
中国水稻科学 ›› 2025, Vol. 39 ›› Issue (6): 832-846.DOI: 10.16819/j.1001-7216.2025.240203
张兰兰1, 刘迪林1,2, 马晓智1,2, 霍兴1,2, 孔乐1,2, 李金华1,2, 付崇允1,2, 廖亦龙1,2, 朱满山1,2, 曾学勤1,2, 柳武革1,2,*(
), 王丰1,2,*(
)
收稿日期:2024-02-04
修回日期:2024-09-10
出版日期:2025-11-10
发布日期:2025-11-19
通讯作者:
* email:liuwuge1974@163.com;fwang1631@163.com
基金资助:
ZHANG Lanlan1, LIU Dilin1,2, MA Xiaozhi1,2, HUO Xing1,2, KONG Le1,2, LI Jinhua1,2, FU Chongyun1,2, LIAO Yilong1,2, ZHU Manshan1,2, ZENG Xueqin1,2, LIU Wuge1,2,*(
), WANG Feng1,2,*(
)
Received:2024-02-04
Revised:2024-09-10
Online:2025-11-10
Published:2025-11-19
Contact:
* email:liuwuge1974@163.com;fwang1631@163.com
摘要:
【目的】食味是决定稻米品质的最关键因子,但是稻米食味品质不仅取决于品种自身遗传背景,而且还受施肥和种植季节等环境因素影响。在不同种植季节和不同施氮水平下全面探讨稻米外观、加工、蒸煮营养等品质性状与食味之间的关系,可为培育不同种植条件下均能稳定表现优良食味的水稻新品种具有重要的参考意义。【方法】2021年以17个华南不同类型水稻品种(系)为供试材料,在广州早、晚两季各设置施氮量为0 kg/hm2(N0)、90 kg/hm2(N1)、135 kg/hm2(N2)和180 kg/hm2(N3)等4种不同处理,通过三因素方差分析、逐步多元回归分析和通径分析,系统探讨稻米外观、加工、蒸煮与营养等品质性状与食味之间的关系。【结果】1)垩白米率(CGR)、垩白度(CD)、胶稠度(GC)和蛋白质(PC)同时受季节、施氮量、品种、季节×施氮水平互作效应、季节×品种互作效应和季节×氮水平×品种三因素互作效应等7种因素影响,是最不稳定的性状;碱消值(ASV)则仅受季节和品种两因素的显著影响,属于最为稳定的性状;糙米率(BRR)、精米率(MRR)、米粒长宽比(LWR)、透明度(TR)和直链淀粉含量(AC)等5个均为中等不稳定性状。2)早、晚两季不同施氮处理共检测到显著影响米饭食味(TV)的品质性状11个。其中,AC和PC在早季、晚季都能重复检测到,且对TV均起负向调控作用;MRR、CGR、CD、TR和GC在晚季中重复检测到;BRR、整精米率(HRR)和ASV仅在晚季N0中检测到。3)对TV有显著影响的11个品质性状中,仅GC和LWR的直接通径系数和总体效应均为正值,即对TV起正向的调控作用;ASV和BRR尽管对TV的直接通径系数为正值,但总体效应为负值,即对TV总体起负向调控作用;其他7个性状均为TV的负向调控因子。【结论】根据这些品质性状对TV的作用大小与方向,培育高食味优质籼稻新品种应该同时具有的品质性状目标: LWR≥3.5、HRR≥58%、TR=1级、CGR≤10%、CD≤1%、AC=13%~17%、ASV≥6.0级、GC≥60 mm和精米PC≤6.4% 等。
张兰兰, 刘迪林, 马晓智, 霍兴, 孔乐, 李金华, 付崇允, 廖亦龙, 朱满山, 曾学勤, 柳武革, 王丰. 华南早晚季不同施氮水平下影响籼稻米食味的品质性状[J]. 中国水稻科学, 2025, 39(6): 832-846.
ZHANG Lanlan, LIU Dilin, MA Xiaozhi, HUO Xing, KONG Le, LI Jinhua, FU Chongyun, LIAO Yilong, ZHU Manshan, ZENG Xueqin, LIU Wuge, WANG Feng. Quality Traits Affecting Eating Quality in indica Rice Under Different Nitrogen Application Levels in Early and Late Seasons in South China[J]. Chinese Journal OF Rice Science, 2025, 39(6): 832-846.
图1 早晚两季试验期间的日平均温度、平均光照强度和日降雨量
Fig. 1. Daily average temperature, light intensity, and daily rainfall during experiments conducted in both early and late growing seasons
| 性状 Trait | 自由度 df | F | P | 性状 Trait | 自由度 df | F | P |
|---|---|---|---|---|---|---|---|
| 季节Season | 季节×施氮水平Growing season × nitrogen level | ||||||
| TV | 1 | 245.07** | 0.000 | TV | 3 | 5.07** | 0.002 |
| BRR | 1 | 923.39** | 0.000 | BRR | 3 | 1.84 | 0.142 |
| MRR | 1 | 787.30** | 0.000 | MRR | 3 | 2.71* | 0.046 |
| LWR | 1 | 66.93** | 0.000 | LWR | 3 | 0.95 | 0.419 |
| CGR | 1 | 708.06** | 0.000 | CGR | 3 | 16.47** | 0.000 |
| CD | 1 | 601.58** | 0.000 | CD | 3 | 5.18** | 0.002 |
| TR | 1 | 0.21 | 0.647 | TR | 3 | 1.10 | 0.349 |
| GC | 1 | 44.35** | 0.000 | GC | 3 | 6.45** | 0.000 |
| AC | 1 | 163.66** | 0.000 | AC | 3 | 1.77 | 0.155 |
| ASV | 1 | 21.34** | 0.000 | ASV | 3 | 2.06 | 0.107 |
| PC | 1 | 27.41** | 0.000 | PC | 3 | 4.74** | 0.003 |
| 施氮水平 Nitrogen level | 季节×品种 Growing season ×variety | ||||||
| TV | 3 | 37.99** | 0.000 | TV | 15 | 14.83** | 0.000 |
| BRR | 3 | 2.70* | 0.046 | BRR | 15 | 31.81** | 0.000 |
| MRR | 3 | 1.21 | 0.307 | MRR | 15 | 29.14** | 0.000 |
| LWR | 3 | 9.71** | 0.000 | LWR | 15 | 3.49** | 0.000 |
| CGR | 3 | 4.45** | 0.005 | CGR | 15 | 53.69** | 0.000 |
| CD | 3 | 5.43** | 0.001 | CD | 15 | 48.79** | 0.000 |
| TR | 3 | 1.55 | 0.202 | TR | 15 | 3.00** | 0.000 |
| GC | 3 | 4.75** | 0.003 | GC | 15 | 6.26** | 0.000 |
| AC | 3 | 1.57 | 0.199 | AC | 15 | 9.71** | 0.000 |
| ASV | 3 | 1.38 | 0.249 | ASV | 15 | 1.28 | 0.213 |
| PC | 3 | 200.68** | 0.000 | PC | 15 | 5.72** | 0.000 |
| 氮水平×品种 Nitrogen level × variety | 季节×氮水平×品种 Growing season × nitrogen level × variety | ||||||
| TV | 45 | 1.85** | 0.002 | TV | 45 | 0.87 | 0.704 |
| BRR | 45 | 1.76** | 0.004 | BRR | 45 | 1.86** | 0.002 |
| MRR | 45 | 1.76** | 0.004 | MRR | 45 | 1.66** | 0.009 |
| LWR | 45 | 2.01** | 0.000 | LWR | 45 | 1.11 | 0.306 |
| CGR | 45 | 8.02** | 0.000 | CGR | 45 | 8.06** | 0.000 |
| CD | 45 | 10.96** | 0.000 | CD | 45 | 10.35** | 0.000 |
| TR | 45 | 1.56* | 0.020 | TR | 45 | 1.48* | 0.036 |
| GC | 45 | 2.64** | 0.000 | GC | 45 | 2.27** | 0.000 |
| AC | 45 | 0.89 | 0.677 | AC | 45 | 0.64 | 0.963 |
| ASV | 45 | 0.57 | 0.986 | ASV | 45 | 0.60 | 0.979 |
| PC | 45 | 1.43* | 0.048 | PC | 45 | 1.91** | 0.001 |
