中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 264-276.DOI: 10.16819/j.1001-7216.2025.240408
邵雅芳, 朱大伟, 郑欣, 牟仁祥, 章林平, 陈铭学*()
收稿日期:
2024-04-17
修回日期:
2024-05-08
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email: cmingxue@163.com基金资助:
SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue*()
Received:
2024-04-17
Revised:
2024-05-08
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email: cmingxue@163.com摘要:
【目的】分析并了解我国长三角地区粳稻品质发展状况及其在安徽省、江苏省和浙江省三个地区间的差异性。【方法】收集了2002−2022年种植于江苏省、安徽省和浙江省的粳稻样品共计11,310份,检测并分析了稻米的粒长、长宽比、糙米率、精米率、整精米率、垩白度、垩白粒率、透明度、表观直链淀粉含量、胶稠度、碱消值和蛋白质含量等指标,并采用主成分分析法挖掘了不同地区粳稻的品质特点。【结果】江苏省粳稻粒型和整精米率在2002−2022年间的变化比较稳定;垩白度在2002−2019年在3.06%~4.93%范围内波动,其平均值和波动范围均在2020−2022年大幅减少;年平均表观直链淀粉含量在2012和2013年较上年下降了约2%,最后稳定在13.2%~14.8%。浙江省粳稻的粒型从2012年开始逐渐向长粒粳稻的方向发展;整精米率呈锯齿形变化,年平均值在2011−2014年较高,2018−2022年较低;垩白度在2002−2006年呈锯齿状波动,2007−2015年达到高位后,于2016−2018年和2019−2022年逐步下降;除2013−2017年外,年平均表观直链淀粉含量在15.3%~16.8%范围内波动,并于2016年开始出现一批低表观直链淀粉含量的粳稻品种。安徽省粳稻的粒型从2020年开始向长粒型方向发展;整精米率的下降可明显划分为三个阶段(2003−2009年、2010−2014年、2018−2022年);垩白度呈先上升后下降并进一步降低的趋势,2008−2014年较高;表观直链淀粉含量分两个发展阶段,第一阶段为2002−2012年的大幅波动阶段,第二阶段为2013−2022年的小幅波动并趋于稳定的阶段。三个省份透明度的达标率在大多数年份均达到80%。蛋白质含量、糙米率、精米率、碱消值和胶稠度等指标在长三角地区种植的粳稻品种间差异较小。【结论】长三角地区的粳稻品质逐渐朝着外观品质和食味品质优良的方向发展。江苏省的粳稻粒长较短,加工品质和外观品质较好,直链淀粉含量较低,胶稠度较长;浙江省的粳稻外观品质和加工品质欠佳,粒型逐渐变长,胶稠度和碱消值偏小;安徽省的粳稻粒型及其他各项品质指标介于江苏省和浙江省之间。
邵雅芳, 朱大伟, 郑欣, 牟仁祥, 章林平, 陈铭学. 2002−2022长三角地区粳稻品质发展状况和地域差异性分析[J]. 中国水稻科学, 2025, 39(2): 264-276.
SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue. Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022[J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276.
省份 参数 Province Parameter | 糙米率 Brown rice rate (%) | 精米率 Polished rice rate (%) | 碱消值 Alkali spreading value(grade) | 胶稠度 Gel consistency (mm) | |
---|---|---|---|---|---|
安徽 Anhui | 平均值±标准差Mean±SD | 83.0±0.5 b | 74.4±0.9 b | 6.8±0.1 a | 72.4±3.7 ab |
极值Extrema | 82.2~84.1 | 72.4~76.4 | 6.4~7.0 | 63.4~79.5 | |
变异系数Variable coefficient(%) | 0.6 | 1.2 | 1.8 | 5.2 | |
江苏 Jiangsu | 平均值±标准差Mean±SD | 83.9±0.6 a | 75.4±1.0 a | 6.8±0.1 a | 73.8±2.9 a |
极值Extrema | 82.6~84.8 | 73.3~76.7 | 6.6~6.9 | 68.2~77.6 | |
变异系数Variable coefficient(%) | 0.8 | 1.3 | 1.4 | 4.0 | |
浙江 Zhejiang | 平均值±标准差Mean±SD | 82.8±0.4 b | 73.7±0.7 c | 6.7±0.1 b | 70.1±2.7 b |
极值 Extrema | 82.2~83.7 | 72.4~75.0 | 6.4~7.0 | 65.9~76.5 | |
变异系数Variable coefficient(%) | 0.5 | 1.0 | 2.2 | 3.9 |
表1 中国长三角地区2002−2022年粳稻糙米率、精米率、碱消值和胶稠度的统计与分析
Table 1. Statistics and analysis of brown rice rate, polished rice rate, alkali spreading value and gel consistency of japonica rice in Yangtze River Delta area of China during 2002−2022
省份 参数 Province Parameter | 糙米率 Brown rice rate (%) | 精米率 Polished rice rate (%) | 碱消值 Alkali spreading value(grade) | 胶稠度 Gel consistency (mm) | |
---|---|---|---|---|---|
安徽 Anhui | 平均值±标准差Mean±SD | 83.0±0.5 b | 74.4±0.9 b | 6.8±0.1 a | 72.4±3.7 ab |
极值Extrema | 82.2~84.1 | 72.4~76.4 | 6.4~7.0 | 63.4~79.5 | |
变异系数Variable coefficient(%) | 0.6 | 1.2 | 1.8 | 5.2 | |
江苏 Jiangsu | 平均值±标准差Mean±SD | 83.9±0.6 a | 75.4±1.0 a | 6.8±0.1 a | 73.8±2.9 a |
