中国水稻科学 ›› 2023, Vol. 37 ›› Issue (5): 449-458.DOI: 10.16819/j.1001-7216.2023.221102
• 综述与专论 • 下一篇
收稿日期:
2022-11-04
修回日期:
2022-11-30
出版日期:
2023-09-10
发布日期:
2023-09-13
通讯作者:
*email: 基金资助:
Received:
2022-11-04
Revised:
2022-11-30
Online:
2023-09-10
Published:
2023-09-13
Contact:
*email: 摘要:
株型是水稻产量的重要决定因素,创制理想株型品种是提高水稻产量的重要途径。20世纪50年代的矮化育种和70年代的杂交水稻培育是水稻增产的两次革命,但近几年水稻产量增长放缓,通过理想株型与杂种优势的结合进而实现超高产将成为第三次育种革命的关键。本文简要回顾了水稻株型分子调控机理的最新研究概况,重点关注了叶形、穗型和粒型等方面所取得的进展,并展望了水稻理想株型未来的研究趋势,为通过分子设计育种创制水稻理想株型,进一步提高水稻产量提供参考。
兰金松, 庄慧. 水稻株型的分子机理研究进展[J]. 中国水稻科学, 2023, 37(5): 449-458.
LAN Jinsong, ZHUANG Hui. Advances in the Molecular Mechanism of Rice Plant Type[J]. Chinese Journal OF Rice Science, 2023, 37(5): 449-458.
基因 Gene | 基因登录号 Gene ID | 编码蛋白 Encoded protein | 基因效应 Gene effect | 文献 Reference |
---|---|---|---|---|
叶形 Leaf shape | ||||
SRL1 | LOC_Os07g01240 | 糖基磷脂酰肌醇锚定蛋白 | 抑制泡状细胞形成与近轴面形成,特化叶片远轴面 | [ |
ADL1 | LOC_Os02g47970 | 半胱氨酸蛋白酶 | 促进表皮发育,维持叶片近轴和远轴 | [ |
LF1 | LOC_Os03g01890 | HD-ZIP Ⅲ转录激活因子 | 突变体极性发育异常,叶片正面卷曲,外稃凹陷;影响生长素含量,调控水稻侧生器官极性发育 | [ |
WL1 | C2H2锌指转录因子 | 与水稻转录共抑制因子TPR结合下调窄叶基因NAL的表达,调控叶片的宽度 | [ | |
LC2 | LOC_Os02g05840 | 类vernalization insensitive 3 蛋白 | 集中在叶片和叶鞘处表达,抑制维管束两侧泡状细胞增多;调控叶夹角大小 | [ |
BU1 | LOC_Os06g12210 | HLH蛋白 | 正向调节水稻中的油菜素内酯含量;过表达增加叶片结合处弯曲角度,抑制表达的植株叶片恢复直立 | [ |
ILA1 | LOC_Os06g50920 | 丝裂原活化蛋白激酶 | 突变体中叶枕机械组织异常,影响叶倾角的形成 | [ |
LPA1 | LOC_Os03g13400 | 植物特有的结构域不确定 (ID) 转录抑制因子 | 突变体分蘖角和叶夹角增大 | [ |
穗型 Panicle type | ||||
RCN1 RCN2 | LOC_Os11g05470 LOC_Os02g32950 | TFL1/CEN同源基因 | 过表达延长枝梗分生组织向花分生组织的转变时间,增加枝梗数和每穗粒数,决定枝梗(花序)形态 | [ |
APO2/RFL | LOC_Os04g51000 | 拟南芥LFY的同源基因 | 维持枝梗 (花序) 分生组织命运;与APO1 相互作用共同延迟枝梗分生组织向小穗分生组织的转化;调控水稻枝梗数与每穗粒数 | [ |