| 品种 Variety | 品种 Variety | ||||||
| TV | 15 | 170.97** | 0.000 | TR | 15 | 26.28** | 0.000 |
| BRR | 15 | 59.93** | 0.000 | GC | 15 | 146.91** | 0.000 |
| MRR | 15 | 43.93** | 0.000 | AC | 15 | 106.22** | 0.000 |
| LWR | 15 | 1514.20** | 0.000 | ASV | 15 | 70.39** | 0.000 |
| CGR | 15 | 376.41** | 0.000 | PC | 15 | 20.07** | 0.000 |
| CD | 15 | 122.51** | 0.000 | ||||
表1 品质性状的三因素方差分析
Table 1. Three-way analysis of variance (ANOVA) for quality traits
| 性状 Trait | 自由度 df | F | P | 性状 Trait | 自由度 df | F | P |
|---|---|---|---|---|---|---|---|
| 季节Season | 季节×施氮水平Growing season × nitrogen level | ||||||
| TV | 1 | 245.07** | 0.000 | TV | 3 | 5.07** | 0.002 |
| BRR | 1 | 923.39** | 0.000 | BRR | 3 | 1.84 | 0.142 |
| MRR | 1 | 787.30** | 0.000 | MRR | 3 | 2.71* | 0.046 |
| LWR | 1 | 66.93** | 0.000 | LWR | 3 | 0.95 | 0.419 |
| CGR | 1 | 708.06** | 0.000 | CGR | 3 | 16.47** | 0.000 |
| CD | 1 | 601.58** | 0.000 | CD | 3 | 5.18** | 0.002 |
| TR | 1 | 0.21 | 0.647 | TR | 3 | 1.10 | 0.349 |
| GC | 1 | 44.35** | 0.000 | GC | 3 | 6.45** | 0.000 |
| AC | 1 | 163.66** | 0.000 | AC | 3 | 1.77 | 0.155 |
| ASV | 1 | 21.34** | 0.000 | ASV | 3 | 2.06 | 0.107 |
| PC | 1 | 27.41** | 0.000 | PC | 3 | 4.74** | 0.003 |
| 施氮水平 Nitrogen level | 季节×品种 Growing season ×variety | ||||||
| TV | 3 | 37.99** | 0.000 | TV | 15 | 14.83** | 0.000 |
| BRR | 3 | 2.70* | 0.046 | BRR | 15 | 31.81** | 0.000 |
| MRR | 3 | 1.21 | 0.307 | MRR | 15 | 29.14** | 0.000 |
| LWR | 3 | 9.71** | 0.000 | LWR | 15 | 3.49** | 0.000 |
| CGR | 3 | 4.45** | 0.005 | CGR | 15 | 53.69** | 0.000 |
| CD | 3 | 5.43** | 0.001 | CD | 15 | 48.79** | 0.000 |
| TR | 3 | 1.55 | 0.202 | TR | 15 | 3.00** | 0.000 |
| GC | 3 | 4.75** | 0.003 | GC | 15 | 6.26** | 0.000 |
| AC | 3 | 1.57 | 0.199 | AC | 15 | 9.71** | 0.000 |
| ASV | 3 | 1.38 | 0.249 | ASV | 15 | 1.28 | 0.213 |
| PC | 3 | 200.68** | 0.000 | PC | 15 | 5.72** | 0.000 |
| 氮水平×品种 Nitrogen level × variety | 季节×氮水平×品种 Growing season × nitrogen level × variety | ||||||
| TV | 45 | 1.85** | 0.002 | TV | 45 | 0.87 | 0.704 |
| BRR | 45 | 1.76** | 0.004 | BRR | 45 | 1.86** | 0.002 |
| MRR | 45 | 1.76** | 0.004 | MRR | 45 | 1.66** | 0.009 |
| LWR | 45 | 2.01** | 0.000 | LWR | 45 | 1.11 | 0.306 |
| CGR | 45 | 8.02** | 0.000 | CGR | 45 | 8.06** | 0.000 |
| CD | 45 | 10.96** | 0.000 | CD | 45 | 10.35** | 0.000 |
| TR | 45 | 1.56* | 0.020 | TR | 45 | 1.48* | 0.036 |
| GC | 45 | 2.64** | 0.000 | GC | 45 | 2.27** | 0.000 |
| AC | 45 | 0.89 | 0.677 | AC | 45 | 0.64 | 0.963 |
| ASV | 45 | 0.57 | 0.986 | ASV | 45 | 0.60 | 0.979 |
| PC | 45 | 1.43* | 0.048 | PC | 45 | 1.91** | 0.001 |
| 品种 Variety | 品种 Variety | ||||||
| TV | 15 | 170.97** | 0.000 | TR | 15 | 26.28** | 0.000 |
| BRR | 15 | 59.93** | 0.000 | GC | 15 | 146.91** | 0.000 |
| MRR | 15 | 43.93** | 0.000 | AC | 15 | 106.22** | 0.000 |
| LWR | 15 | 1514.20** | 0.000 | ASV | 15 | 70.39** | 0.000 |
| CGR | 15 | 376.41** | 0.000 | PC | 15 | 20.07** | 0.000 |
| CD | 15 | 122.51** | 0.000 | ||||
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数 PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | |
| 糙米率 BRR (X1) | 1.495 | 0.582 | 0.222 | 0.786 | 1.151 | 0.088 | 0.261 | 0.685 |
| 精米率 MRR (X2) | −0.279 | 0.871 | −0.104 | 0.816 | −0.877* | 0.025 | −0.030 | 0.940 |
| 米粒长宽比 LWR (X4) | 3.620 | 0.331 | 2.104 | 0.280 | 2.405 | 0.167 | 1.725 | 0.188 |
| 垩白粒率 CGR (X5) | 0.028 | 0.879 | 0.005 | 0.924 | −0.088 | 0.168 | −0.086 | 0.165 |
| 垩白度 CD (X6) | 0.124 | 0.731 | −0.027 | 0.815 | 0.239* | 0.023 | 0.245* | 0.016 |
| 透明度 TR (X7) | −2.085 | 0.494 | 0.058 | 0.965 | −1.856 | 0.091 | −0.430 | 0.657 |
| 胶稠度 GC (X8) | 0.045 | 0.614 | 0.016 | 0.793 | −0.058 | 0.210 | −0.062 | 0.339 |
| 直链淀粉含量AC(X9) | −1.600* | 0.021 | −1.431** | 0.000 | −1.663** | 0.000 | −1.608** | 0.000 |
| 碱消值 ASV (X10) | 1.287 | 0.515 | 0.409 | 0.422 | −0.244 | 0.630 | −0.167 | 0.722 |
| 蛋白质 PC (X11) | −4.112 | 0.276 | −5.706** | 0.000 | −4.832** | 0.001 | −4.889** | 0.000 |
表2 早季4种施氮处理条件下品质性状与食味值之间的偏回归系数
Table 2. Partial regression coefficients between quality traits and taste value of cooked rice under four nitrogen application levels in early season
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数 PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | 偏回归系数PRC | P | |