极值Extrema | 82.6~84.8 | 73.3~76.7 | 6.6~6.9 | 68.2~77.6 | |
变异系数Variable coefficient(%) | 0.8 | 1.3 | 1.4 | 4.0 | |
浙江 Zhejiang | 平均值±标准差Mean±SD | 82.8±0.4 b | 73.7±0.7 c | 6.7±0.1 b | 70.1±2.7 b |
极值 Extrema | 82.2~83.7 | 72.4~75.0 | 6.4~7.0 | 65.9~76.5 | |
变异系数Variable coefficient(%) | 0.5 | 1.0 | 2.2 | 3.9 |
图1 中国长三角地区2002−2022年粳稻整精米率和粒型的统计与分析
Fig. 1. Statistical analysis of head rice rate and grain shape of japonica rice in the Yangtze River Delta region of China from 2002 to 2022
图2 中国长三角地区2002−2022年粳稻垩白度(A、C、E、G)和垩白粒率(B、D、F、H)的统计与分析
Fig. 2. Statistical analysis of chalkiness degree (A, C, E, G) and chalky grain percentage (B, D, F, H) of japonica rice in the Yangtze River Delta region of China from 2002 to 2022
图3 中国长三角地区2002−2022年粳稻透明度的统计与分析
Fig. 3. Statistical analysis of transparency of japonica rice in the Yangtze River Delta region of China from 2002 to 2022
图4 中国长三角地区2002−2022年粳稻表观直链淀粉含量的统计与分析
Fig. 4. Statistical analysis of apparent amylose content of japonica rice in the Yangtze River Delta region from 2002 to 2022
图5 中国长三角地区2002−2022年粳稻蛋白质含量的统计与分析
Fig. 5. Statistical analysis of protein content of japonica rice in the Yangtze River Delta region of China from 2002 to 2022
图6 中国长三角地区2002−2022年粳稻品质地域差异性分析
Fig. 6. Principal component analysis of regional differences of japonica rice quality in the Yangtze River Delta region of China from 2002 to 2022
[1] | Leng Y J, Gao Y H, Chen L, Yang Y L, Huang L C, Dai L P, Ren D Y, Xu Q K, Zhang Y, Ponce K, Hu J, Shen L, Zhang G H, Chen G, Dong G J, Gao Z Y, Guo L B, Ye G Y, Qian Q, Zhu L, Zeng D L. Using heading date 1 preponderant alleles from indica cultivars to breed high-yield, high-quality japonica rice varieties for cultivation in south China[J]. Plant Biotechnology Journal, 2020, 18(1): 119-128. |
[2] | Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-frame and frame-shift editing of the Ehd1 gene to develop japonica rice with prolonged basic vegetative growth periods[J]. Frontiers in Plant Science, 2020, 11: 307. |
[3] | 汤述翥, 张宏根, 梁国华, 严长杰, 刘巧泉, 顾铭洪. 三系杂交粳稻发展缓慢的原因及对策[J]. 杂交水稻, 2008, 23(1): 1-5. |
Tang S Z, Zhang H G, Liang G H, Yan C J, Liu Q Q, Gu M H. Reasons and countermeasures of slow development on three-line japonica hybrid rice[J]. Hybrid Rice, 2008, 23(1): 1-5. (in Chinese with English abstract) | |
[4] | 朱智伟, 陈能, 王丹英, 章秀福, 姚青, 闵捷, 廖西元. 不同类型水稻品质性状变异特性及差异性分析[J]. 中国水稻科学, 2004, 18 (4): 315-320. |
Zhu Z W, Chen N, Wang D Y, Zhang X F, Yao Q, Min J, Liao X Y. Analysis on variation and difference for rice quality traits among different types of rice[J]. Chinese Journal of Rice Science, 2004, 18(4): 315-320. (in Chinese with English abstract) | |
[5] | 王楼楼. 江苏省籼稻改粳稻的发展研究[D]. 扬州: 扬州大学, 2013. |
Wang L L. Study on the development of japonica rice instead of indica rice in Jiangsu Province[D]. Yangzhou: Yangzhou University, 2013. (in Chinese with English abstract) | |
[6] | 朱大伟, 曾波, 邵雅芳, 章林平, 陈铭学, 于永红. 近10年我国籼稻品种品质特征分析[J]. 粮油食品科技, 2023, 31(6): 10-19. |