TAW1 | LOC_Os10g33780 | 花序形态调控因子 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ |
SP3 | DOF转录激活因子 | 通过激活APO2/RFL基因调控枝梗分生组织;调控枝梗数与每穗粒数 | [ | |
SB1 | SHI转录因子 | 等位突变体内枝梗分生组织分化延迟,枝梗数与小穗数增加;负向调节维持枝梗分生组织活性的基因 | [ | |
Ghd7 | LOC_Os07g15770 | CCT结构蛋白 | 影响抽穗期、株高与每穗粒数 | [ |
Ghd8 | LOC_Os08g07740 | 核因子Y的B亚基 | 上调控制分蘖和侧枝发生基因MOC1的表达,促进水稻分蘖和枝梗形成 | [ |
OsCOL13 | LOC_Os07g47140 | 类CONSTANS转录激活因子 | 延迟抽穗期,增加穗长,提高每穗粒数 | [ |
SP1 | LOC_Os11g12740 | 多肽转运家族蛋白 | 影响水稻穗轴的伸长和穗的大小,决定每穗粒数 | [ |
LF1 | LOC_Os03g01890 | HD-ZIP III转录激活因子 | 激活分生组织维持基因OSH1异位表达,起始侧生花分生组织形成;理论上为培育“三花小穗”水稻品种实现水稻增产提供了证据 | [ |
MFS1~4 | LOC_Os05g41760 LOC_Os04g47890 | AP2/ERF的转录因子 | 正向调控水稻小穗分生组织向花分生组织的转变 | [ |
粒型 Grain type | ||||
GS3 | 由232个氨基酸组成的跨膜蛋白 | 在翻译水平影响粒型;与DEP1或GGC2竞争性结合Gβ,缩短粒长 | [ | |
DEP1 | LOC_Os09g26999 | G蛋白γ亚基 | 控制水稻产量性状;功能获得性突变体植株表现出短穗、直立穗、密穗等产量性状;调控粒长和粒重 | [ |
GGC2 | 异三聚体G蛋白γ亚基 | 调控粒长,与DEP1对粒长的正调控有加性作用 | [ | |
OsBRI1 | LOC_Os01g52050 | BR信号受体 | 在调控水稻粒型中起多种作用;影响细胞伸长和增殖,调控器官发育 | [ |
OsBAK1 | LOC_Os08g07760 | SERK家族类受体蛋白激酶;BR信号受体激酶 | 影响株高、叶夹角、粒型和抗病性 | [ |
GSK2 | LOC_Os05g11730 | GSK3/SHAGGY激酶 | 负调控BR应答基因的表达,参与水稻株型相关性状的调控 | [ |
DLT | LOC_Os06g03710 | 由617个氨基酸组成的植物特有的GRAS家族蛋白 | 作用于BR应答通路下游,正向介导BR应答;影响细胞增殖及细胞数目,影响颖壳发育,负调控籽粒大小 | [ |
GW2 | LOC_Os02g14720 | E3泛素连接酶 | 负调控细胞分裂,影响水稻的粒宽和粒重;促进泛素转移,特异识别应降解的底物,影响外稃细胞分裂,调控粒重 | [ |
WG1/OsGRX8 | LOC_Os02g30850 | CC型谷氧还蛋白OsGRX8 | 调控籽粒大小,是粒宽方向细胞增殖所必需;与GW2互作并将其泛素化,从而调控WG1的稳定性 | [ |
TUD1 | LOC_Os03g13010 | U-box家族的E3泛素连接酶 | 与异三聚体G蛋白α亚基D1互作调控油菜素内酯介导水稻生长,进而影响株高、粒型等相关性状 | [ |
表1 水稻理想株型相关基因
Table 1. Identified genes for ideotype in rice.