| 糙米率 BRR (X1) | 1.495 | 0.582 | 0.222 | 0.786 | 1.151 | 0.088 | 0.261 | 0.685 |
| 精米率 MRR (X2) | −0.279 | 0.871 | −0.104 | 0.816 | −0.877* | 0.025 | −0.030 | 0.940 |
| 米粒长宽比 LWR (X4) | 3.620 | 0.331 | 2.104 | 0.280 | 2.405 | 0.167 | 1.725 | 0.188 |
| 垩白粒率 CGR (X5) | 0.028 | 0.879 | 0.005 | 0.924 | −0.088 | 0.168 | −0.086 | 0.165 |
| 垩白度 CD (X6) | 0.124 | 0.731 | −0.027 | 0.815 | 0.239* | 0.023 | 0.245* | 0.016 |
| 透明度 TR (X7) | −2.085 | 0.494 | 0.058 | 0.965 | −1.856 | 0.091 | −0.430 | 0.657 |
| 胶稠度 GC (X8) | 0.045 | 0.614 | 0.016 | 0.793 | −0.058 | 0.210 | −0.062 | 0.339 |
| 直链淀粉含量AC(X9) | −1.600* | 0.021 | −1.431** | 0.000 | −1.663** | 0.000 | −1.608** | 0.000 |
| 碱消值 ASV (X10) | 1.287 | 0.515 | 0.409 | 0.422 | −0.244 | 0.630 | −0.167 | 0.722 |
| 蛋白质 PC (X11) | −4.112 | 0.276 | −5.706** | 0.000 | −4.832** | 0.001 | −4.889** | 0.000 |
| 处理 Treatment | 性状 Trait | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect |
|---|---|---|---|---|
| N0 | 直链淀粉含量 AC | −0.850 | — | −0.850 |
| N1 | 直链淀粉含量 AC | −0.768 | −0.025 | −0.793 |
| 蛋白质含量 PC | −0.050 | −0.388 | −0.438 | |
| N2 | 直链淀粉含量 AC | −0.786 | 0.035 | −0.751 |
| 蛋白质含量 PC | 0.073 | −0.380 | −0.307 | |
| N3 | 直链淀粉含量 AC | −0.817 | 0.006 | −0.811 |
| 蛋白质含量 PC | 0.013 | −0.389 | −0.376 |
表3 早季4种不同施氮量条件下米饭食味值与品质性状的通径系数
Table 3. Path coefficients of quality traits on taste value of cooked rice under four nitrogen application levels in early season
| 处理 Treatment | 性状 Trait | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect |
|---|---|---|---|---|
| N0 | 直链淀粉含量 AC | −0.850 | — | −0.850 |
| N1 | 直链淀粉含量 AC | −0.768 | −0.025 | −0.793 |
| 蛋白质含量 PC | −0.050 | −0.388 | −0.438 | |
| N2 | 直链淀粉含量 AC | −0.786 | 0.035 | −0.751 |
| 蛋白质含量 PC | 0.073 | −0.380 | −0.307 | |
| N3 | 直链淀粉含量 AC | −0.817 | 0.006 | −0.811 |
| 蛋白质含量 PC | 0.013 | −0.389 | −0.376 |
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | |
| 糙米率 BRR (X1) | 3.420** | 0.000 | 0.193 | 0.796 | 2.171** | 0.008 | 0.727 | 0.336 |
| 精米率 MRR (X2) | −3.565** | 0.000 | −0.266 | 0.751 | −2.325* | 0.011 | −0.868 | 0.347 |
| 整精米率 HRR (X3) | −0.494** | 0.010 | −0.021 | 0.894 | −0.531* | 0.044 | −0.067 | 0.782 |
| 米粒长宽比 LWR (X4) | −0.032 | 0.981 | 1.815 | 0.051 | 1.375 | 0.320 | 1.470 | 0.151 |
| 垩白粒率 CGR (X5) | −0.375* | 0.019 | −0.009 | 0.948 | −0.235 | 0.177 | −0.199* | 0.026 |
| 垩白度 CD (X6) | 0.783 | 0.226 | 0.157 | 0.764 | 0.505 | 0.502 | 0.514 | 0.107 |
| 透明度 TR (X7) | −2.977** | 0.008 | −0.459 | 0.600 | −1.746 | 0.162 | −0.787 | 0.240 |
| 胶稠度 GC (X8) | 0.186** | 0.002 | 0.187** | 0.000 | 0.140** | 0.010 | 0.193* * | 0.000 |
| 直链淀粉含量AC (X9) | 0.134 | 0.695 | −0.418* | 0.037 | −0.376 | 0.190 | 0.085 | 0.616 |
| 碱消值 ASV (X10) | 0.857* | 0.025 | 0.555 | 0.116 | 0.357 | 0.340 | −0.012 | 0.963 |
| 蛋白质 PC (X11) | −1.176 | 0.282 | −4.034** | 0.000 | −7.060** | 0.000 | −4.863** | 0.000 |
表4 晚季不同施氮量处理条件下食味值与品质性状之间的偏回归系数
Table 4. Partial regression coefficients between taste value of cooked rice and quality traits under four nitrogen application levels in late season
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | 偏回归系数 PRC | P | |
| 糙米率 BRR (X1) | 3.420** | 0.000 | 0.193 | 0.796 | 2.171** | 0.008 | 0.727 | 0.336 |
| 精米率 MRR (X2) | −3.565** | 0.000 | −0.266 | 0.751 | −2.325* | 0.011 | −0.868 | 0.347 |
| 整精米率 HRR (X3) | −0.494** | 0.010 | −0.021 | 0.894 | −0.531* | 0.044 | −0.067 | 0.782 |
| 米粒长宽比 LWR (X4) | −0.032 | 0.981 | 1.815 | 0.051 | 1.375 | 0.320 | 1.470 | 0.151 |
| 垩白粒率 CGR (X5) | −0.375* | 0.019 | −0.009 | 0.948 | −0.235 | 0.177 | −0.199* | 0.026 |
| 垩白度 CD (X6) | 0.783 | 0.226 | 0.157 | 0.764 | 0.505 | 0.502 | 0.514 | 0.107 |
| 透明度 TR (X7) | −2.977** | 0.008 | −0.459 | 0.600 | −1.746 | 0.162 | −0.787 | 0.240 |
| 胶稠度 GC (X8) | 0.186** | 0.002 | 0.187** | 0.000 | 0.140** | 0.010 | 0.193* * | 0.000 |
| 直链淀粉含量AC (X9) | 0.134 | 0.695 | −0.418* | 0.037 | −0.376 | 0.190 | 0.085 | 0.616 |
| 碱消值 ASV (X10) | 0.857* | 0.025 | 0.555 | 0.116 | 0.357 | 0.340 | −0.012 | 0.963 |
| 蛋白质 PC (X11) | −1.176 | 0.282 | −4.034** | 0.000 | −7.060** | 0.000 | −4.863** | 0.000 |
| 处理 Treatment | 性状 Trait | 糙米率 BRR | 精米率 MRR | 整精米率 HRR | 垩白粒率 CGR | 透明度 TR | 胶稠度 GC | 碱消值 ASV | 总体效应 Overall effect |
|---|---|---|---|---|---|---|---|---|---|
| N0 | 糙米率 BRR | 4.668 | −3.999 | −0.455 | −0.261 | −0.109 | 0.113 | −0.127 | −0.170 |