Zhu D W, Zeng B, Shao Y F, Zhang L P, Chen M X, Yu Y H. Analysis of rice quality characteristics of indica rice varieties of China in recent 10 years[J]. Science and Technology of Cereals, Oils and Foods, 2023, 31(6): 10-19. (in Chinese with English abstract) | |
[7] | 胡贤巧, 张卫星, 邵雅芳, 于永红, 卢林, 陈铭学. 我国近20年稻米品质优质率状况分析[J]. 中国稻米, 2021, 27(4): 84-87. |
Hu X Q, Zhang W X, Shao Y F, Yu Y H, Lu L, Chen M X. Analysis of high quality rate of rice in China during recent 20 years[J]. China Rice, 2021, 27(4): 84-87. (in Chinese with English abstract) | |
[8] | 邵雅芳, 郑欣, 朱大伟, 章林平, 牟仁祥, 郑小龙, 陈铭学. 2002—2022年中国籼稻品质的时空分布和发展状况[J]. 浙江大学学报: 农业与生命科学版, 2024, 50(3): 418-430. |
Shao Y F, Zheng X, Zhu D W, Zhang L P, Mou R X, Zheng X L, Chen M X. Spatio-temporal distribution and development status of indica rice quality in China from 2002 to 2022[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2024, 50(3): 418-430. (in Chinese with English abstract) | |
[9] | CODEX STAN 198-1995. Codex standard for rice[S]. Codex Alimentarius Commission, 1995. |
[10] | 国家粮食局. 大米粒型分类判定: LS/T 6116-2017[S]. 北京: 中国标准出版社, 2017. |
National Food and Strategic Reserves Administration. Classification and Judgment of Rice Grain Shape: LS/T 6116-2017[S]. Beijing: Standards Press of China, 2017. (in Chinese) | |
[11] | Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10): 1455-1465. |
[12] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[13] | Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theoretical and Applied Genetics, 2006, 112(6): 1164-1171. |
[14] | Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing R A, Zhu Z. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants, 2017, 3(6): 17064. |
[15] | Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43: 1266-1269. |
[16] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8): 944-948. |
[17] | Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. |
[18] | 黄海祥, 钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学, 2017, 31(6): 665-672. |
Huang H X, Qian Q. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality japonica rice[J]. Chinese Journal of Rice Science, 2017, 31(6): 665-672. (in Chinese with English abstract) | |
[19] | 倪昊东. 水稻品质相关性状分析及QTL定位[D]. 南昌: 江西农业大学, 2022. |
Ni H D. Analysis and QTL mapping of quality related traits in rice[D]. Nanchang: Jiangxi Agricultural University, 2022. (in Chinese with English abstract) | |
[20] | 程新杰, 施伟, 张梦龙, 岳红亮, 代金英, 胡蕾, 朱国永. 水稻垩白形成机制的研究进展[J]. 中国农学通报, 2024, 40(2): 1-7. |
Cheng X J, Shi W, Zhang M L, Yue H L, Dai J Y, Hu L, Zhu G Y. Research progress on chalkiness formation mechanism[J]. Chinese Agricultural Science Bulletin, 2024, 40(2): 1-7. (in Chinese with English abstract) | |
[21] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[22] | Kang H G, Park S, Matsuoka M, An G. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB)[J]. The Plant Journal, 2005, 42(6): 901-911. |
[23] | She K C, Kusano H, Koizumi K, Yamakawa H, Hiroaki S. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294. |
[24] | 徐富贤, 郑家奎, 朱永川, 王贵雄. 川东南高温伏旱区杂交中稻品种库源结构对稻米整精米率与垩白粒率的影响[J]. 作物学报, 2004(5): 432-437. |