基因 Gene | 基因登录号 Gene ID | 编码蛋白 Encoded protein | 基因效应 Gene effect | 文献 Reference |
---|---|---|---|---|
叶形 Leaf shape | ||||
SRL1 | LOC_Os07g01240 | 糖基磷脂酰肌醇锚定蛋白 | 抑制泡状细胞形成与近轴面形成,特化叶片远轴面 | [ |
ADL1 | LOC_Os02g47970 | 半胱氨酸蛋白酶 | 促进表皮发育,维持叶片近轴和远轴 | [ |
LF1 | LOC_Os03g01890 | HD-ZIP Ⅲ转录激活因子 | 突变体极性发育异常,叶片正面卷曲,外稃凹陷;影响生长素含量,调控水稻侧生器官极性发育 | [ |
WL1 | C2H2锌指转录因子 | 与水稻转录共抑制因子TPR结合下调窄叶基因NAL的表达,调控叶片的宽度 | [ | |
LC2 | LOC_Os02g05840 | 类vernalization insensitive 3 蛋白 | 集中在叶片和叶鞘处表达,抑制维管束两侧泡状细胞增多;调控叶夹角大小 | [ |
BU1 | LOC_Os06g12210 | HLH蛋白 | 正向调节水稻中的油菜素内酯含量;过表达增加叶片结合处弯曲角度,抑制表达的植株叶片恢复直立 | [ |
ILA1 | LOC_Os06g50920 | 丝裂原活化蛋白激酶 | 突变体中叶枕机械组织异常,影响叶倾角的形成 | [ |
LPA1 | LOC_Os03g13400 | 植物特有的结构域不确定 (ID) 转录抑制因子 | 突变体分蘖角和叶夹角增大 | [ |
穗型 Panicle type | ||||
RCN1 RCN2 | LOC_Os11g05470 LOC_Os02g32950 | TFL1/CEN同源基因 | 过表达延长枝梗分生组织向花分生组织的转变时间,增加枝梗数和每穗粒数,决定枝梗(花序)形态 | [ |
APO2/RFL | LOC_Os04g51000 | 拟南芥LFY的同源基因 | 维持枝梗 (花序) 分生组织命运;与APO1 相互作用共同延迟枝梗分生组织向小穗分生组织的转化;调控水稻枝梗数与每穗粒数 | [ |
TAW1 | LOC_Os10g33780 | 花序形态调控因子 | 调控枝梗分生组织,影响枝梗数与穗粒数 | [ |
SP3 | DOF转录激活因子 | 通过激活APO2/RFL基因调控枝梗分生组织;调控枝梗数与每穗粒数 | [ | |
SB1 | SHI转录因子 | 等位突变体内枝梗分生组织分化延迟,枝梗数与小穗数增加;负向调节维持枝梗分生组织活性的基因 | [ | |
Ghd7 | LOC_Os07g15770 | CCT结构蛋白 | 影响抽穗期、株高与每穗粒数 | [ |
Ghd8 | LOC_Os08g07740 | 核因子Y的B亚基 | 上调控制分蘖和侧枝发生基因MOC1的表达,促进水稻分蘖和枝梗形成 | [ |
OsCOL13 | LOC_Os07g47140 | 类CONSTANS转录激活因子 | 延迟抽穗期,增加穗长,提高每穗粒数 | [ |
SP1 | LOC_Os11g12740 | 多肽转运家族蛋白 | 影响水稻穗轴的伸长和穗的大小,决定每穗粒数 | [ |
LF1 | LOC_Os03g01890 | HD-ZIP III转录激活因子 | 激活分生组织维持基因OSH1异位表达,起始侧生花分生组织形成;理论上为培育“三花小穗”水稻品种实现水稻增产提供了证据 | [ |
MFS1~4 | LOC_Os05g41760 LOC_Os04g47890 | AP2/ERF的转录因子 | 正向调控水稻小穗分生组织向花分生组织的转变 | [ |
粒型 Grain type | ||||
GS3 | 由232个氨基酸组成的跨膜蛋白 | 在翻译水平影响粒型;与DEP1或GGC2竞争性结合Gβ,缩短粒长 | [ | |
DEP1 | LOC_Os09g26999 | G蛋白γ亚基 | 控制水稻产量性状;功能获得性突变体植株表现出短穗、直立穗、密穗等产量性状;调控粒长和粒重 | [ |
GGC2 | 异三聚体G蛋白γ亚基 | 调控粒长,与DEP1对粒长的正调控有加性作用 | [ | |
OsBRI1 | LOC_Os01g52050 | BR信号受体 | 在调控水稻粒型中起多种作用;影响细胞伸长和增殖,调控器官发育 | [ |
OsBAK1 | LOC_Os08g07760 | SERK家族类受体蛋白激酶;BR信号受体激酶 | 影响株高、叶夹角、粒型和抗病性 | [ |
GSK2 | LOC_Os05g11730 | GSK3/SHAGGY激酶 | 负调控BR应答基因的表达,参与水稻株型相关性状的调控 | [ |
DLT | LOC_Os06g03710 | 由617个氨基酸组成的植物特有的GRAS家族蛋白 | 作用于BR应答通路下游,正向介导BR应答;影响细胞增殖及细胞数目,影响颖壳发育,负调控籽粒大小 | [ |
GW2 | LOC_Os02g14720 | E3泛素连接酶 | 负调控细胞分裂,影响水稻的粒宽和粒重;促进泛素转移,特异识别应降解的底物,影响外稃细胞分裂,调控粒重 | [ |
WG1/OsGRX8 | LOC_Os02g30850 | CC型谷氧还蛋白OsGRX8 | 调控籽粒大小,是粒宽方向细胞增殖所必需;与GW2互作并将其泛素化,从而调控WG1的稳定性 | [ |
TUD1 | LOC_Os03g13010 | U-box家族的E3泛素连接酶 | 与异三聚体G蛋白α亚基D1互作调控油菜素内酯介导水稻生长,进而影响株高、粒型等相关性状 | [ |
[1] | 张启发. 绿色超级稻培育的设想[J]. 分子植物育种, 2005, 3(5): 601-602. |
Zhang Q F. Strategies for developing green super rice[J]. Molecular Plant Breeding, 2005, 3(5): 601-602. (in Chinese) | |
[2] | Boysen-Jensen P. Die Stoffproduktion der Pflanzen[J]. Protoplasma, 1933, 18(1): 311. |
[3] | Heath O V S, Gregory F G. The constancy of the mean net assimilation rate and its ecological importance[J]. Annals of Botany, 1938, 2(4): 811-818. |
[4] | Donald C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403. |
[5] | 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展[J]. 中国农学通报, 2020, 36(29): 1-6. |