| 精米率 MRR | 4.645 | −4.019 | −0.473 | −0.237 | −0.104 | 0.092 | −0.111 | −0.207 | |
| 整精米率 HRR | 3.823 | −3.420 | −0.556 | −0.061 | −0.046 | 0.024 | −0.021 | −0.257 | |
| 垩白粒率 CGR | 1.989 | −1.555 | −0.056 | −0.613 | −0.109 | −0.129 | −0.035 | −0.508 | |
| 透明度 TR | 2.301 | −1.885 | −0.116 | −0.301 | −0.222 | 0.043 | −0.143 | −0.323 | |
| 胶稠度 GC | 1.032 | −0.723 | −0.026 | 0.154 | −0.019 | 0.510 | −0.246 | 0.682 | |
| 碱消值 ASV | −1.736 | 1.310 | 0.034 | 0.063 | 0.093 | −0.367 | 0.342 | −0.261 | |
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N1 | 胶稠度GC | 0.418 | 0.335 | −0.003 | 0.750 | ||||
| 直链淀粉含量AC | −0.336 | −0.417 | 0.073 | −0.680 | |||||
| 蛋白质含量PC | 0.003 | 0.076 | −0.400 | −0.321 | |||||
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | |||||
| N2 | 胶稠度GC | 0.741 | −0.072 | 0.669 | |||||
| 蛋白质含量PC | 0.182 | −0.294 | −0.112 | ||||||
| 处理 Treatment | 性状 Trait | 垩白粒率 CGR | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N3 | 垩白粒率CGR | −0.278 | −0.073 | −0.053 | −0.404 | ||||
| 胶稠度GC | 0.030 | 0.666 | 0.082 | 0.778 | |||||
| 蛋白质含量PC | −0.040 | −0.149 | −0.368 | −0.557 | |||||
表5 晚季食味值与品质性状的通径系数
Table 5. Path coefficients of quality traits on taste value of cooked rice in late season
| 处理 Treatment | 性状 Trait | 糙米率 BRR | 精米率 MRR | 整精米率 HRR | 垩白粒率 CGR | 透明度 TR | 胶稠度 GC | 碱消值 ASV | 总体效应 Overall effect |
|---|---|---|---|---|---|---|---|---|---|
| N0 | 糙米率 BRR | 4.668 | −3.999 | −0.455 | −0.261 | −0.109 | 0.113 | −0.127 | −0.170 |
| 精米率 MRR | 4.645 | −4.019 | −0.473 | −0.237 | −0.104 | 0.092 | −0.111 | −0.207 | |
| 整精米率 HRR | 3.823 | −3.420 | −0.556 | −0.061 | −0.046 | 0.024 | −0.021 | −0.257 | |
| 垩白粒率 CGR | 1.989 | −1.555 | −0.056 | −0.613 | −0.109 | −0.129 | −0.035 | −0.508 | |
| 透明度 TR | 2.301 | −1.885 | −0.116 | −0.301 | −0.222 | 0.043 | −0.143 | −0.323 | |
| 胶稠度 GC | 1.032 | −0.723 | −0.026 | 0.154 | −0.019 | 0.510 | −0.246 | 0.682 | |
| 碱消值 ASV | −1.736 | 1.310 | 0.034 | 0.063 | 0.093 | −0.367 | 0.342 | −0.261 | |
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 直链淀粉含量 AC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N1 | 胶稠度GC | 0.418 | 0.335 | −0.003 | 0.750 | ||||
| 直链淀粉含量AC | −0.336 | −0.417 | 0.073 | −0.680 | |||||
| 蛋白质含量PC | 0.003 | 0.076 | −0.400 | −0.321 | |||||
| 处理 Treatment | 性状 Trait | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | |||||
| N2 | 胶稠度GC | 0.741 | −0.072 | 0.669 | |||||
| 蛋白质含量PC | 0.182 | −0.294 | −0.112 | ||||||
| 处理 Treatment | 性状 Trait | 垩白粒率 CGR | 胶稠度 GC | 蛋白质含量 PC | 总体效应 Overall effect | ||||
| N3 | 垩白粒率CGR | −0.278 | −0.073 | −0.053 | −0.404 | ||||
| 胶稠度GC | 0.030 | 0.666 | 0.082 | 0.778 | |||||
| 蛋白质含量PC | −0.040 | −0.149 | −0.368 | −0.557 | |||||
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | |
| 糙米率 BRR (X1) | 1.151 | 0.152 | −0.328 | 0.298 | 0.519 | 0.122 | 0.008 | 0.979 |
| 精米率 MRR (X2) | −1.543 | 0.081 | 0.190 | 0.581 | −0.979* | 0.011 | −0.223 | 0.537 |
| 米粒长宽比 LWR (X4) | −0.993 | 0.523 | 1.007 | 0.248 | 0.440 | 0.660 | 1.653* | 0.045 |
| 垩白粒率 CGR (X5) | 0.002 | 0.979 | 0.039 | 0.329 | −0.157** | 0.004 | −0.102* | 0.031 |
| 垩白度 CD (X6) | −0.227 | 0.263 | −0.199* | 0.012 | 0.201* | 0.041 | 0.203* | 0.023 |
| 透明度 TR (X7) | −3.322* | 0.014 | 0.230 | 0.775 | −1.273 | 0.093 | 0.137 | 0.843 |
| 胶稠度 GC (X8) | 0.065 | 0.174 | 0.127** | 0.000 | 0.118** | 0.000 | 0.157** | 0.000 |
| 直链淀粉含量AC (X9) | −0.867** | 0.001 | −0.853** | 0.000 | −0.779** | 0.000 | −0.514** | 0.005 |
| 碱消值 ASV (X10) | −0.297 | 0.554 | 0.378 | 0.202 | 0.187 | 0.563 | 0.296 | 0.283 |
| 蛋白质含量 PC (X11) | −4.318** | 0.000 | −5.794** | 0.000 | −6.528** | 0.000 | −6.132** | 0.000 |
表6 合并早晚两季数据的品质性状与食味值之间偏回归系数
Table 6. Partial regression coefficients between quality traits and taste value using combined date from early and late seasons
| 性状(代号) Traits(Code) | N0 | N1 | N2 | N3 | ||||
|---|---|---|---|---|---|---|---|---|
| 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | 偏回归系数Partial regression coefficient | 显著性 P | |
| 糙米率 BRR (X1) | 1.151 | 0.152 | −0.328 | 0.298 | 0.519 | 0.122 | 0.008 | 0.979 |
| 精米率 MRR (X2) | −1.543 | 0.081 | 0.190 | 0.581 | −0.979* | 0.011 | −0.223 | 0.537 |
| 米粒长宽比 LWR (X4) | −0.993 | 0.523 | 1.007 | 0.248 | 0.440 | 0.660 | 1.653* | 0.045 |
| 垩白粒率 CGR (X5) | 0.002 | 0.979 | 0.039 | 0.329 | −0.157** | 0.004 | −0.102* | 0.031 |
