wang S H, Fahad S, Nie L X, Huang J L, Peng S B, Ding Y F. Intensified pollination and fertilization ameliorate heat injury in rice (Oryza sativa L.) during the flowering stage[J]. Field Crops Research, 2020, 252(252): 107795. |
[165] | 蔡浩勇, 黄联联, 杨素梅. 浅谈水稻高温热害防御技术[J]. 安徽农学通报, 2009, 15(12): 91-92. |
Cai H Y, Huang L L, Yang S M. Discussion on rice heat damage defense technology[J]. Anhui Agricultural Bulletin, 2009, 15(12): 91-92. (in Chinese with English abstract) | |
[166] | 詹文莲, 徐玲玲. 泾县水稻高温热害的发生特点及防御对策[J]. 现代农业科技, 2011(1): 198. |
Zhan W L, Xu L L. Occurrence characteristics and prevention countermeasures of high temperature heat injury of rice in Jing County[J]. Modern Agricultural Sciences and Technology, 2011(1): 198. (in Chinese with English abstract) | |
[167] | 段骅, 俞正华, 徐云姬, 王志琴, 刘立军, 杨建昌. 灌溉方式对减轻水稻高温危害的作用[J]. 作物学报, 2012, 38(1): 107-120. |
Duan Y, Yu Z H, Xu Y J, Wang Z Q, Liu L J, Yang J C. Role of irrigation patterns in reducing harms of high temperature to rice[J]. Acta Agronomica Sinica, 2012, 38(1): 107-120. (in Chinese with English abstract) | |
[168] | Wu C, Cui K H, Tang S, Li G H, Wang S H, Fahad S, Nie L X, Huang J L, Peng S B, Ding Y F. Intensified pollination and fertilization ameliorate heat injury in rice ( Oryza sativa L.) during the flowering stage[J]. Field Crops Research, 2020, 252: 107795. |
[169] | 符冠富, 张彩霞, 杨雪芹, 杨永杰, 陈婷婷, 赵霞, 符卫蒙, 奉保华, 章秀福, 陶龙兴, 金千瑜. 水杨酸减轻高温抑制水稻颖花分化的作用机理研究[J]. 中国水稻科学, 2015, 29(6): 637-647. |
Fu G F, Zhang C X, Yang X Q, Yang Y J, Chen T T, Zhao X, Fu W M, Feng B H, Zhang X F, Tao L X, Jin Q Y. Action mechanism by which SA alleviates high temperature-induced inhibition to spikelet differentiation[J]. Chinese Journal of Rice Science, 2015, 29(6): 637-647. (in Chinese with English abstract) | |
[170] | Zhang C X, Feng B H, Chen T T, Zhang X F, Tao L X, Fu G F. Sugars, antioxidant enzymes and IAA mediate salicylic acid to prevent rice spikelet degeneration caused by heat stress[J]. Plant Growth Regulation, 2017, 83(2): 313-323. |
[171] | Feng B H, Zhang C X, Chen T T, Zhang X F, Tao L X, Fu G F. Salicylic acid reverses pollen abortion of rice caused by heat stress.[J]. BMC Plant Biology, 2018, 18(1): 245. |
[172] | Tang S, Zhao Y F, Ran X, Guo H, Yin T Y, Shen Y Y, Liu W Z, Ding Y F. Exogenous application of methyl jasmonate at the booting stage improves rice’s heat tolerance by enhancing antioxidant and photosynthetic activities[J]. Agronomy, 2022, 12(7): 1573. |
[173] | 尤翠翠. 水稻穗期高温热害的生理与分子机制[D]. 合肥: 安徽农业大学, 2013. |
You C C. Physiological and molecular mechanisms of high temperature damage at rice spike stage[D]. Heifei: Anhui Agricultural University, 2013. | |
[174] | 王强, 陈雷, 张晓丽, 唐茂艳, 吕荣华, 陶伟, 梁天锋. 化学调控对水稻高温热害的缓解作用研究[J]. 中国稻米, 2015, 21(4): 80-82. |