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: A review[J]. China Agricultural Science Bulletin, 2020, 36(29): 1-6. (in Chinese with English abstract) | |
[6] | 黄耀祥. 水稻超高产育种研究[J]. 作物杂志, 1990(4): 1-2. |
Huang Y X. Study on super high yield rice breeding[J]. Crops, 1990(4): 1-2. (in Chinese) | |
[7] | 杨守仁, 张龙步, 徐正进, 陈温福, 王进民, 董克. 水稻理想株形育种的基础研究及其与国内外同类研究的比较[J]. 沈阳农业大学学报, 1991(S1): 1-5. |
Yang S R, Zhang L B, Xu Z J, Chen W F, Wang J M, Dong K. The research results of ideal morphological breeding in rice and their comparisons with the same studies at home and abroad[J]. Journal of Shenyang Agricultural University, 1991(S1): 1-5. (in English with Chinese abstract) | |
[8] | 杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论和方法[J]. 中国水稻科学, 1996, 10(2): 115-120. |
Yang S R, Zhang L B, Chen W F, Xu Z J, Wang J M. Theories and methods of rice breeding for maximum yield[J]. Chinese Journal of Rice Science, 1996, 10(2): 115-120. (in Chinese with English abstract) | |
[9] | 周开达, 汪旭东, 李仕贵, 李平, 黎汉云, 黄国寿, 刘太清, 沈茂松. 亚种间重穗型杂交稻研究[J]. 中国农业科学, 1997(5): 92-94. |
Zhou K D, Wang X D, Li S G, Li P, Li H Y, Huang G S, Liu T Q, Shen M S. The study on heavy panicle type of inter-subspecific hybrid rice (Oryza sativa L.)[J]. Scientia Agricultura Sinica, 1997(5): 92-94. (in Chinese with English abstract) | |
[10] | 汪开治. 国际水稻所将推出理想株型水稻新品种[J]. 中国农技推广, 1996(4): 26. |
Wang K Z. International Rice Research Institute will introduce a new ideal strain type of rice varieties[J]. China Agro-Technology Extension, 1996(4): 26. (in Chinese) | |
[11] | 袁隆平. 杂交水稻超高产育种[J]. 杂交水稻, 1997, 12(6): 1-6. |
Yuan L P. Hybrid rice breeding for super high yield[J]. Hybrid Rice, 1997, 12(6): 1-6. (in Chinese) | |
[12] | Li S, Tian Y H, Wu K, Ye Y F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Nicholas Harberd P, Fu X D. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595-600. |
[13] | 胡茂龙. 水稻光合功能相关性状QTL分析及转绿型白叶突变体基因的图位克隆[D]. 南京: 南京农业大学, 2006. |
Hu M L. QTL analysis for traits associated with photosynthetic functions and map-based cloning of virescent white leaf gene in rice (Oryza sativa L.)[D]. Nanjing: Nanjing Agricultural University, 2006. (in Chinese with English abstract) | |
[14] | 陈达刚, 周新桥, 李丽君, 刘传光, 陈友订. 水稻叶厚性状的研究进展[J]. 农学学报, 2015, 5(11): 22-25. |
Chen D G, Zhou X Q, Li L J, Liu C G, Chen Y D. Research progress on rice (Oryza sativa L.) leaf thickness[J]. Journal of Agriculture, 2015, 5(11): 22-25. (in Chinese with English abstract) | |
[15] | 高艳红, 吕川根, 王茂青, 王澎, 闫晓燕, 谢坤, 万建民. 水稻卷叶性状QTL的初步定位[J]. 江苏农业学报, 2007, 23(1): 5-10. |
Gao Y H, Lü C G, Wang M Q, Wang P, Yan X Y, Xie K, Wan J M. QTL mapping for rolled leaf gene in rice[J]. Jiangsu Journal of Agricultural Science, 2007, 23(1): 5-10. (in Chinese with English abstract) | |
[16] | Yoshida S. Fundamentals of Rice Crop Science[J]. Los Banos, the Philippines: International Rice Research Institute, 1981: 1-61. |
[17] | 范玉斌, 梁婉琪. 水稻叶极性发育分子机制研究进展[J]. 上海交通大学学报: 农业科学版, 2014, 32(1): 16-22. |