| 垩白度 CD (X6) | −0.227 | 0.263 | −0.199* | 0.012 | 0.201* | 0.041 | 0.203* | 0.023 |
| 透明度 TR (X7) | −3.322* | 0.014 | 0.230 | 0.775 | −1.273 | 0.093 | 0.137 | 0.843 |
| 胶稠度 GC (X8) | 0.065 | 0.174 | 0.127** | 0.000 | 0.118** | 0.000 | 0.157** | 0.000 |
| 直链淀粉含量AC (X9) | −0.867** | 0.001 | −0.853** | 0.000 | −0.779** | 0.000 | −0.514** | 0.005 |
| 碱消值 ASV (X10) | −0.297 | 0.554 | 0.378 | 0.202 | 0.187 | 0.563 | 0.296 | 0.283 |
| 蛋白质含量 PC (X11) | −4.318** | 0.000 | −5.794** | 0.000 | −6.528** | 0.000 | −6.132** | 0.000 |
| 处理 Treat- ment | 性状 Trait | 直接通径系数和间接通径系数 Direct path coefficient and indirect path coefficient | 总体效应 Overall effect | |||||
|---|---|---|---|---|---|---|---|---|
| N0 | 透明度 TR | 直链淀粉含量AC | 蛋白质含量PC | |||||
| 透明度 TR | −0.251 | −0.091 | −0.027 | −0.369 | ||||
| 直链淀粉含量AC | −0.036 | −0.629 | 0.022 | −0.643 | ||||
| 蛋白质含量PC | −0.019 | 0.038 | −0.354 | −0.335 | ||||
| N1 | 垩白度CD | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | ||||
| 垩白度CD | −0.331 | 0.061 | 0.046 | 0.004 | −0.220 | |||
| 胶稠度GC | −0.065 | 0.309 | 0.366 | −0.021 | 0.589 | |||
| 直链淀粉含量AC | 0.031 | −0.231 | −0.490 | 0.039 | −0.651 | |||
| 蛋白质含量PC | 0.003 | 0.015 | 0.043 | −0.451 | −0.390 | |||
| N2 | 精米率MRR | 垩白粒率CGR | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | |||
| 精米率MRR | −0.285 | −0.090 | −0.025 | 0.058 | 0.048 | −0.294 | ||
| 垩白粒率CGR | −0.093 | −0.277 | −0.041 | −0.067 | 0.054 | −0.424 | ||
| 胶稠度GC | 0.027 | 0.041 | 0.273 | 0.289 | −0.081 | 0.549 | ||
| 直链淀粉含量AC | 0.038 | −0.043 | −0.181 | −0.436 | 0.084 | −0.538 | ||
| 蛋白质含量PC | 0.031 | 0.034 | 0.050 | 0.084 | −0.440 | −0.241 | ||
| N3 | 长宽比 LWR | 胶稠度GC | 蛋白质含量PC | |||||
| 长宽比LWR | 0.404 | 0.038 | −0.070 | 0.372 | ||||
| 胶稠度GC | 0.026 | 0.590 | −0.006 | 0.610 | ||||
| 蛋白质含量PC | 0.057 | 0.007 | −0.495 | −0.431 | ||||
表7 合并早晚季数据的食味值与品质性状通径分析
Table 7. Path analysis of quality traits on taste value from pooled date across growing seasons
| 处理 Treat- ment | 性状 Trait | 直接通径系数和间接通径系数 Direct path coefficient and indirect path coefficient | 总体效应 Overall effect | |||||
|---|---|---|---|---|---|---|---|---|
| N0 | 透明度 TR | 直链淀粉含量AC | 蛋白质含量PC | |||||
| 透明度 TR | −0.251 | −0.091 | −0.027 | −0.369 | ||||
| 直链淀粉含量AC | −0.036 | −0.629 | 0.022 | −0.643 | ||||
| 蛋白质含量PC | −0.019 | 0.038 | −0.354 | −0.335 | ||||
| N1 | 垩白度CD | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | ||||
| 垩白度CD | −0.331 | 0.061 | 0.046 | 0.004 | −0.220 | |||
| 胶稠度GC | −0.065 | 0.309 | 0.366 | −0.021 | 0.589 | |||
| 直链淀粉含量AC | 0.031 | −0.231 | −0.490 | 0.039 | −0.651 | |||
| 蛋白质含量PC | 0.003 | 0.015 | 0.043 | −0.451 | −0.390 | |||
| N2 | 精米率MRR | 垩白粒率CGR | 胶稠度GC | 直链淀粉含量AC | 蛋白质含量PC | |||
| 精米率MRR | −0.285 | −0.090 | −0.025 | 0.058 | 0.048 | −0.294 | ||
| 垩白粒率CGR | −0.093 | −0.277 | −0.041 | −0.067 | 0.054 | −0.424 | ||
| 胶稠度GC | 0.027 | 0.041 | 0.273 | 0.289 | −0.081 | 0.549 | ||
| 直链淀粉含量AC | 0.038 | −0.043 | −0.181 | −0.436 | 0.084 | −0.538 | ||
| 蛋白质含量PC | 0.031 | 0.034 | 0.050 | 0.084 | −0.440 | −0.241 | ||
| N3 | 长宽比 LWR | 胶稠度GC | 蛋白质含量PC | |||||
| 长宽比LWR | 0.404 | 0.038 | −0.070 | 0.372 | ||||
| 胶稠度GC | 0.026 | 0.590 | −0.006 | 0.610 | ||||
| 蛋白质含量PC | 0.057 | 0.007 | −0.495 | −0.431 | ||||
| [1] | Shi Y S, Wei H, Hong X L. Identification of QTLs for cooking and eating quality of rice grain[J]. Rice Science, 2006, 13(3): 161-169. |
| [2] | 崔晶, 楠谷彰人, 松江勇次, 森田重則. 中日合作水稻品质·食味研究的现状和展望[J]. 北方水稻, 2011, 41(4): 1-6 |
| Cui J, Kusutani A, Matsue Y J, Morita S. Present situation and expectation of the rice quality and eating under Sino-Japanese cooperation[J]. Northern Rice, 2011, 41(4): 1-6. (in Chinese with English abstract) | |
| [3] | 刘厚清, 李超. 影响米饭食味的因素: I. 品种及种植技术对米饭食味的影响[J]. 北方水稻, 2022, 52(1): 1-4. |
| Liu H Q, Li C. Factors affecting the taste of rice: I. How the varieties and cultivation technologies affect the taste of rice[J]. Northern Rice, 2022, 52(1): 1-4. (in Chinese) | |
| [4] | 王丰. 杂交水稻育种成就与展望—广东省农业科学院杂交水稻研究50年回顾[J]. 广东农业科学, 2020, 47(12): 1-11. |
| Wang F. Achievements and prospects of hybrid rice breeding—Review of 50 years’research on hybrid rice by Rice Research Institute of Guangdong Academy of Agricultural Sciences[J]. Guangdong Agricultural Sciences, 2020, 47(12): 1-11. (in Chinese with English abstract) | |