Wang Q, Chen L, Zhang X L, Tang M Y, Lv R H, Tao W, Liang T F. Alleviative effect of chemical regulators on rice in high temperature stress[J]. China Rice, 2015, 21(4): 80-82. (in Chinese with English abstract) | |
[175] | 高健, 王亚梁, 孙磊, 赵渊, 刘连盟, 侯雨萱, 王玲, 黄世文. 2,4-表油菜素内酯缓解水稻花期高温胁迫的生理机制[J]. 中国稻米, 2019, 25(3): 70-74. |
Gao J, Wang Y L, Sun L, Zhao Y, Liu L M, Hou Y X, Wang L, Huang S W. Physiological mechanism of brassinolide on alleviating high temperature stress of rice at flowering stage[J]. China Rice, 2019, 25(3): 70-74. (in Chinese with English abstract) | |
[176] | Mohammed A R, Tarpley L. Effects of night temperature, spikelet position and salicylic acid on yield and yield-related parameters of rice (Oryza sativa L.) plants[J]. Journal of Agronomy and Crop Science, 2011, 197(1): 40-49. |
[177] | Zhou R, Hu Q J, Pu Q, Chen M X, Zhu X R, Gao C, Zhou G X, Liu L J, Wang Z Q, Yang J C, Zhang J H, Cao Y Y. Spermidine enhanced Free polyamine levels and expression of polyamine biosynthesis enzyme gene in rice spikelets under heat tolerance before heading[J]. Scientific Reports, 2020, 10(1): 8976. |
[178] | Shah F, Huang J L, Cui K H, Nie, L X, Shah T, Wu W, Wang K, Khan Z H, Zhu L Y, Chen C. Physiological and biochemical changes in rice associated with high night temperature stress and their amelioration by exogenous application of ascorbic acid (vitamin C)[J]. Australian Journal of Crop Science, 2011, 5(13): 1810-1816. |
[179] | Khan S, Anwar S, Ashraf M Y, Khaliq B, Sun M, Hussain S, Gao Z Q, Noor H, Alam S. Mechanisms and adaptation strategies to improve heat tolerance in rice:A review[J]. Plants (Basel), 2019, 8(11): 508. |
[1] | 汪邑晨, 朱本顺, 周磊, 朱骏, 杨仲南. 光/温敏核不育系的不育机理及两系杂交稻的发展与展望 [J]. 中国水稻科学, 2024, 38(5): 463-474. |
[2] | 许用强, 徐军, 奉保华, 肖晶晶, 王丹英, 曾宇翔, 符冠富. 水稻花粉管生长及其对非生物逆境胁迫的响应机理研究进展 [J]. 中国水稻科学, 2024, 38(5): 495-506. |
[3] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体 [J]. 中国水稻科学, 2024, 38(5): 507-515. |
[4] | 吕阳, 刘聪聪, 杨龙波, 曹兴岚, 王月影, 童毅, Mohamed Hazman, 钱前, 商连光, 郭龙彪. 全基因组关联分析(GWAS)鉴定水稻氮素利用效率候选基因 [J]. 中国水稻科学, 2024, 38(5): 516-524. |
[5] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用 [J]. 中国水稻科学, 2024, 38(5): 525-534. |
[6] | 杨铭榆, 陈志诚, 潘美清, 张汴泓, 潘睿欣, 尤林东, 陈晓艳, 唐莉娜, 黄锦文. 烟-稻轮作下减氮配施生物炭对水稻茎鞘同化物转运和产量 形成的影响 [J]. 中国水稻科学, 2024, 38(5): 555-566. |
[7] | 熊家欢, 张义凯, 向镜, 陈惠哲, 徐一成, 王亚梁, 王志刚, 姚坚, 张玉屏. 覆膜稻田施用炭基肥对水稻产量及氮素利用的影响 [J]. 中国水稻科学, 2024, 38(5): 567-576. |
[8] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[9] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[10] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[11] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[12] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[13] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[14] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[15] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||