Fan Y B, Liang W Q. Research progress on the mechanism of leaf polarity establishment in rice[J]. Journal of Shanghai Jiaotong University: Agricultural Science, 2014, 32(1): 16-22. (in Chinese with English abstract) | |
[18] | Xiang J J, Zhang G H, Qian Q, Xue H W. SEMI-ROLLED LEAF1 encodes a putative GPI-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells[J]. Plant Physiology, 2012, 159(4): 1488-1500. |
[19] | Hibara K I, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J I, Nagato Y. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice[J]. Developmental Biology, 2009, 334(2): 345-354. |
[20] | Zhang T, You J, Zhang Y, Yao W Y, Chen W B, Duan Q N, Xiao W W, Ye L, Zhou Y, Sang X C, Ling Y H, He G H, Li Y F. LF1 regulates the lateral organs polarity development in rice[J]. The New Phytologist, 2021, 231(3): 1265-1277. |
[21] | You J, Xiao W W, Zhou Y, Shen W Q, Ye L, Yu P, Yu G L, Duan Q N, Zhang X F, He Z F, Xiang Y, Sang X C, Li Y F, Zhao F M, Ling Y H, He G H, Zhang T. The APC/CTAD1-WIDE LEAF 1-NARROW LEAF 1 pathway controls leaf width in rice[J]. The Plant Cell, 2022, 34(11): 4313-4328. |
[22] | 姚栋萍. 水稻培矮64S直立叶基因的初步定位[D]. 长沙: 湖南农业大学, 2016. |
Yao D P. Preliminary mapping of the rice erect leaf gene from Peiai 64s[D]. Changsha: Hunan Agricultural University, 2016. (in Chinese with English abstract) | |
[23] | Zhao S Q, Hu J, Guo L B, Qian Q, Xue H W. Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar[J]. Cell Research, 2010, 20(8): 935-947. |
[24] | Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C J, Dubouzet J G, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M. BRASSINOSTEROID UPREGULATED1, encoding a Helix-Loop-Helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J]. Plant Physiology, 2009, 151(2): 669-680. |
[25] | Ning J, Zhang B C, Wang N L, Zhou Y H, Xiong L Z. Increased Leaf Angle1, a Raf-Like MAPKKK that interacts with a nuclear protein family, regulates mechanical tissue formation in the lamina joint of rice[J]. The Plant Cell, 2011, 23(12): 4334-4347. |
[26] | Wu X R, Tang D, Li M, Wang K J, Cheng Z K. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice[J]. Plant Physiology, 2013, 161(1): 317-329. |
[27] | Yasuno N, Takamure I, Kidou S, Tokuji Y, Ureshi A, Funabiki A, Ashikaga K, Yamanouchi U, Yano M, Kato K. Rice shoot branching requires an ATP-binding cassette subfamily G protein[J]. New Phytologist, 2009, 182(1): 91-101. |
[28] | Nakagawa M, Shimamoto K, Kyozuka J. Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice[J]. The Plant Journal, 2002, 29(6): 743-750. |
[29] | Terao T, Nagata K, Morino K, Hirose T. A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice[J]. Theoretical and Applied Genetics, 2010, 120(5): 875-893. |
[30] | Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh JI, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. The Plant Journal, 2012, 69(1): 168-180. |