| [5] | 甄海, 吴东辉, 伍时照, 苏倩. 广东籼稻品种品质性状的相关与通径分析[J]. 华南农业大学学报, 1996, 17(4): 41-45 |
| Zhen H, Wu D H, Wu S X, Su Q. Correlation and path analyses of quality characters of indica type rice varieties in Guangdong[J]. Journal of South China Agricultural University, 1996, 17(4): 41-45. (in Chinese with English abstract) | |
| [6] | 陈能, 罗玉坤, 朱智伟, 张伯平, 郑有川, 谢黎虹. 优质食用稻米品质的理化指标与食味的相关性研究[J]. 中国水稻科学, 1997, 11(2): 70-76. |
| Chen N, Luo Y K, Zhu Z W, Zhang B P, Zheng Y C, Xie L H. Correlation between eating quality and physico-chemical properties of high grain qualitiy rice[J]. Chinese Journal of Rice Science, 1997, 11(2): 70-76. (in Chinese with English abstract) | |
| [7] | 周治宝, 王晓玲, 余传元, 雷建国, 胡培松, 王智权, 李马忠, 朱昌兰. 籼稻米饭食味与品质性状的相关性分析[J]. 中国粮油学报, 2012, 27(1): 1-5. |
| Zhou Z B, Wang X L, Yu C Y, Lei J G, Hu P S, Wang Z Q, Li M Z, Zhu C L. Correlation analysis of eating quality with quality characters of indica rice[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(1): 1-5. (in Chinese with English abstract) | |
| [8] | 徐正进, 陈温福, 马殿荣, 吴晓冬, 郑煜焱, 王嘉宇. 辽宁水稻食味值及其与品质性状的关系[J]. 作物学报, 2005, 31(8): 1092-1094. |
| Xu Z J, Chen W F, Ma D R, Wu X D, Zheng Y Y, Wang J Y. Relationship between eating quality and other quality characters of rice in Liaoning[J]. Acta Agronomica Sinica, 2005, 31(8): 1092-1094. (in Chinese with English abstract) | |
| [9] | 朱大伟, 章林平, 陈铭学, 方长云, 于永红, 郑小龙, 邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
| Zhu D W, Zhang L P, Chen M X, Fang C Y, Yu Y H, Zheng X L, Shao Y F. Characteristics of high-quality rice varieties and taste sensory evaluation values in China[J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283. (in Chinese with English abstract) | |
| [10] | 向远鸿, 唐启源, 黄燕湘. 稻米品质性状相关性研究: I. 籼型粘稻食味与其它米质性状的关系[J]. 湖南农学院学报, 1990, 16(4): 325-330 |
| Xiang Y H, Tang Q Y, Huang Y X. The relativity of rice grain quality characteristics: I. Relations between eating quality and other grain quality characteristics[J]. Journal of Hunan Agricultural College, 1990, 16(4): 325-330. (in Chinese with English abstract) | |
| [11] | 林建荣, 詹勇强, 闵捷, 宋昕蔚, 吴明国. 粳稻稻米食味仪测定值与理化指标的关系[J]. 中国稻米, 2011, 17(3): 5-8. |
| Lin J R, Zhan Y Q, Min J, Song X W, Wu M G. The relationship between the test values of japonica rice by the taste instrument and the physical and chemical indicators[J]. China Rice, 2011, 17(3): 5-8. (in Chinese with English abstract) | |
| [12] | 曲红岩, 张欣, 施利利, 李永杰, 徐锡明, 生华, 崔晶. 水稻食味品质主要影响因子分析[J]. 江苏农业科学, 2017, 45(6): 172-175. |
| Qu H Y, Zhang X, Shi L L, Li Y J, Xu X M, Sheng H, Cui J. Analysis of main factors influencing taste quality in rice[J]. Jiangsu Agricultural Sciences, 2017, 45(6): 172-175. (in Chinese with English abstract) | |
| [13] | Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765. |
| [14] | Tan Y F, Li J X, Yu S B, Xing Y Z, Xu C G, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theoretical and Applied Genetics, 1999, 99: 642-648. |
| [15] | Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. Wxlv, the ancestral allele of rice waxy gene[J]. Molecular Plant, 2019, 12: 1157-1166. |
| [16] | Liang H L, Tao D B, Zhang Q, Zhang S, Wang J Y, Liu L F, Wu Z X, Sun W T. Nitrogen fertilizer application rate impacts eating and cooking quality of rice after storage[J]. PLoS ONE, 2021, 16(6): 1-14. |
| [17] | 赵可, 许俊伟, 姜元华, 韦还和, 张洪程, 许轲, 李超, 丁焕新. 施氮量和品种类型对稻米食味品质的影响[J]. 食品科学, 2014, 35(21): 63-67. |
| Zhao K, Xu J W, Jiang Y H, Wei H H, Zhang H C, Xu K, Li C, Ding H X. Effect of nitrogen fertilizer application on the eating quality of different types of rice varieties[J]. Food Science, 2014, 35(21): 63-67. (in Chinese with English abstract) | |
| [18] | 徐富贤, 熊洪, 张林, 郭晓艺, 朱永川, 周兴兵, 刘茂. 杂交中稻在不同地域和施氮水平下米质变异的影响因素及其预测模型[J]. 中国水稻科学, 2012, 26(4): 438-444. |
| Xu F X, Xiong H, Zhang L, Guo X Y, Zhu Y C, Zhou X B, Liu M. Effect factor and predict model of rice quality variation for mid-season hybrid rice at different ecological sites and nitrogen application levels[J]. Chinese Journal of Rice Science, 2012, 26(4): 438-444. | |
| [19] | 朱旭东, 熊振民, 罗玉坤, 孔繁林, 曹立勇, 闵捷. 异季栽培对稻米品质的影响[J]. 中国水稻科学, 1993, 7(3): 172-174. |
| Zhu X D, Xiong Z M, Luo Y K, Cao L Y, Min J. The influence of different cropping seasons on rice grain quality[J]. Chinese Journal of Rice Science, 1993, 7(3): 172-174. (in Chinese with English abstract) | |