Xu F X, Zheng J K, Zhu Y C, Wang G X. Effect of ratio source to sink on percentage of head milled rice and chalky rice of combinations of mid-season hybrid rice in the south-east districts of Sichuan under high temperature and summer drought[J]. Acta Agronomica Sinica, 2004(5): 432-437. (in Chinese with English abstract) | |
[25] | 习敏, 许有尊, 孙雪原, 吴文革, 周永进. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9): 144-151. |
Xi M, Xu Y Z, Sun X Y, Wu W G, Zhou Y J. Effects of nitrogen fertilizer topdressing on grain filling and milling quality of the rice with high grain chalkiness[J]. Journal of Agricultural Science and Technology, 2021, 23(9): 144-151. (in Chinese with English abstract) | |
[26] | 陈培峰, 董明辉, 顾俊荣, 惠锋, 乔中英, 杨代凤, 刘腾飞. 麦秸还田与氮肥运筹对超级稻强弱势粒粒重与品质的影响[J]. 中国水稻科学, 2012, 26(6): 715-722. |
Chen P F, Dong M H, Gu J R, Hui F, Qiao Z Y, Yang D F, Liu T F. Effects of returning wheat-residue to field and nitrogen management on grain weight and quality of superior and inferior grains in super rice[J]. Chinese Journal of Rice Science, 2012, 26(6): 715-722. (in Chinese with English abstract) | |
[27] | Chen J L, Tang L, Shi P H, Yang B H, Sun T, Cao W X, Zhu Y. Effects of short-term high temperature on grain quality and starch granules of rice at post-anthesis stage[J]. Protoplasma, 2017, 254(2): 935-943. |
[28] | Xie Q, Xu J K, Huang K, Su Y, Tong J H, Huang Z G, Huang C, Wei M L, Lin W H, Xiao L T. Dynamic formation and transcriptional regulation mediated by phytohormones during chalkiness formation in rice[J]. BMC Plant Biology, 2021, 21(1): 308. |
[29] | 冯向前, 殷敏, 王孟佳, 马横宇, 褚光, 刘元辉, 徐春梅, 章秀福, 张运波, 王丹英, 陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
Feng X Q, Yin M, Wang M J, Ma H Y, Chu G, Liu Y H, Xu C M, Zhang X F, Zhang Y B, Wang D Y, Chen S. Effects of meteorological factors on quality of late japonica rice during late season grain filling stage under ‘early indica and late japonica’ cultivation pattern in southern China[J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63. (in Chinese with English abstract) | |
[30] | 史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较[J]. 中国水稻科学, 2022, 36(6): 601-610. |
Shi Y L, Yang Y, Li X F, Li Q F, Huang L C, Zhang C Q, Song X T, Liu Q Q. Comparison of grain quality profiles of japonica soft rice varieties with different amylose content[J]. Chinese Journal of Rice Science, 2022, 36(6): 601-610. (in Chinese with English abstract) | |
[31] | 朱霁晖, 张昌泉, 顾铭洪, 刘巧泉. 水稻Wx基因的等位变异及育种利用研究进展[J]. 中国水稻科学, 2015, 29(4): 431-438. |
Zhu J H, Zhang C Q, Gu M H, Liu Q Q. Progress in the allelic variation of Wx gene and its application in rice breeding[J]. Chinese Journal of Rice Science, 2015, 29(4): 431-438. (in Chinese with English abstract) | |
[32] | Chen Z, Lu Y, Feng L, Hao W, Li C, Yang Y, Fan X, Li Q, Zhang C, Liu Q. Genetic dissection and functional differentiation of ALKa and ALKb, two natural alleles of the ALK/SSIIa gene, responding to low gelatinization temperature in rice[J]. Rice, 2020, 13: 39. |
[33] | 王才林, 张亚东, 朱镇, 赵春芳, 魏晓东, 陈涛, 赵庆勇, 赵凌, 姚姝, 周丽慧, 路凯, 梁文化. 优良食味半糯粳稻品质标准的研制与应用[J]. 江苏农业学报, 2022, 38(1): 1-8. |