[31] | Zeng X Q, Zhuang H, Cheng Q L, Tang J, Yang F Y, Huang M J, Wang Z Y, Li Z C, Zhu H H, Chen R, He G H, Li Y F. SB1 encoding Ring-Like Zinc-Finger protein regulates branch development as a transcription repressor[J]. Rice Science, 2021, 28(3): 243-256. |
[32] | Zhang D B, Yuan Z. Molecular control of grass inflorescence development[J]. Annual Review of Plant Biology, 2014, 65(1): 553-578. |
[33] | Pautler M, Tanaka W, Hirano H Y, Jackson D. Grass meristems: I. Shoot apical meristem maintenance, axillary meristem determinacy and the floral transition[J]. Plant and Cell Physiology, 2013, 54(3): 302-312. |
[34] | Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis[J]. Science, 1997, 275(5296): 80-83. |
[35] | Ratcliffe O J, Bradley D J, Coen E S. Separation of shoot and floral identity in Arabidopsis[J]. Development, 1999, 126(6): 1109-1120. |
[36] | Mimida N, Goto K, Kobayashi Y, Araki T, Ahn J H, Weigel D, Murata M, Motoyoshi F, Sakamoto W. Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue[J]. Genes to Cells, 2001, 6(4): 327-336. |
[37] | Rao N N, Prasad K, Kumar P R, Vijayraghavan U. Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(9): 3646-3651. |
[38] | Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen R H, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J. TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(2): 767-772. |
[39] | Huang Y, Bai X F, Luo M F, Xing Y Z. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice[J]. Journal of Integrative Plant Biology, 2019, 61(9): 987-999. |
[40] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[41] | Wei X J, Xu J F, Guo H N, Jiang L, Chen S H, Yu C Y, Zhou Z L, Hu P S, Zhai H Q, Wan J M. DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously[J]. Plant Physiology, 2010, 153(4): 1747-1758. |
[42] | Yan W H, Wang P, Chen H X, Zhou H J, Li Q P, Wang C R, Ding Z H, Zhang Y S, Yu S B, Xing Y Z, Zhang Q F. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice[J]. Molecular Plant, 2011, 4(2): 319-330. |
[43] | Dai X D, Ding Y N, Tan L B, Fu Y C, Liu F X, Zhu Z F, Sun X Y, Sun X W, Gu P, Cai H W, Sun C Q. LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice (Oryza rufipogon)[J]. Journal of Integrative Plant Biology, 2012, 54(10): 790-799. |
[44] | Sheng P K, Wu F Q, Tan J J, Zhang H, Ma W W, Chen L P, Wang J C, Wang J, Zhu S S, Guo X P, Wang J L, Zhang X, Cheng Z J, Bao Y Q, Wu C Y, Liu X M, Wan J M. A CONSTANS-like transcriptional activator, OsCOL13, functions as a negative regulator of flowering downstream of OsphyB and upstream of Ehd1 in rice[J]. Plant Molecular Biology, 2016, 92(1-2): 209-222. |
[45] | Li S B, Qian Q, Fu Z M, Zeng D L, Meng X B, Kyozuka J, Maekawa M, Zhu X D, Zhang J, Li J Y, Wang Y H. Short panicle1 encodes a putative PTR family transporter and determines rice panicle size[J]. The Plant Journal, 2009, 58(4): 592-605. |
[46] | Jiang G H, Xiang Y H, Zhao J Y, Yin D D, Zhao X F, Zhu L H, Zhai W X. Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D[J]. Genetics, 2014, 197(4): 1395-1407. |