| [20] | 吉志军, 尤娟, 王龙俊, 王绍华, 杜永林, 张国发, 王强盛, 丁艳锋. 不同基因型水稻稻米加工品质和外观品质的生态型差异[J]. 南京农业大学学报, 2005, 28(4): 16-20. |
| Ji Z J, You J, Wang L J, Wang S H, Du Y L, Zhang G F, Wang Q S, Ding Y F. Ecotye differences in milling qualities and appearence qualityies of different rice genotypes[J]. Journal of Nanjing Agricultural University, 2005, 28(4): 16-20. (in Chinese with English abstract) | |
| [21] | 中华人民共和国农业部. 米质测定方法: NYT83-2017[S]. 北京: 中国农业出版社, 2017. |
| Ministry of Agriculture of the People's Republic of China. Method for Determination of Rice Quality: NYT83—2017[S]. Beijing: China Agriculture Press, 2017. (in Chinese) | |
| [22] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 粮油检验大米胶稠度的测定: GB/T 22294—2008[S]. 北京: 中国标准出版社, 2008. |
| State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Determination of Gel consistency of Rice for Grain and Oil Inspection: GB/T 22294—2008[S]. Beijing: China Standard Publishing House, 2008. (in Chinese) | |
| [23] | 中华人民其和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 大米直链淀粉含量的测定: GB/T 15683—2008/SO 6647-1: 2007[S]. 北京: 中国标准出版社, 2009. |
| State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. Determination of the Content of Amylose in Rice: GB/T 15683—2008/SO 6647-1: 2007[S] Beijing: China Standard Publishing House, 2009. (in Chinese) | |
| [24] | 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品安全国家标准食品中蛋白质的测定: GB 5009.5—2016[S]. 北京: 中国标准出版社, 2016. |
| National Health and Family Planning Commission of the People's Republic of ChinaNational Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. National Standard for Food Safety-Determination of Protein in Foods: GB 5009.5—2016[S]. Beijing: China Standard Publishing House, 2016. (in Chinese) | |
| [25] | 赖穗春, 河野元信, 王志东, 三上隆司, 黄道强, 李宏, 卢德城, 周德贵, 周少川. 米饭食味计评价华南籼稻食味品质[J]. 中国水稻科学, 2011, 25(4): 435-438. |
| Lai S C, Kawano M, Wang Z D, Mikami T, Huang D Q, Li H, Lu D C, Zhou D G, Zhou S C. Cooking and eating quality of indica rice varieties from South China by using rice taste ananlyzer[J]. Chinese Journal of Rice Science, 2011, 25(4): 435-438. (in Chinese with English abstract) | |
| [26] | 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法[J] 生物学通报, 2010, 45(2): 4-6 |
| Du J J, Chen Z W. The method of using SPSS linear regression to implement path analysis[J]. Biological Science Bulletin, 2010, 45(2): 4-6. (in Chinese with English abstract) | |
| [27] | 张兰兰, 刘迪林, 马晓智, 霍兴, 孔乐, 柳武革, 王丰. 华南籼稻品种(系)食味相关性状对施氮量的响应研究[J]. 华南农业大学学报, 2023, 44(6): 949-959. |
| Zhang L L, Liu D L, Ma X Z, Huo X, Kong L, Liu W G, Wang F. Responses of eating quality related traits to nitrogen application rate for Indica rice varieties (lines) from South China[J]. Journal of South China Agricultural University, 2023, 44(6): 949-959. (in Chinese with English abstract) | |
| [28] | Mao T, Zhang Z, Ni S J, Zhao Y Z, Li X, Zhang L L, Liu Y, Zhong C S, Huang H, Wang S L, Li X. Assisted selection of eating quality progeny of indica (O. sativa L. ssp. indica) and japonica (O. sativa L. ssp. japonica) hybrids using rice starch properties[J]. Genetic Resources and Crop Evolution, 2021, 68: 411-420. |
| [29] | Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw J L, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnaruba E, Toojinda T, Tragoonrung S. Thai Hom Mali Rice: Origin and breeding for subsistence rainfed lowland rice System[J]. Rice, 2018, 11: 20. |
| [30] | Singh R K, Singh U S, Khush G S. Aromatic Rices[M]. NewDelhi, Calcutta: Mohan Primlani for Oxford &IBH Publishing Co. Pvt. Ltd, 2000: 108-152. |
| [31] | Amarawathi Y, Singh R, Singh A K, Singh V P, Mohapatra T, Sharma T R, Singh N K. Mapping of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.)[J]. Molecular Breeding, 2008, 21: 49-65. |
| [32] | 王丰, 柳武革, 刘迪林, 廖亦龙, 付崇允, 朱满山, 李金华, 曾学勤, 马晓智, 霍兴. 广东优质稻发展及稻米品牌建设与展望[J]. 中国稻米, 2021, 27(4): 107-116. |
| Wang F, Liu W G, Liu D L, Liao Y L, Fu C Y, Zhu M S, Li J H, Zeng X Q, Ma X Z, Huo X. Development of high quality rice, constraction and prospects of Rice Brands in Guangdong[J]. China Rice, 2021, 27(4): 107-116. (in Chinese with English abstract) | |
| [33] | Martin M, Fitzgerald M A. Proteins in rice grains infuence cooking properties[J]. Journal of Cereal Science, 2002, 36: 285-294. |