Wang C L, Zhang Y D, Zhu Z, Zhao C F, Wei X D, Chen T, Zhao Q Y, Zhao L, Yao S, Zhou L H, Lu K, Liang W H. Development and application of quality standard for semi-glutinous japonica rice with good taste[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(1): 1-8. (in Chinese with English abstract) | |
[34] | 朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
Zhu D W, Zhang L P, Chen M X, Fang C Y, Yu Y H, Zheng X L, Shao Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China[J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. (in Chinese with English abstract) | |
[35] | Liu Z J, Li P H, Yu L, Hu Y Z, Du A P, Fu X Y, Wu C L, Luo D G, Hu B H, Dong H, Jiang H B, Ma X R, Huang W Z, Tu S B, Li H. OsMADS1 regulates grain quality, gene expressions, and regulatory networks of starch and storage protein metabolisms in rice[J]. International Journal of Molecular Sciences, 2023, 24(9): 8017. |
[36] | Wang X, Wang K, Yin T, Zhao Y, Liu W, Shen Y, Ding Y, Tang S. Nitrogen fertilizer regulated grain storage protein synthesis and reduced chalkiness of rice under actual field warming[J]. Frontiers in Plant Science, 2021, 12: 715436. |
[37] | Xi M, Wu W G, Xu Y Z, Zhou Y J, Chen G, Ji Y L, Sun X Y. Grain chalkiness traits is affected by the synthesis and dynamic accumulation of the storage protein in rice[J]. Journal of the Science of Food and Agriculture, 2021, 101(14): 6125-6133. |
[38] | Shi S, Pan K, Zhang G, Zhao D, Zhou H, Liu J, Cao C, Jiang Y. Differences in grain protein content and regional distribution of 706 rice accessions[J]. Journal of the Science of Food and Agriculture, 2023, 103: 1593-1599. |
[1] | 杨传铭, 王立志, 张喜娟, 杨贤莉, 王洋洋, 侯本福, 崔士泽, 李青超, 刘凯, 马瑞, 冯延江, 来永才, 李红宇, 姜树坤. 基于高密度遗传图谱的粳稻苗期耐冷QTL分析[J]. 中国水稻科学, 2025, 39(1): 82-91. |
[2] | 刘俊峰, 牟静怡, 赵红艳, 郭诗梦, 李漪濛, 梁超, 周婵婵, 王术, 黄元财. 施氮方式与行距配置对不同穗型粳稻品种产量和氮素利用率的影响[J]. 中国水稻科学, 2024, 38(6): 672-684. |
[3] | 姚姝, 陈涛, 赵春芳, 周丽慧, 赵凌, 梁文化, 赫磊, 路凯, 朱镇, 赵庆勇, 管菊, 王才林, 张亚东. 江淮稻区不同类型粳稻品种外观及蒸煮食味品质特征比较[J]. 中国水稻科学, 2024, 38(6): 709-718. |
[4] | 何勇, 刘耀威, 熊翔, 祝丹晨, 王爱群, 马拉娜, 王廷宝, 张健, 李建雄, 田志宏. 利用CRISPR/Cas9技术编辑OsOFP30基因创制水稻粒型突变体[J]. 中国水稻科学, 2024, 38(5): 507-515. |
[5] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[6] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[7] | 刘慧敏, 周杰强, 胡远艺, 田妍, 雷斌, 李建武, 魏中伟, 唐文帮. 水稻小粒不育系新组合卓两优1126的高产特征[J]. 中国水稻科学, 2024, 38(2): 160-171. |
[8] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
[9] | 兰金松, 庄慧. 水稻株型的分子机理研究进展[J]. 中国水稻科学, 2023, 37(5): 449-458. |
[10] | 黄亚茹, 徐鹏, 王乐乐, 贺一哲, 王辉, 柯健, 何海兵, 武立权, 尤翠翠. 外源海藻糖对粳稻品系W1844籽粒灌浆特性及产量形成的影响[J]. 中国水稻科学, 2023, 37(4): 379-391. |
[11] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[12] | 姚姝, 赵春芳, 陈涛, 路凯, 周丽慧, 赵凌, 朱镇, 赵庆勇, 梁文化, 赫磊, 王才林, 张亚东. 低谷蛋白半糯型粳稻营养品质与蒸煮食味品质特征分析[J]. 中国水稻科学, 2023, 37(2): 178-188. |
[13] | 裴峰, 王广达, 高鹏, 冯志明, 胡珂鸣, 陈宗祥, 陈红旗, 崔傲, 左示敏. 敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价[J]. 中国水稻科学, 2023, 37(1): 16-28. |
[14] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
[15] | 黄涛, 王燕宁, 钟奇, 程琴, 杨朦朦, 王鹏, 吴光亮, 黄诗颖, 李才敬, 余剑峰, 贺浩华, 边建民. 利用染色体片段置换系群体定位和分析水稻粒重和粒型QTL[J]. 中国水稻科学, 2022, 36(2): 159-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||