[47] | Qiao Y L, Piao R H, Shi J X, Lee S I, Jiang W Z, Kim B K, Lee J, Han L Z, Ma W B, Koh H J. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics, 2011, 122(7): 1439-1449. |
[48] | Piao R H, Jiang W Z, Ham T H, Choi M S, Qiao Y, Chu S H, Park J H, Woo M O, Jin Z, An G, Lee J, Koh H J. Map-based cloning of the ERECT PANICLE 3 gene in rice[J]. Theoretical and Applied Genetics, 2009, 119(8): 1497-1506. |
[49] | Li M, Tang D, Wang K J, Wu X R, Lu L L, Yu H X, Gu M D, Yan C J, Cheng Z K. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnology Journal, 2011, 9(9): 1002-1013. |
[50] | Gao X C, Liang W Q, Yin C S, Ji S M, Wang H M, Su X, Guo C, Kong H Z, Xue H W, Zhang D B. The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development[J]. Plant Physiology, 2010, 153(2): 728-740. |
[51] | Kobayashi K, Maekawa M, Miyao A, Hirochika H, Kyozuka J. PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice[J]. Plant and Cell Physiology, 2010, 51(1): 47-57. |
[52] | Zhuang H, Wang H L, Zhang T, Zeng X Q, Chen H, Wang Z W, Zhang J, Zheng H, Tang J, Ling Y H, Yang Z L, He G H, Li Y F. NONSTOP GLUMES1 encodes a C2H2 zinc finger protein that regulates spikelet development in rice[J]. The Plant Cell, 2020, 32(2): 392-413. |
[53] | Zhang T, Li Y F, Ma L, Sang X C, Ling Y H, Wang Y T, Yu P, Zhuang H, Huang J Y, Wang N, Zhao F M, Zhang C W, Yang Z L, Fang L K, He G H. LATERAL FLORET 1 induced the three-florets spikelet in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(37): 9984-9989. |
[54] | Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H. MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice[J]. Plant Physiology, 2013, 162(2): 872-884. |
[55] | Li Y F, Zeng X Q, Li Y, Wang L, Zhuang H, Wang Y, Tang J, Wang H L, Xiong M, Yang F Y, Yuan X Z, He G H. MULTI-FLORET SPIKELET 2, a MYB transcription factor, determines spikelet meristem fate and floral organ identity in rice[J]. Plant Physiology, 2020, 184(2): 988-1003. |
[56] | Wang Y, Zeng X Q, Lu L, Cheng Q L, Yang F Y, Huang M J, Xiong M, Li Y F. MULTI-FLORET SPIKELET 4 (MFS4) regulates spikelet development and grain size in rice[J]. Rice Science, 2021, 28(4): 344-357. |
[57] | Zheng H, Zhang J, Zhuang H, Zeng X Q, Tang J, Wang H L, Chen H, Li Y, Ling Y H, He G H, Li Y F. mfs3) in rice (Oryza sativa L.)[J]. Journal of Integrative Agriculture, 2019, 18(12): 2673-2681. |
[58] | Ren D Y, Li Y F, He G H, Qian Q. Multifloret spikelet improves rice yield[J]. New Phytologist, 2020, 225(6): 2301-2306. |
[59] | 徐建龙, 薛庆中, 罗利军, 黎志康. 水稻粒重及其相关性状的遗传解析[J]. 中国水稻科学, 2002, 16(1): 6-10. |
Xu J L, Xue Q Z, Luo L J, Li Z K. Genetic dissection of grain weight and its related traits in rice (Oryza sativa L.)[J]. Chinese Journal of Rice Science, 2002, 16(1): 6-10. (in Chinese with English abstract) | |
[60] | Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice[J]. Plant Reproduction, 2018, 31(3): 237-251. |
[61] | Li N, Xu R, Li Y H. Molecular networks of seed size control in plants[J]. Annual Review of Plant Biology, 2019, 70(1): 435-463. |