| [34] | 中华人民共和国农业农村部. 食用稻品种品质: NY/T 593-2021[S]. 北京: 中国农业出版社, 2021. |
| Ministry of Agriculture and Rural Affairs of the People's Republic of China. Quality of Edible Rice Varieties: NY/T 593-2021[S]. Beijing: China Agriculture Press, 2021. (in Chinese) | |
| [35] | Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(45): 19581-19584. |
| [36] | Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18: 1199-1209. |
| [37] | Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 47, 949-954 |
| [38] | Tan W C, Miao J, Xu B, Zhou C T, Wang Y R, Gu X Q, Liang S N, Wang B X, Chen C, Zhu J Y, Zuo S M, Yang Z F, Gong Z Y, You A Q, Wu S J, Liang G H, Zhou Y. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7[J]. Plant Biotechnology Journal, 2023, 21: 1305-1307. |
| [39] | 王丰, 刘迪林, 朱满山, 廖亦龙, 李金华, 付崇允, 曾学勤, 马晓智, 霍兴, 孔乐, 柳武革. 水稻不育系泰丰A的创制及其优良品质性状的遗传基础研究[J]. 中国稻米, 2024, 30(4): 24-32. |
| Wang F, Liu D L, Zhu M S, Liao Y L, Li J H, Fu C Y, Zeng X Q, Ma X Z, Huo X, Kong L, Liu W G. Creation of male sterile line Taifeng a and study on the genetic basis of its excellent quality traits in rice[J]. China Rice, 2024, 30(4): 24-32. (in Chinese with English abstract) | |
| [40] | Deng Z, Liu Y, Gong C, Chen B, Wang T. Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study[J]. Journal of Experimental Botany, 2022, 73(19): 6942-6954. |
| [41] | Zhang C, Yang Y, Chen S, Liu X, Zhu J, Zhou L, Lu Y, Li Q, Fan X, Tan S, Gu M, Liu Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63: 889-901 |
| [42] | Tan Y, Li J, Yu S, Xing Y, Xu C, Zhang Q. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63[J]. Theoretical and Applied Genetics, 1999, 99: 642-648. |
| [43] | Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 21760-21765. |
| [44] | Gao Z Y, Zeng D L, Cheng F M, Tian Z X, Guo L B, Su Y, Yan M X, Jiang H, Dong G J, Huang Y C, Han B, Li J Y, Qian Q. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice[J]. Journal of Integrative Plant Biology, 2011, 53(9): 756-765. |
| [45] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H, Xiao J H, Xu C G, He Y Q. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404 |
| [46] | Yang Y H, Guo M, Sun S Y, Zou Y L, Yin S Y, Liu Y N, Tang S Z, Gu M H, Yang Z F, Yan C J. Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J]. Nature Communications, 2019, 10: 1949. |
| [47] | Peng B, Kong H L, Li Y B, Wang L Q, Zhong M, Sun L, Gao G J, Zhang Q L, Luo L J, Wang G W, Xie W B, Chen J X, Yao W, Peng Y, Lei L, Lian X M, Xiao J H, Xu C G, Li X H, He Y Q. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice[J]. Nature Communications, 2014, 5: 4847. |
| [1] | 卞金龙, 任高磊, 裘实, 许方甫, 胡忠磊, 张洪程, 魏海燕. 不同机插方式下控混肥施用方式对淮北地区优质食味粳稻产量及氮素利用的影响[J]. 中国水稻科学, 2025, 39(6): 847-862. |
| [2] | 闫影, 王凯, 张丽霞, 胡泽军, 叶俊华, 杨航, 顾春军, 吴书俊. 利用分子聚合育种培育优质多抗粳稻新品种沪香粳216[J]. 中国水稻科学, 2025, 39(2): 209-219. |
| [3] | 姚姝, 陈涛, 赵春芳, 周丽慧, 赵凌, 梁文化, 赫磊, 路凯, 朱镇, 赵庆勇, 管菊, 王才林, 张亚东. 江淮稻区不同类型粳稻品种外观及蒸煮食味品质特征比较[J]. 中国水稻科学, 2024, 38(6): 709-718. |
| [4] | 景秀, 周苗, 王晶, 王岩, 王旺, 王开, 郭保卫, 胡雅杰, 邢志鹏, 许轲, 张洪程. 穗分化末期-灌浆初期干旱胁迫对优质食味粳稻根系形态和叶片光合特性的影响[J]. 中国水稻科学, 2024, 38(1): 33-47. |
| [5] | 雍明玲, 叶苗, 张雨, 陶钰, 倪川, 康钰莹, 张祖建. 不同食味水稻品种稻米淀粉结构与理化特性及其对氮素响应的差异[J]. 中国水稻科学, 2024, 38(1): 57-71. |
| [6] | 易晓璇, 刘玮琦, 曾盖, 罗丽华, 肖应辉. 灌浆期高温胁迫对早籼稻品质性状的影响[J]. 中国水稻科学, 2024, 38(1): 72-80. |
| [7] | 谢开珍, 张建明, 程灿, 周继华, 牛付安, 孙滨, 张安鹏, 闻伟军, 代雨婷, 胡启琰, 邱越, 曹黎明, 储黄伟. 低直链淀粉含量水稻种质资源的鉴定与QTL定位分析[J]. 中国水稻科学, 2023, 37(6): 609-616. |
| [8] | 陈丽明, 杨陶陶, 熊若愚, 谭雪明, 黄山, 曾勇军, 潘晓华, 石庆华, 张俊, 曾研华. 开放式主动增温对双季优质籼稻籽粒淀粉积累及其关键酶活性的影响[J]. 中国水稻科学, 2023, 37(2): 166-177. |
| [9] | 张佳, 王慧杰, 何正权, 刘文真. 农杆菌介导的籼稻9311和华占遗传转化体系的研究[J]. 中国水稻科学, 2023, 37(2): 213-224. |
| [10] | 姚姝, 赵春芳, 陈涛, 路凯, 周丽慧, 赵凌, 朱镇, 赵庆勇, 梁文化, 赫磊, 王才林, 张亚东. 低谷蛋白半糯型粳稻营养品质与蒸煮食味品质特征分析[J]. 中国水稻科学, 2023, 37(2): 178-188. |
| [11] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
| [12] | 王颖姮, 陈丽娟, 崔丽丽, 詹生威, 宋煜, 陈世安, 解振兴, 姜照伟, 吴方喜, 卓传营, 蔡秋华, 谢华安, 张建福. 施氮量对优质稻“福香占”光合特性、产量及品质的影响[J]. 中国水稻科学, 2023, 37(1): 89-101. |
| [13] | 史玉良, 杨勇, 李雪飞, 李钱峰, 黄李春, 张昌泉, 宋学堂, 刘巧泉. 不同直链淀粉含量软米品种品质性状的比较[J]. 中国水稻科学, 2022, 36(6): 601-610. |
| [14] | 陆丹丹, 雍明玲, 陶钰, 叶苗, 张祖建. 优良食味水稻品种籽粒蛋白质积累特征及其对氮素水平的响应[J]. 中国水稻科学, 2022, 36(5): 520-530. |
| [15] | 张宇杰, 王志强, 马鹏, 杨志远, 孙永健, 马均. 麦秆还田下水氮耦合对水稻氮素吸收利用及产量的影响[J]. 中国水稻科学, 2022, 36(4): 388-398. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||