[62] | Fan Y W, Li Y B. Molecular, cellular and Yin-Yang regulation of grain size and number in rice[J]. Molecular Breeding, 2019, 39(12): 1-25. |
[63] | Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[64] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19579-19584. |
[65] | Takano-Kai N, Doi K, Yoshimura A. GS3 participates in stigma exsertion as well as seed length in rice[J]. Breeding Science, 2011, 61(3): 244-250. |
[66] | Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice[J]. Nature Communications, 2018, 9(1): 851. |
[67] | Huang H X, Ye Y F, Song W Z, Li Q, Han R X, Wu C C, Wang S X, Yu J P, Liu X Y, Fu X D, Liu Q, Wu K. Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice[J]. Journal of Genetics and Genomics, 2022, 49(5): 506-509. |
[68] | Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuok M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint[J]. The Plant Cell, 2000, 12(9): 1591-1606. |
[69] | Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J]. Plant Physiology, 2006, 141(3): 924-931. |
[70] | Ito Y, Takaya K, Kurata N. Expression of SERK family receptor-like protein kinase genes in rice[J]. Biochimica et Biophysica Acta, 2005, 1730(3): 253-258. |
[71] | Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal, 2009, 7(8): 791-806. |
[72] | Tong H N, Liu L C, Jin Y, Du L, Yin Y H, Qian Q, Zhu L H, Chu C C. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice[J]. The Plant Cell, 2012, 24(6): 2562-2577. |
[73] | Tong H N, Jin Y, Liu W B, Li F, Fang J, Yin Y H, Qian Q, Zhu L H, Chu C C. DWARF AND LOW- TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice[J]. The Plant Journal, 2009, 58(5): 803-816. |
[74] | Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949. |
[75] | Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5): 623-630. |
[76] | Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular Plant, 2021, 14(8): 1266-1280. |
[77] | Hu X M, Qian Q, Xu T, Zhang Y E, Dong G J, Gao T, Xie Q, Xue Y B. The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G α subunit to regulate Brassinosteroid-mediated growth in rice[J]. PLOS Genetics, 2013, 9(3): e1003391. |
[78] | Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 丁正权, 潘月云, 施扬, 黄海祥. 基于基因芯片的嘉禾系列长粒优质食味粳稻综合评价与比较[J]. 中国水稻科学, 2024, 38(4): 397-408. |
[5] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[6] | 吕宙, 易秉怀, 陈平平, 周文新, 唐文帮, 易镇邪. 施氮量与移栽密度对小粒型杂交水稻产量形成的影响[J]. 中国水稻科学, 2024, 38(4): 422-436. |
[7] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[8] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[9] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[10] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[11] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[12] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[13] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[14] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[15] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||